JPS6364879A - Discriminating device for condition of road surface - Google Patents

Discriminating device for condition of road surface

Info

Publication number
JPS6364879A
JPS6364879A JP20797186A JP20797186A JPS6364879A JP S6364879 A JPS6364879 A JP S6364879A JP 20797186 A JP20797186 A JP 20797186A JP 20797186 A JP20797186 A JP 20797186A JP S6364879 A JPS6364879 A JP S6364879A
Authority
JP
Japan
Prior art keywords
steering
amount
wheel
handle
repulsive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20797186A
Other languages
Japanese (ja)
Inventor
Hitoshi Nakajima
中嶋 仁志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP20797186A priority Critical patent/JPS6364879A/en
Publication of JPS6364879A publication Critical patent/JPS6364879A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/159Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels characterised by computing methods or stabilisation processes or systems, e.g. responding to yaw rate, lateral wind, load, road condition

Abstract

PURPOSE:To improve the stability of running, by detecting repulsive force of handle control and a handle steering angle while correcting a steering amount of a wheel in accordance with the detected repulsive force information and handle steering angle information and performing the actual steering action by the corrected steering amount. CONSTITUTION:A wheel steering amount arithmetic part 110 obtains a steering amount from a handle control amount of a steering angle sensor 101 and a vehicle running speed of a car speed sensor 100, while a correction amount arithmetic part 120 calculates a correction amount in accordance with detection amounts of the steering angle sensor 101 and a distortion sensor 102, which detects repulsive force of handle control, and the wheel steering amount arithmetic part 110, which corrects the obtained steering amount in accordance with the correction amount of the correction amount arithmetic part 120, outputs a steering amount, finishing the correction, to a motor driving part 130 for steering a wheel. Accordingly, in addition to that the steering amount is determined by a steering angle of the handle control and the car speed, the steering amount is corrected by the repulsive force for a handle, generated when its control is performed between the handle and a tire, and the steering amount, being enabled to correspond to a road condition, enables the stability of running to be very highly increased.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ハンドル操作に応じて前輪を転舵すると共に
、前輪の転舵に応じて後輪を転舵し、運転状態に応じて
前輪と後輪の転舵比を制御可能な4輪操舵装置を有する
車両における路面状態判別装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention steers the front wheels in response to steering wheel operation, steers the rear wheels in response to the steering of the front wheels, and steers the front wheels in accordance with the driving condition. The present invention relates to a road surface condition determination device for a vehicle having a four-wheel steering device capable of controlling the steering ratio of rear wheels.

(従来の技術) 近年、前輪と共に後輪をも転舵させる4輪操舵装置を備
える自動車が提供されてきている。この中には、特開昭
60−135369号公報に示すように・、マニュアル
操作により転舵比特性を変更可能としたものが提案され
ており、この例では遅延手段により切替手段による切替
前の転舵状態から切替後の転舵状態へ時間とともに漸次
変化させて移行させるようにして、走行旋回中に切替手
段を操作しても無用なハンドル修正努力を不要とする機
能を備えるものである。
(Prior Art) In recent years, automobiles have been provided that are equipped with a four-wheel steering device that steers both the front wheels and the rear wheels. Among these, as shown in Japanese Unexamined Patent Publication No. 135369/1983, a system has been proposed in which the steering ratio characteristic can be changed by manual operation. The present invention has a function of gradually changing and transitioning from a steering state to a post-switching steering state over time, thereby eliminating the need for unnecessary efforts to correct the steering wheel even if a switching means is operated while the vehicle is turning.

(発明が解決しようとする問題点) このマニュアル操作による転舵比特性の変化は一律に行
なわれているため、例えば低μ路で後輪の同位相方向へ
の切れ角を大きくすると安定性が大きく増すことが知ら
れているが、このようなμを検出する方法が今までなく
、十分対応することができなかった。
(Problem to be solved by the invention) Since the steering ratio characteristics are uniformly changed by this manual operation, for example, on a low μ road, increasing the steering angle of the rear wheels in the same phase direction will improve stability. Although it is known that μ increases significantly, there has been no method to detect such μ until now, and it has not been possible to adequately cope with it.

