JPS6364753B2 - - Google Patents

Info

Publication number
JPS6364753B2
JPS6364753B2 JP56056788A JP5678881A JPS6364753B2 JP S6364753 B2 JPS6364753 B2 JP S6364753B2 JP 56056788 A JP56056788 A JP 56056788A JP 5678881 A JP5678881 A JP 5678881A JP S6364753 B2 JPS6364753 B2 JP S6364753B2
Authority
JP
Japan
Prior art keywords
light
optical system
light beam
receiving optical
rainfall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56056788A
Other languages
Japanese (ja)
Other versions
JPS57171279A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56056788A priority Critical patent/JPS57171279A/en
Publication of JPS57171279A publication Critical patent/JPS57171279A/en
Publication of JPS6364753B2 publication Critical patent/JPS6364753B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/14Rainfall or precipitation gauges

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Atmospheric Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental Sciences (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は投光器と受光器間の光ビームを通過す
る雨滴を計数する如くした光電式雨量計に関し、
詳しくは降雨の強弱に応じて機器の作動を制御す
るための、例えば車両のウインド・ワイパーの動
作を制御するための降雨強弱判定センサーとし
て、また、気象情報を得るための降雨の定量的計
測を目的とした降雨強度又は降水量計測センサー
とし、応答速度の速いことを特長とする光電式雨
量計に関するものである。 従来、一般に市販されている雨量計としては、
例えば枡転倒型雨量計があるが、これは応答速度
が遅い欠点がある。この場合、仮に1転倒0.1mm
量の枡を用いたとしても(通常の雨量計は気象庁
検定済1転倒0.5mm量である)、30mm/hrの激しい
雨に対して1転倒するのに12秒を要する(前記
0.5mm量枡の1転倒型のものでは60秒を要する)。
また、光雨量計としては雨滴による伝搬光の多重
散乱効果による受信光の揺動を利用するものもあ
るが、この場合のセンサーは光路長を数百m以上
と極めて長く取らねばならず、降雨中の光の伝搬
損が大きく、また、信号処理が複雑で装置が大型
化し、かつ見通しを確保するために設置場所に制
限を受ける欠点があつた。 本発明は上記欠点を克服するため、光路長を約
2m以下と短かくし、かつ光電式の特長を生かし
て応答速度を速くした雨量計を提供するものであ
る。光路長を短かくする場合、雨滴による伝搬光
の多量散乱は生じないから、この場合は雨滴によ
る伝搬光の遮断効果、すなわち、雨滴による吸収
又は単一散乱効果による受光光量の減衰を利用す
ることになる。 以下、本発明を一実施例の図面について説明す
れば次の通りである。尚、本発明の原理は可視光
に対しても不可視光に対しても同様に成立するも
のであるから、以下の説明においては可視光と不
可視光を総称して「光」という。 第1図は本発明の光電式雨量計の原理的構成を
その周辺構成とともに示したものである。1は光
源で、該光源1は背景光と区別するために変調器
2によつて電気的又は機械的に変調するものであ
る。3は光源1の前面に配す集光光学素子で、該
集光光学素子3は、例えば凸レンズや凹面鏡等よ
りなり、光束を絞り光ビーム13とするものであ
る。この場合、光源1そのものが絞ぼられていて
予め光ビーム13になつているときは、例えばレ
ーザ光の場合は集光光学素子3を除くこともでき
る。この光源1、変調器2及び集光光学素子3を
総称して発光光学系4とする。5は集光光学素子
3より有限距離(約2m以下)を離した対向位置
に配す凸レンズや凹面鏡等よりなる受光光学素子
で、該受光光学素子5の背部に光電変換素子6と
前置増幅器7を設け、該受光光学素子5、光電変
換素子6、前置増幅器7で受光光学系8を構成し