(問題点を解決するための手段) 本発明は上述した問題点に鑑み成されたもので、上記問
題点を除去する一手段とに本実施例は以下の構成を備え
る。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned problems, and as a means for eliminating the above-mentioned problems, the present embodiment has the following configuration.

即ち、ハンドルとタイヤ間に配設されたハンドル操作に
対する反撥力を検出する検出手段と、ハンドル舵角を検
出する舵角検出手段と、該舵角検出手段の検出したハン
ドル舵角情報と前記検出手段の検出した反撥力情報に従
って車輪の転舵量を補正する補正手段とを備える。
That is, a detection means arranged between a steering wheel and a tire for detecting a repulsive force in response to a steering wheel operation, a steering angle detection means for detecting a steering angle, and a steering wheel angle information detected by the steering angle detection means and the detection. and correction means for correcting the steering amount of the wheels according to the repulsive force information detected by the means.

(作用) 以上の構成において、検出手段でハンドルとタイヤ間の
転舵操作における反撥力(ハンドル入力に対する歪)を
検出し、該検出した反撥力に対応してハンドル舵角に従
った転舵量に対して補正を行い、走行安定性の向上に寄
与する。
(Function) In the above configuration, the detection means detects the repulsive force (distortion with respect to the steering wheel input) in the steering operation between the steering wheel and the tires, and the amount of steering is determined according to the steering angle in response to the detected repulsive force. This contributes to improving driving stability.

(実施例) 以下、図面を参照して本発明に係る一実施例を詳説する
(Example) Hereinafter, an example according to the present invention will be described in detail with reference to the drawings.

第1図は本発明に係る一実施例の機能ブロック図である
、図中100は車両の走行速度を検出する車速センサ、
101はハンドルの舵角量を検出する舵角センサ、10
2はハンドル操作時にハンドル操作に対するタイヤより
の反撥力を検出する歪センサ、110は舵角センサ10
1のハンドル操作量と車速センサ100よりの車両の走
行速度より求めた転舵量に、補正量演算部120よりの
補正量に従った補正を行い、該補正済転舵量を車輪操舵
用のモータ駆動部130に出力する車輪転舵量演算部、
120は舵角センサ101と歪センサ102よりの検出
量に従い、車輪の転舵量に対する補正量を演算する補正
量演算部、130は車輪転舵量演算部110よりの車輪
転舵量に従い、モータ150を回転駆動するモータ駆動
部、140はモータ150の回転角を検出し、モータ駆
動部130に出力するモータ回転角センサ、150は車
輪を転舵するモータである。
FIG. 1 is a functional block diagram of an embodiment according to the present invention. In the figure, 100 is a vehicle speed sensor that detects the running speed of the vehicle;
101 is a steering angle sensor that detects the amount of steering angle of the steering wheel;
2 is a strain sensor that detects the repulsive force from the tires in response to the steering wheel operation; 110 is the steering angle sensor 10;
The steering amount obtained from the steering wheel operation amount of 1 and the traveling speed of the vehicle from the vehicle speed sensor 100 is corrected according to the correction amount from the correction amount calculation unit 120, and the corrected steering amount is used for wheel steering. a wheel turning amount calculation unit that outputs to the motor drive unit 130;
120 is a correction amount calculating unit that calculates a correction amount for the wheel turning amount according to the detected amounts from the steering angle sensor 101 and the strain sensor 102; 150 is a motor drive unit that rotationally drives the motor; 140 is a motor rotation angle sensor that detects the rotation angle of the motor 150 and outputs it to the motor drive unit 130; and 150 is a motor that steers the wheels.