てなる。 ここにおいて、光源1から発せられた光ビーム
13は、約2m以下の空間を伝搬する途中に雨滴
により変調を受けるものとなる。この光量変化は
受光光学素子5と光電変換素子6並びに前置増幅
器7の受光光学系8によつて電気信号として取り
出される。尚、光電変換素子6が大面積でしかも
高感度であることが保障されている場合は、受光
光学系8から受光光学素子5を除いてもよい。ま
た、光電変換素子6からの出力が充分大きい場合
には、前置増幅器7を受光光学系8から離して信
号処理回路の近くにもつてくることもできる。 この様にして変換された電気信号は、受光光学
系8に接続した検波回路9によつて変動分のみが
抽出され、さらに2乗検出器10に導びかれて変
動分の大きさが出力Iとして出力されるものとな
る。 いまこの検波回路9のあとの信号波形を示せば
第2図A,Bの如くなる。この第2図Aは代表的
な弱雨で、第2図Bは強雨のときの信号波形であ
り、強雨程変動分の大きいこと、すなわち、検波
出力の実効値が大きいことが明白である。この実
効値をいくつかのレベルに分割し、それに応じて
降雨強度の判別をすることができる。 尚、発光光学系4と受光光学系8は第1図に示
す如く一直線上に配置する以外に、第3図A,B
に示す他の実施例のように反射器21を用い光ビ
ーム13光路を数段反射してもよい。第3図Aは
光ビーム13の一部に反射器21を、該反射器2
1を雨から守る覆い部材22とともに挿入し、光
ビーム13を1回反射し発光光学系4と並設した
受光光学系8に導びき装置全体の小型化を計るも
のである。第3図Bは光ビーム13の一部に3個
の反射器21を有する覆い部材22を介在し、該
光ビーム13を3回反射して光路を往復させ受光
光学系8へ導びく構成とし装置全体を小型化する
ものである。 いま更に定量的降雨強度測定について詳述する
と、先ず検波回路9の出力をパルス整形回路11
に導き、光ビーム13中の1雨滴の通過が1パル
スを発生するように該パルス整形回路11を調整
しておいて、単位時間当りの出力パルス数を計数
回路12によつて計数する。これをPc〔ケ/sec〕
として出力から取り出すものである。 さて、計数されたパルス数Pcと降雨強度h
〔mm/hr〕は次のようにして関係付けられる。第
4図はこの降雨強度測定を説明するための光ビー
ム13の概念を示した説明図である。この図にあ
つては、光ビームは円筒状に描いてあるが、光ビ
ームは必ずしも円筒状である必要はない。このと
き、集光光学素子3及び受光光学素子5の直径を
d〔m〕とし、両間隔すなわち光路長をL〔m〕と
すれば、鉛直方向の光ビーム13の断面積S〔m2
は S=d・L〔m2〕 …(1) で与えられる。但し、雨14は鉛直に降るものと
する。 降雨強度h〔mm/hr〕のとき、断面積S〔m2〕を
1秒間に通過した雨滴の全体積vは次の式で表わ
される。 v=10-3/3600h s〔m3/sec〕 …(2) 一方、1秒間の出力パルス数をPcとし、その
時の雨滴の平均体積をvr〔m3〕とすれば、式(2)の
vはまた次式で表現される。 v=Pc vr〔m3/sec〕 …(3) 雨滴の平均体積vrは雨滴の体積確率密度関数P
(h,a)により、 vr(h)=∫ p4/3πa3p(h,a)da …(4) ここでa:雨滴半径 で与えられ、雨滴の平均体積は降雨強度hのみの
関数となる。また、雨滴の体積確率密度関数は、
降雨強度h〔mm/hr〕と雨滴半径a〔m〕の関数で
あつて、雨滴のサイズ分布n〔h,a)da、すな
わち、単位体積中の半径aからa+daの雨滴の
個数より、次式によつて定義することができる。 P(h,a)da=4/3πa3n(h,a)da/∫0
4/3πa3n(h,a)da =a3/6α4e-ada …(5) ここで n(h,a)da=n0e-ada …(5′) n0=8×106〔m-4〕 α=8200h-0.21〔m-1〕 である。式(5)を式(4)に代入し、更に式(3)に代入す
れば v=160π/82003Pch0.63〔m3/sec〕 …(6) となり、上記式(6)と式(2)が等しいと置いて、 h=(3.28×10-3/S)2.7Pc2.7〔mm/hr〕 …(7) を得る。すなわち、降雨強度はパルス数Pcの2.7
乗に比例し、その比例定数はセンサーの諸元Sの
みを含むから容易に与えることができて、降雨強
度を定量的に算出することができるものである。 第5図は送受光間距離、すなわち、光路長をL
=2m、光ビーム径d=4×10-2mとし、GaAs
LEDを30KHzに変調して発光させた光ビームを用
いて得られた出力パルス数Pcと降雨強度hとの
関係を示すグラフである。この場合、降雨強度は
通常の雨量計で測定したものであり、図中の実線
は式7による計算値を示していて、理論値と実測
値のよい一致が得られている。 しかし乍ら、弱雨において若干の差が生じてい
る。この場合の補正について以下に述べる。第6
図は式(5)で表される体積確率密度関数を示してい
て、同図より降雨強度が小さくなる程、雨滴半径