本実施例では以上の機能を僅えることにより、ハンドル
操作の舵角量、及び、車速により転舵量を決めるのに加
え、ハンドルとタイヤ間の操作の際に発生するハンドル
に対する反撥力により転舵量を補正し、道路よりのμに
対応した転舵量とすることができ、非常に走行安定性を
増加させることができる。
In this embodiment, by reducing the above-mentioned functions, in addition to determining the amount of steering based on the steering angle amount of the steering wheel operation and the vehicle speed, the turning amount is determined by the repulsive force against the steering wheel that is generated during operation between the steering wheel and the tires. The amount of steering can be corrected to make the amount of steering correspond to μ from the road, and driving stability can be greatly increased.

次に本実施例における以上の機能を持ったコントロール
ユニットを備える車両、例えば、FF車(フロントエン
ジンフロントドライブ車)の全体系統図を第2図に示す
Next, FIG. 2 shows an overall system diagram of a vehicle equipped with a control unit having the above-mentioned functions according to this embodiment, for example, a front-wheel drive vehicle (FF vehicle).

第2図において、IRは右前輪、ILは左前輪、2Rは
右後輪、2Lは左後輪であり、左右の前輪IR,ILは
前輪転舵機構Aにより連係され、また左右の後輪2R,
2Lは後輪転舵機構Bにより連係されている。
In Fig. 2, IR is the right front wheel, IL is the left front wheel, 2R is the right rear wheel, and 2L is the left rear wheel.The left and right front wheels IR and IL are linked by a front wheel steering mechanism A, and the left and right rear wheels are 2R,
2L is linked by rear wheel steering mechanism B.

前輪転舵機構Aは、実施例では、それぞれ左右一対のナ
ックルアーム3R,3LおよびタイロノF4R,4Lと
、該左右一対のタイロッド4R。
In the embodiment, the front wheel steering mechanism A includes a pair of left and right knuckle arms 3R, 3L and a tie rod F4R, 4L, respectively, and a pair of left and right tie rods 4R.

4L同志を連結するリレーロッド5とから構成されてい
る。この前輪転舵機構Aにはステアリング機構Cが連係
されており、このステアリング機構Cは、ラックアンド
ピニオン式とされている。即ち、リレーロッド5にはラ
ック6が形成される一方、該ラック6と噛合うビニオン
7が、歪センサ102の配設されたシャフト8を介して
ハンドル9に連結されている。これにより、ハンドル9
を右に切るような操作をしたときは、リレーロッド5が
第1図左方へ変位して、ナックルアーム3R,jLがそ
の回動中心3R’、3L’ を中心にして上記ハンドル
9の操作変位量、つまりハンドル舵角に応じた分だけ同
図時計方向に転舵される。同様にハンドル9を左に切る
操作をしたときは、この操作変位量に応じて、左右前輪
IR。
It is composed of a relay rod 5 that connects the 4Ls. A steering mechanism C is linked to the front wheel steering mechanism A, and the steering mechanism C is of a rack and pinion type. That is, a rack 6 is formed on the relay rod 5, and a pinion 7 that meshes with the rack 6 is connected to a handle 9 via a shaft 8 on which a strain sensor 102 is disposed. This allows the handle 9
When the relay rod 5 is displaced to the left in FIG. The vehicle is steered clockwise in the figure by an amount corresponding to the amount of displacement, that is, the steering angle of the steering wheel. Similarly, when the steering wheel 9 is turned to the left, the left and right front wheels IR will change depending on the amount of displacement of this operation.

1Lが左へ転舵されることとなる。この時、ハンドル操
作に対する反撥力(操作トルク量)は歪センサ102で
検出されることになる。
1L will be steered to the left. At this time, the repulsive force (operation torque amount) against the handle operation is detected by the strain sensor 102.

後輪転舵機構Bも前輪転舵機構Aと同様に、それぞれ左
右一対のナックルアーム10R,10Lおよびタイロッ
ドIIR,IILと、該タイロッドttR,ttt、同
志を連結するリレーロッド12とを有し、後輪転舵機構
Bが油圧式のパワー機構(倍力機構)Dを備えた構成と
されている。
Similarly to the front wheel steering mechanism A, the rear wheel steering mechanism B also has a pair of left and right knuckle arms 10R, 10L and tie rods IIR, IIL, and a relay rod 12 that connects the tie rods ttR, ttt and the rear wheel steering mechanism B. The wheel steering mechanism B is configured to include a hydraulic power mechanism (boosting mechanism) D.

このパワー機構りについて説明すると、リレーロッド1
2にはシリンダ装置13が付設されて、そのシリンダ1
3a内を2室13b、13cに画成するピストン13d
がリレーロッド12に一体化されている。このシリンダ
13a内の2室13b、13cは、配管14あるいは1
5を介してコントロールバルブ16に接続されている。
To explain this power mechanism, the relay rod 1
2 is attached with a cylinder device 13, and the cylinder 1
A piston 13d that defines the interior of 3a into two chambers 13b and 13c.
is integrated into the relay rod 12. The two chambers 13b and 13c within this cylinder 13a are connected to the piping 14 or 1
5 to a control valve 16.

また、このコントロールバルブ16は、それぞれリザー
バタンク17より伸びる配管18.19が接続され、オ
イル供給管となる一方の配管18には、コントロールユ
ニット61により駆動されるオイルポンプ2oが接続さ
れている。上記リレーロッド12にはラック22が形成
されており、このラック22にはビニオン21が噛合さ
れている。ビニオン21の駆動軸21aにはコントロー
ルバルブ16を介して傘歯車91が固着されており、ビ
ニオン21は一対の傘歯車91.92を介して、パルス
モータ150により駆動される。そしてこのモータ15
0の駆動制御はコントロールユニット61で行われる。
Further, each of the control valves 16 is connected to pipes 18 and 19 extending from the reservoir tank 17, and an oil pump 2o driven by the control unit 61 is connected to one of the pipes 18, which serves as an oil supply pipe. A rack 22 is formed on the relay rod 12, and a pinion 21 is engaged with the rack 22. A bevel gear 91 is fixed to the drive shaft 21a of the binion 21 via a control valve 16, and the binion 21 is driven by a pulse motor 150 via a pair of bevel gears 91 and 92. And this motor 15
Drive control of 0 is performed by a control unit 61.

このコントロールユニット61には、歪センサ102か
らの信号の他、前輪転舵角検出センサ101からの信号
が入力され、さらに必要に応じて車速センサ100から
の信号が入力されるようになっている。このようなパワ
ー機構りにあっては、既知のように、ビニオン21の駆
動軸21aが所定の一方向へ回動されると、これに応じ
てとニオン21が同方向に回動されて、リレーロッド1
2を例えば第2図左方向へ変位され、これにより、ナッ
クルアームIOR,IOLがその回動中心10R’、I
OL’ を中心にして第2図時計方向に回動して、後輪
2R,2Lが右へ転舵される。そして、この転舵の際、
駆動軸21aの回動量に応じて、シリンダ装置13の室
13b内にはオイルが供給され、上記リレーロッド12
を駆動するのを補助する(倍力作用)、同様に、駆動軸
21aを逆方向に回動させたときは、この回動量に応じ
て、シリンダ装置130倍力作用を受はツツくオイルは
室13bへ供給される)、後輪2R,2Lが左へ転舵さ
れることになる。
In addition to the signal from the strain sensor 102, the control unit 61 receives a signal from the front wheel steering angle detection sensor 101, and further receives a signal from the vehicle speed sensor 100 as necessary. . In such a power mechanism, as is known, when the drive shaft 21a of the pinion 21 is rotated in one predetermined direction, the nion 21 is rotated in the same direction in response, Relay rod 1
For example, the knuckle arms IOR, IOL are displaced to the left in FIG.
The rear wheels 2R and 2L are turned to the right by rotating clockwise in FIG. 2 about OL'. And during this turning,
Oil is supplied into the chamber 13b of the cylinder device 13 according to the amount of rotation of the drive shaft 21a, and the relay rod 12
Similarly, when the drive shaft 21a is rotated in the opposite direction, the cylinder device 130 receives the boosting effect depending on the amount of rotation. (supplied to the chamber 13b), the rear wheels 2R and 2L are steered to the left.