の小さいものが単位体積中に占める割合が多くな
ることがわかる。雨滴半径が小さくなるとそれが
光ビーム中を通過した時の光量変化が小さくな
り、その変化分が受光光学系の電気信号処理回路
の雑音より小さくなればその雨滴は検出されない
ことになる。すなわち、パルス整形回路11にお
いて1パルスを発生させる雨滴には下限値amin
があることを意味している。この下限値は電気信
号処理回路(第1図にあつて、光電変換素子6、
前置増巾器7、検波回路9、パルス整形回路11
及び計数回路12を含む)の雑音値より決定さ
れ、第5図の実験に用いた装置では、amin=3.1
×10-4mであつた。このように検出可能最小雨滴
半径が決まると、この光電式雨量計が雨滴の計数
をミスカウントする体積確率Pmissは式(5)より次
式で与えられる。 Pmiss=∫amin pP(h,a)da =1−e-amin〔(αamin)3/6+(αamin)2
/2+ (αamin)+1〕 …(8) したがつて式(3)より、ミスカウントを伴つて計
数されたパルス数をPcmissとすれば Pcmiss=Pc(1−Pmiss) …(9) であるから、実測されたパルス数Pccを1/(1
−Pmiss)倍すればPcが与えられることになる。
したがつて、Pccから降雨強度hを求めるには式
(7)に代入して h=(3.28×10-3/S)2.7(Pcc/1−Pmiss)2.7…(1
0) となる。amin=3.1×10-4mで補正した値を第7
図に点線で示した。同図にあつて実線は式(7)の値
であつて、補正値はO印の実測値と極めてよく一
致していることがわかる。 次に、観測視野体積について検討する。前記第
4図の例では観測視野体積Vは円筒であつて、 V=π(d/2)2L …(11) と定義される(観測視野体積は必ずしも円筒であ
る必要はない)。本発明の原理はこの観測視野体
積V内に存在する雨滴が1ケ以下であることを前
提としている。何故なら、2ケ以上存在するとき
は、V内での雨滴の重なりによるミスカウントが
生じるからである。さて、この観測視野体積内の
雨滴数nrは式(5′)により、 nr=V∫ anion(h,a)da =Vn0/αe-amin …(12) として算出される。第5図の実測値を得た装置を
例にとつて、この値を降雨強度に対して求める
と、下記の表のようになる。
The present invention relates to a photoelectric rain gauge that counts raindrops passing through a light beam between a projector and a light receiver.
Specifically, it can be used as a rainfall intensity determination sensor to control the operation of equipment depending on the intensity of rainfall, for example to control the operation of vehicle windshield wipers, and also to quantitatively measure rainfall to obtain weather information. The present invention relates to a photoelectric rain gauge that is used as a sensor for measuring rainfall intensity or precipitation amount, and is characterized by a fast response speed. Conventionally, rain gauges commonly available on the market include:
For example, there is a rain gauge that can be tipped over, but this has the disadvantage of slow response speed. In this case, if one fall is 0.1mm
Even if you use a measuring meter (regular rain gauges are certified by the Japan Meteorological Agency and have a capacity of 0.5 mm per fall), it takes 12 seconds to fall once in the face of heavy rain of 30 mm/hr (as mentioned above).
60 seconds is required for a one-turn type with a 0.5 mm measuring square).