なお、第2図中13e、13fは、リレーロッド12を
ニュートラル位置へ付勢しているリターンスプリング、
59はバッテリである。
In addition, 13e and 13f in FIG. 2 are return springs that urge the relay rod 12 to the neutral position.
59 is a battery.

ステアリング機構Cの詳細図を第3図に示す。A detailed diagram of the steering mechanism C is shown in FIG.

実施例ではハンドル9に連結されたシャフト8はインタ
ーメディエイトシャフト8aを介してとンオン7が連結
されている。そしてシャフト8には歪センサ102が組
込まれており、シャフトに加わる捩れ力を検出してタイ
ヤと路面とのμを検出している。
In the embodiment, a shaft 8 connected to a handle 9 is connected to a turn-on 7 via an intermediate shaft 8a. A strain sensor 102 is incorporated into the shaft 8, and detects the torsional force applied to the shaft to detect the μ between the tire and the road surface.

この歪センサ102の詳細を第4図(A)。The details of this strain sensor 102 are shown in FIG. 4(A).

(B)に示す、第4図(B)は第4図(A)のA−A面
断面図である。
FIG. 4(B) shown in FIG. 4(B) is a sectional view taken along the line AA in FIG. 4(A).

図示の如くハンドル側シャフト8aとピニオン側シャフ
ト8aとはハンドル回転方向に連係されており、ジヨイ
ント部には歪センサ102が挾持され、ハンドル回転に
対するとニオン側の反撥力(負荷量)を電気信号に変換
している。この歪センサ102は例えばStバー等で構
成することができる。
As shown in the figure, the handle-side shaft 8a and the pinion-side shaft 8a are linked in the handle rotation direction, and a strain sensor 102 is held in the joint part, and an electric signal is sent to detect the repulsive force (load amount) on the nion side in response to the handle rotation. is being converted to . This strain sensor 102 can be composed of, for example, an St bar.

また、以上の構成に変え、ハンドル側シャフト8aとピ
ニオン側シャフト8b間をトーションバー等で接続し、
両シャフト間の変位を測定することにより反撥力(負荷
量)の検出を行ってもよい。
Also, by changing the above configuration, connecting the handle side shaft 8a and pinion side shaft 8b with a torsion bar or the like,
The repulsive force (load amount) may be detected by measuring the displacement between both shafts.

以上の各構成を備える本実施例の後輪の操舵制御を、°
第5図のフローチャートを参照して以下に説明する。
The rear wheel steering control of this embodiment having each of the above configurations is performed as follows.
This will be explained below with reference to the flowchart shown in FIG.

これらの制御はコントロールユニット61の第1図に示
す車輪転舵量演算部110、及び、補正量演算部120
により行われる。
These controls are carried out by a wheel turning amount calculating section 110 and a correction amount calculating section 120 shown in FIG. 1 of the control unit 61.
This is done by

まず、ステップS1で車輪転舵量演算部110と補正量
演算部120は、舵角センサ101より舵角量(θ、)
を読み込む、車輪転舵量演算部110は続くステップS
2で、車速センサ100より現在の車速(V)を読み込
む。そして、ステップS3で舵角θ8と車速■より後輪
転舵量を演算して求める。ここで求められる転舵量特性
は、例えば′s6図に実IsAで示されるものとなり、
車速Vの遅い時には、回転(急旋回)を意図したハンド
ル操作であるとして前輪とは逆位相で転舵し、回転性能
を向上させ、車速■が早くなった場合には前輪と同位相
方向に転舵し、車線変更等をスムーズに行える種制御す
るものである。
First, in step S1, the wheel turning amount calculating section 110 and the correction amount calculating section 120 calculate the steering angle amount (θ, ) from the steering angle sensor 101.
The wheel turning amount calculation unit 110 reads the following step S.
2, the current vehicle speed (V) is read from the vehicle speed sensor 100. Then, in step S3, the rear wheel turning amount is calculated and determined from the steering angle θ8 and the vehicle speed ■. The steering amount characteristic found here is, for example, as shown by the actual IsA in figure 's6,
When the vehicle speed V is slow, the steering wheel is steered in the opposite phase to the front wheels, as the steering operation is intended to rotate (sudden turn), improving rotation performance, and when the vehicle speed becomes faster, the steering wheel is steered in the same phase direction as the front wheels. This control allows for smooth steering, lane changes, etc.