In addition, some optical rain gauges utilize the fluctuation of the received light due to the multiple scattering effect of the light propagated by raindrops, but in this case the sensor must have an extremely long optical path length of several hundred meters or more. The disadvantages were that the propagation loss of the light inside was large, the signal processing was complicated, the equipment became large, and the installation location was restricted to ensure visibility. In order to overcome the above-mentioned drawbacks, the present invention reduces the optical path length to approximately
The objective is to provide a rain gauge that is short, less than 2 meters long, and has a high response speed by taking advantage of its photoelectric features. When shortening the optical path length, the raindrops do not scatter a large amount of the propagating light, so in this case, the effect of blocking the propagating light by the raindrops, that is, the attenuation of the amount of received light due to the absorption or single scattering effect by the raindrops can be used. become. Hereinafter, the present invention will be explained with reference to the drawings of one embodiment. Note that the principle of the present invention applies equally to visible light and invisible light, so in the following description, visible light and invisible light will be collectively referred to as "light." FIG. 1 shows the basic structure of the photoelectric rain gauge of the present invention together with its peripheral structure. 1 is a light source, and the light source 1 is electrically or mechanically modulated by a modulator 2 in order to distinguish it from background light. Reference numeral 3 denotes a condensing optical element disposed in front of the light source 1. The condensing optical element 3 is made of, for example, a convex lens or a concave mirror, and condenses the light beam into a light beam 13. In this case, when the light source 1 itself is condensed and becomes a light beam 13 in advance, for example, in the case of a laser beam, the condensing optical element 3 can be omitted. The light source 1, modulator 2, and condensing optical element 3 are collectively referred to as a light emitting optical system 4. Reference numeral 5 denotes a light-receiving optical element consisting of a convex lens, a concave mirror, etc., arranged at a finite distance (approximately 2 m or less) away from the light-receiving optical element 3, and a photoelectric conversion element 6 and a preamplifier are placed behind the light-receiving optical element 5. 7, and the light receiving optical element 5, photoelectric conversion element 6, and preamplifier 7 constitute a light receiving optical system 8. Here, the light beam 13 emitted from the light source 1 is modulated by raindrops while propagating through a space of about 2 m or less. This change in light amount is extracted as an electrical signal by the light receiving optical element 5, the photoelectric conversion element 6, and the light receiving optical system 8 of the preamplifier 7. Note that if it is guaranteed that the photoelectric conversion element 6 has a large area and high sensitivity, the light receiving optical element 5 may be removed from the light receiving optical system 8. Furthermore, if the output from the photoelectric conversion element 6 is sufficiently large, the preamplifier 7 can be placed away from the light receiving optical system 8 and closer to the signal processing circuit. The electric signal converted in this way is subjected to a detection circuit 9 connected to a light receiving optical system 8, in which only the variation is extracted, and is further guided to a square detector 10, where the magnitude of the variation is detected by the output I. This will be output as . The signal waveforms after this detection circuit 9 are shown in FIGS. 2A and 2B. Figure 2A is a typical signal waveform for light rain, and Figure 2B is a signal waveform for heavy rain.It is clear that the heavier the rain, the larger the fluctuation, that is, the larger the effective value of the detection output. be. This effective value can be divided into several levels and the rainfall intensity can be determined accordingly. In addition to arranging the light-emitting optical system 4 and the light-receiving optical system 8 in a straight line as shown in FIG.
The optical path of the light beam 13 may be reflected in several stages using a reflector 21 as in another embodiment shown in FIG. In FIG. 3A, a reflector 21 is attached to a part of the light beam 13, and the reflector 2
1 is inserted together with a cover member 22 to protect it from rain, and the light beam 13 is reflected once and guided to the light receiving optical system 8 installed in parallel with the light emitting optical system 4, thereby reducing the size of the entire device. In FIG. 3B, a cover member 22 having three reflectors 21 is interposed in a part of the light beam 13, and the light beam 13 is reflected three times to make the optical path reciprocate and be guided to the light receiving optical system 8. This reduces the size of the entire device. To explain quantitative rainfall intensity measurement in more detail, first, the output of the detection circuit 9 is converted into a pulse shaping circuit 11.
The pulse shaping circuit 11 is adjusted so that the passage of one raindrop in the light beam 13 generates one pulse, and the number of output pulses per unit time is counted by the counting circuit 12. This is Pc〔/sec〕
This is extracted from the output as . Now, the counted pulse number Pc and rainfall intensity h
[mm/hr] is related as follows. FIG. 4 is an explanatory diagram showing the concept of the light beam 13 for explaining this rainfall intensity measurement. Although the light beam is drawn in a cylindrical shape in this figure, the light beam does not necessarily have to be cylindrical. At this time, if the diameter of the condensing optical element 3 and the light receiving optical element 5 is d [m], and the distance between them, that is, the optical path length, is L [m], then the cross-sectional area of the light beam 13 in the vertical direction is S [m 2 ].
is given by S=d・L[m 2 ]...(1). However, it is assumed that the rain 14 falls vertically. When the rainfall intensity is h [mm/hr], the total volume v of raindrops passing through the cross-sectional area S [m 2 ] in one second is expressed by the following formula. v=10 -3 /3600h s [m 3 /sec] ...(2) On the other hand, if the number of output pulses per second is Pc and the average volume of raindrops at that time is v r [m 3 ], then the formula (2) ) is also expressed by the following equation. v=Pc v r [m 3 /sec] …(3) The average volume of raindrops v r is the volume probability density function P of raindrops
(h, a), v r (h) = ∫ p 4/3πa 3 p (h, a) da … (4) where a: given by the radius of the raindrop, and the average volume of the raindrop is determined only by the rainfall intensity h becomes a function of Also, the volume probability density function of raindrops is
It is a function of rainfall intensity h [mm/hr] and raindrop radius a [m], and from the raindrop size distribution n [h, a) da, that is, the number of raindrops with radius a to a + da in a unit volume, the following It can be defined by Eq. P(h,a)da=4/3πa 3 n(h,a)da/∫ / 0
4/3πa 3 n (h, a) da = a 3 /6 α 4 e -a da …(5) where n (h, a) da = n 0 e -a da … (5′) n 0 =8×10 6 [m -4 ] α=8200h -0.21 [m -1 ]. Substituting equation (5) into equation (4) and further substituting into equation (3), v=160π/8200 3 Pch 0.63 [m 3 /sec] ...(6), and the above equation (6) and equation ( 2) are equal, we get h=(3.28×10 -3 /S) 2.7 Pc 2.7 [mm/hr] …(7). In other words, the rainfall intensity is 2.7 of the pulse number Pc
Since the proportionality constant includes only the sensor specifications S, it can be easily given, and the rainfall intensity can be quantitatively calculated. Figure 5 shows the distance between transmitting and receiving light, that is, the optical path length.
= 2 m, optical beam diameter d = 4 × 10 -2 m, GaAs
It is a graph showing the relationship between the number of output pulses Pc obtained using a light beam emitted by modulating an LED at 30 KHz and the rainfall intensity h. In this case, the rainfall intensity was measured using a normal rain gauge, and the solid line in the figure shows the calculated value using Equation 7, and a good agreement between the theoretical value and the measured value was obtained. However, there are some differences in light rain. Correction in this case will be described below. 6th
The figure shows the volume probability density function expressed by Equation (5), and it can be seen from the figure that as the rainfall intensity decreases, the ratio of raindrops with small radius to the unit volume increases. As the radius of a raindrop becomes smaller, the change in light intensity when the raindrop passes through the light beam becomes smaller, and if that change becomes smaller than the noise of the electrical signal processing circuit of the light receiving optical system, the raindrop will not be detected. In other words, the lower limit value amin is applied to the raindrop that generates one pulse in the pulse shaping circuit 11.
It means that there is. This lower limit value is the electric signal processing circuit (in Fig. 1, the photoelectric conversion element 6,
Preamplifier 7, detection circuit 9, pulse shaping circuit 11
and counting circuit 12), and in the apparatus used in the experiment shown in FIG. 5, amin=3.1.
×10 -4 m. Once the minimum detectable raindrop radius is determined in this way, the volume probability Pmiss that the photoelectric rain gauge will miscount raindrops is given by the following equation from equation (5). Pmiss=∫ amin p P(h,a)da=1−e -amin [(αamin) 3 /6+(αamin) 2
/2+ (αamin)+1] …(8) Therefore, from equation (3), if the number of pulses counted with miscount is Pcmiss, then Pcmiss=Pc(1−Pmiss) …(9) , the actually measured number of pulses Pcc is 1/(1
−Pmiss) will give Pc.