次に補正量演算部120は低μ路で後輪の同位相方向へ
の切れ角を大きくすると非常に安定性が増すことに着目
して、ステップS4で歪センサ102より歪データ(α
μ)を読み込む、なお、路面よりのμと歪との関係は′
s7図に示す如く比例関係にある。続くステップS5で
舵角センサ101よりハンドル舵角θHを読込む、タイ
ヤよりの抵抗が同じ値の場合には、ハンドル舵角θ8と
シャフト8に発生する歪と比例関係にあり、例えば第8
図に示すようになる。このため、補正量演算部120は
、読み込んだ舵角θ、と歪αμとにより路面μを求め、
先に後輪転舵量演算部110で求めた後輪転舵量に対す
る補正量を求める。この補正量はタイヤが路面より受け
る抵抗の少ない低μ路であるほど大きくなるものであり
、例えば第9図に示す補正量となる。このようにして補
正量演算部120で求めた補正量は車輪転舵量演算部1
10に送られ、車輪転舵量演算部110は先にステップ
S3で求めた転舵量に補正を行い、実際の車輪の転舵量
を算出する。この例を第6図に破線Bで示す。
Next, the correction amount calculation unit 120 pays attention to the fact that stability is greatly improved by increasing the turning angle of the rear wheels in the same phase direction on a low μ road, and in step S4, the distortion data (α
μ), and the relationship between μ and strain from the road surface is ′
As shown in figure s7, there is a proportional relationship. In the following step S5, the steering wheel steering angle θH is read from the steering angle sensor 101. If the resistance from the tires is the same value, there is a proportional relationship between the steering wheel steering angle θ8 and the strain generated in the shaft 8.
The result will be as shown in the figure. Therefore, the correction amount calculation unit 120 calculates the road surface μ from the read steering angle θ and the distortion αμ,
A correction amount for the rear wheel turning amount previously calculated by the rear wheel turning amount calculating section 110 is calculated. This correction amount becomes larger as the road is lower in resistance that the tire receives from the road surface, and becomes, for example, the correction amount shown in FIG. 9. The correction amount calculated by the correction amount calculation section 120 in this way is calculated by the wheel turning amount calculation section 1.
10, the wheel turning amount calculation unit 110 corrects the turning amount previously obtained in step S3, and calculates the actual wheel turning amount. This example is shown by dashed line B in FIG.

以上の各演算を行なう変りに、これらの一定入力に対す
る出カバターンテーブルをメモリに記憶しておき、出カ
バターンテーブルより入力に対応する転舵量、及び補正
量を漸次読出して出力するよう制御してもよい。
Instead of performing each of the above calculations, an output turntable for these constant inputs is stored in memory, and control is performed so that the steering amount and correction amount corresponding to the input are gradually read out and output from the output turntable. You may.