Therefore, to calculate the rainfall intensity h from Pcc, use the formula
Substitute into (7) and get h=(3.28×10 -3 /S) 2.7 (Pcc/1−Pmiss) 2.7 …(1
0). The value corrected by amin=3.1×10 -4 m is the seventh
Indicated by dotted lines in the figure. In the figure, the solid line is the value of equation (7), and it can be seen that the correction value matches the actual measured value marked O very well. Next, we will consider the observation field volume. In the example shown in FIG. 4, the observation field volume V is a cylinder and is defined as V=π(d/2) 2 L (11) (the observation field volume does not necessarily have to be a cylinder). The principle of the present invention is based on the premise that the number of raindrops existing within this observation field volume V is one or less. This is because when there are two or more raindrops, miscounts occur due to overlapping of raindrops within V. Now, the number n r of raindrops within this observation field volume is calculated by formula (5') as n r = V∫ anio n(h, a) da = Vn 0 /αe -amin ...(12) . Using the device that obtained the measured values shown in Figure 5 as an example, when these values are calculated for rainfall intensity, the results are as shown in the table below.

【表】 上記表には同時に第7図に示した補正係数も
示した。同表よりnr1として降雨強度15mm/
hrまでは本発明の原理が適用可能であることがわ
かる。降雨強度15mm/hrより大きな降雨強度を測
定するときは、観測視野体積を小さくして、その
体積内でのnr値を1以下になるようにすればよ
い。 尚、このことは特許請求の範囲第2項のパルス
の単位時間当りの個数を計数して、定量的な降雨
強度の算出に対して第3図A,Bに示した折返し
構造を適用することができるが、但し光ビームの
重なる部分は断面積Sから除いて計算しなければ
ならない。 また、上記の例ではPcを1秒間の出力パルス
数としたが、計数回路12の積分時間を調整する
ことにより、10秒又は1分間の平均出力パルス数
から、その時間における平均降雨強度が算出され
ること及びさらに積分時間を長くして、例えば1
日単位の降水量が得られることが可能であること
は言うまでもない。 更に、他の実施例について説明すると、先ず本
発明の原理は前述の通りに雨が光ビームに対し鉛
直に降下するものとして導出されている。一般に
は多くの降雨については鉛直に降下するものと考
えてもよいが、台風時のように強風を伴う場合は
降雨の方向を考慮しなければならない。すなわ
ち、第8図A,Bに示す説明図は第4図の説明図
に降雨方向を考慮した場合を示している。第8図
Aより明らかなように、もし光ビーム13の方向
が降雨方向と直交し、かつ光ビーム13が円筒状
であれば、雨滴が横切る断面積は第4図の斜線部
分と同じSである。このときは計数されたパルス
数に何等の補正を要しないものである。 しかし、降雨方向が光ビームの軸を含む面内に
あり、光ビームと角αをなす場合、すなわち、第
8図Bの場合、計数されたパルス数Pcoは、降雨
方向に垂直な面上の同じ断面積Sを通過するパル
ス数Pcと Pc=Pco/cosα …(13) なる関係がある。このcosαを降雨方向補正係
数と呼ぶ。 第9図は第1図に示した系統図にあつて発光光
学系4と受光光学系8とを、中央に枢軸部33を
もつた連結体34にて一体化構造31としたもの
であり、更に光ビーム13の軸が風向すなわち降
雨方向に直交するように自動的に調整自在となれ
ばよい。このようにすれば断面積Sは一定とな
り、降雨方向に無関係に常に正しい降雨強度が算
出される。第9図の例ではこの調整機構を、風向
板32を用いて向きの調整を行なうようにしたも
のである。これとは別に、風向又は降雨方向を検
出して光ビームの向きを調整してもよいことは勿
論である。 次に、発光光学系4及び受光光学系8を一体化
したものを第10図に示す如く3台用意し、それ
ぞれの光ビーム13の軸が互いに直交するように
配置した構成としてもよい。すなわち、第10図
にあつては中央に立体反射器41を設け、該立体
反射器41の直交となる三方向に光ビーム分割器
42を設置し、該光ビーム分割器42の軸線上及
び直交位置に発光光学系4及び受光光学系8を臨
ませ、発光ビーム及び受光ビームが同一光軸にあ
るようにし、発光ビーム及び受光ビームの光軸差
による誤差をなくしている。但し、この場合の光
路長Lは受光光学系4から立体反射器41までの
距離である。立体反射器41には第3図と同様に
雨から保護するための覆い部材22を取付ける必
要がある。この覆い部材22を考慮して各断面積
は同じにしておかねばならない。 一般に、降雨方向はZ軸からθ,x軸からφの
方向であるとすると、それぞれの補正係数cosαi
(i=x,y,z)は第11図を参照して となる。したがつて、それぞれの出力パルス数を
Pci(i=x,y,z)とすると、 Pcx2+Pcy2+Pcz2=(Pccosαx2+(Pccosαy2
(Pccosαz2=2Pc2…(15) となり、降雨方向に垂直な面内にある同じ断面積
Sを通過するパルス数Pcは で与えられ、降雨方向に無関係にPcを知ること
ができる。降雨強度はこのPcより式(7)を用いて
算出されるものである。 上述の様に本発明の雨量計は、発光光源からの
光を絞られた光ビームとし、該光ビームを一定距
離(2m以下等の有限距離)を離して置いた受光
素子にて受光し、雨滴が光ビームを通過する際の
光の強度の変化を検出する光電式としたことによ
り、降雨強度、降水量計測が速く応答しえ、しか
もこの場合雨滴を電気信号パルスに変換して計数
する如くなるため、瞬時の雨量が計れるものであ
る。更に本発明は光ビームの光路を極めて短かく
設定しえるため、投光部及び受光部を一体の組込
み構造とすることができるので装置全体がコンパ
クト化し得、例えば自動車のワイパー部へ組込む
ことができ、走行中に雨が降りだすと自動的にワ
イパーを駆動させることが可能となる等各種器具
への取付けができる効果を奏するものである。