そして車輪転舵量演算部110はステップS8において
このようにして補正された転舵量に従いモータ駆動部1
30に駆動信号を出力し、モータ駆動部30は駆動信号
に従ってモータ150を回転させ、後輪転舵を行う。な
お、このモータ150の回転量はモータ150の駆動軸
に取付けられた例えばロータリエンコーダであるモータ
回転角センサ140で検出され、この検出値はモータ駆
動部130に報知される8、そして所望量の転舵が行わ
れると処理を終了する。
Then, in step S8, the wheel turning amount calculating section 110 operates the motor driving section 1 according to the steering amount corrected in this way.
30, and the motor drive section 30 rotates the motor 150 in accordance with the drive signal to perform rear wheel steering. Note that the amount of rotation of this motor 150 is detected by a motor rotation angle sensor 140, which is, for example, a rotary encoder attached to the drive shaft of the motor 150, and this detected value is reported to the motor drive unit 130. When the steering is performed, the process ends.

このようにして、路面よりのμが小さい時には切れ角を
大きくし、歪量が大きく路面よりのμが大きい時には補
正量を小さくして切れ角を小さくすることにより、非常
に走行安定性の高い4輪操舵を行なうことができる。
In this way, when the μ from the road surface is small, the turning angle is increased, and when the amount of distortion is large and the μ from the road surface is large, the correction amount is reduced to reduce the turning angle, resulting in extremely high running stability. Four-wheel steering is possible.

また、FR車、RR車のように後輪2R,2Lを駆動す
るようにした車両にあっては、後輪2R,2Lを前輪I
R,ILに対してより同位相側へ補正するようにすれば
よい。
In addition, in vehicles that drive rear wheels 2R and 2L, such as FR cars and RR cars, rear wheels 2R and 2L are driven by front wheels
What is necessary is to correct R and IL more toward the same phase side.

以上説明した様に本実施例によれば、従来の様な固定的
な転舵比による後輪転舵を行うのに比し、転舵比を路面
μと前輪転舵角θ、により最適比に自動制御でき、走行
安定性を高めることができる。
As explained above, according to this embodiment, the steering ratio is adjusted to an optimum ratio based on the road surface μ and the front wheel steering angle θ, compared to the conventional method of steering the rear wheels using a fixed steering ratio. It can be controlled automatically and can improve driving stability.

(発明の効果) 以上説明した様に本発明によれば非常に走行安定性の高
い自動車を提供できる路面状態判別装置が実現できる。
(Effects of the Invention) As explained above, according to the present invention, it is possible to realize a road surface condition determination device that can provide an automobile with extremely high running stability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る一実施例の転舵制御部のブロック
図、 第2図は本実施例の全体系統図、 第3図はステアリング機構の詳細図、 第4図(A)、(B)は歪センサの詳細図、第5図は本
実施例の後輪転舵制御フローチャート、 第6図〜第9図は転舵比を変更する場合の一例を示す特
性図である。 図中、A・・・前輪転舵機構、B・・・後輪転舵機構、
C・・・ステアリング機構、E・・・転舵比変更装置、
IR,IL・・・前輪、2R,2L・・・後輪、8・・
・シャフト、9・・・ハンドル、61・・・コントロー
ルユニット、100・・・車速センサ、101・・・舵
角センサ、102・・・歪センサ、110・・・車輪転
舵量演算部、120・・・補正量演算部、130・・・
モータ思動部、150・・・モータである。
Fig. 1 is a block diagram of a steering control section according to an embodiment of the present invention, Fig. 2 is an overall system diagram of this embodiment, Fig. 3 is a detailed diagram of the steering mechanism, Fig. 4 (A), ( B) is a detailed diagram of the strain sensor, FIG. 5 is a flowchart of the rear wheel steering control of this embodiment, and FIGS. 6 to 9 are characteristic diagrams showing an example of changing the steering ratio. In the figure, A...front wheel steering mechanism, B...rear wheel steering mechanism,
C...Steering mechanism, E...Steering ratio changing device,
IR, IL...Front wheel, 2R, 2L...Rear wheel, 8...
- Shaft, 9... Handle, 61... Control unit, 100... Vehicle speed sensor, 101... Rudder angle sensor, 102... Strain sensor, 110... Wheel turning amount calculation unit, 120 ...Correction amount calculation section, 130...
Motor thinking unit, 150... a motor.

Claims (1)

【特許請求の範囲】[Claims] ハンドル操作に応じて前輪を転舵すると共に、前輪の転
舵に応じて後輪を転舵し、運転状態に応じて前輪と後輪
の転舵比を制御可能な4輪操舵装置を有する車両におけ
る路面状態判別装置であつて、ハンドルとタイヤ間に配
設されたハンドル操作に対する反撥力を検出する検出手
段と、ハンドル舵角を検出する舵角検出手段と、該舵角
検出手段の検出したハンドル舵角情報と前記検出手段の
検出した反撥力情報に従つて車輪の転舵量を補正する補
正手段とを備えることを特徴とする路面状態判別装置。
A vehicle with a four-wheel steering device that can steer the front wheels in response to steering wheel operation, steer the rear wheels in response to the steering of the front wheels, and control the steering ratio between the front and rear wheels depending on the driving condition. A road surface condition discriminating device according to the present invention, comprising: a detection means disposed between a steering wheel and a tire for detecting a repulsive force in response to a steering wheel operation; a steering angle detecting means detecting a steering wheel steering angle; A road surface condition determination device comprising: a correction means for correcting a wheel turning amount according to steering wheel angle information and repulsive force information detected by the detection means.
JP20797186A 1986-09-05 1986-09-05 Discriminating device for condition of road surface Pending JPS6364879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20797186A JPS6364879A (en) 1986-09-05 1986-09-05 Discriminating device for condition of road surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20797186A JPS6364879A (en) 1986-09-05 1986-09-05 Discriminating device for condition of road surface

Publications (1)

Publication Number Publication Date
JPS6364879A true JPS6364879A (en) 1988-03-23

Family

ID=16548542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20797186A Pending JPS6364879A (en) 1986-09-05 1986-09-05 Discriminating device for condition of road surface

Country Status (1)

Country Link
JP (1) JPS6364879A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299465A (en) * 1988-10-06 1990-04-11 Nippon Seiko Kk Four-wheel steering device
JPH0299464A (en) * 1988-10-06 1990-04-11 Nippon Seiko Kk Four-wheel steering device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299465A (en) * 1988-10-06 1990-04-11 Nippon Seiko Kk Four-wheel steering device
JPH0299464A (en) * 1988-10-06 1990-04-11 Nippon Seiko Kk Four-wheel steering device

Similar Documents

Publication Publication Date Title
JPS60259571A (en) 4-wheel steering apparatus for automobile
JP3123295B2 (en) Power steering device
JP4030203B2 (en) Rear wheel steering device for rear wheel drive vehicles
US5189616A (en) Four-wheel steering system for motor vehicle
JPS59186773A (en) Steering gear for four wheels of vehicle
JPS6364879A (en) Discriminating device for condition of road surface
JP3345804B2 (en) Vehicle steering system
JP3564612B2 (en) Control method of rear wheel steering device
JPS628872A (en) Four-wheel-steering device for vehicle
JPH11129926A (en) Steering control wheel control structure
JPS6364881A (en) Discriminating device for condition of road surface
JPS6157466A (en) Steering controller for four-wheel steering car
JPS6364880A (en) Discriminating device for condition of road surface
JP2532107B2 (en) Steering control device for four-wheel steering vehicle
JPS62238171A (en) Four wheel steering device for vehicle
JPS6212471A (en) Four-wheel steering device for car
JPS6118568A (en) Four wheel steering unit for car
JPS63184576A (en) Rear wheel steering device for automobile
JP2536203B2 (en) Front and rear wheel steering vehicle rear wheel steering control device
JPS62227873A (en) Four wheel steering device for vehicle
JP2528460B2 (en) 4-wheel steering system for vehicles
JPS621675A (en) Four-wheel steering gear for vehicles
JP3013586B2 (en) Rear wheel steering system for four-wheel steering vehicles
JPS638075A (en) Four wheel steering device for vehicle
JPS62255282A (en) Running road state discriminator