[Table] The above table also shows the correction coefficients shown in Figure 7. From the same table, assuming n r 1, rainfall intensity is 15 mm/
It can be seen that the principle of the present invention is applicable up to hr. When measuring rainfall intensity greater than 15 mm/hr, the observation field volume may be reduced so that the n r value within that volume is 1 or less. Incidentally, this means that the folding structure shown in FIGS. 3A and 3B is applied to the quantitative calculation of rainfall intensity by counting the number of pulses per unit time as set forth in claim 2. However, the overlapping portion of the light beams must be excluded from the cross-sectional area S in the calculation. In addition, in the above example, Pc is the number of output pulses per second, but by adjusting the integration time of the counting circuit 12, the average rainfall intensity for that time can be calculated from the average number of output pulses for 10 seconds or 1 minute. By increasing the integration time and increasing the integration time, for example, 1
It goes without saying that it is possible to obtain daily rainfall amounts. Furthermore, to explain other embodiments, first, the principle of the present invention is derived from the assumption that rain falls perpendicularly to the light beam, as described above. In general, most rainfall can be thought of as falling vertically, but when accompanied by strong winds, such as during typhoons, the direction of the rainfall must be considered. That is, the explanatory diagrams shown in FIGS. 8A and 8B show the case where the direction of rainfall is taken into account in the explanatory diagram of FIG. 4. As is clear from FIG. 8A, if the direction of the light beam 13 is perpendicular to the rain direction and the light beam 13 is cylindrical, the cross-sectional area crossed by the raindrop is S, which is the same as the shaded area in FIG. be. In this case, no correction is required for the counted number of pulses. However, if the direction of rainfall is within a plane that includes the axis of the light beam and forms an angle α with the light beam, that is, in the case of Figure 8B, the counted pulse number Pco is There is a relationship between the number of pulses Pc passing through the same cross-sectional area S and Pc=Pco/cosα (13). This cosα is called the rainfall direction correction coefficient. FIG. 9 shows the system diagram shown in FIG. 1 in which the light-emitting optical system 4 and the light-receiving optical system 8 are integrated into an integrated structure 31 by a connecting body 34 having a pivot portion 33 in the center. Furthermore, it is only necessary that the axis of the light beam 13 be automatically adjustable so that it is perpendicular to the wind direction, that is, the direction of rainfall. In this way, the cross-sectional area S will be constant, and the rain intensity will always be calculated correctly regardless of the rain direction. In the example shown in FIG. 9, this adjustment mechanism uses a wind direction plate 32 to adjust the direction. Apart from this, it goes without saying that the direction of the light beam may be adjusted by detecting the direction of the wind or the direction of rainfall. Next, three integrated light emitting optical systems 4 and light receiving optical systems 8 may be prepared, as shown in FIG. 10, and arranged so that the axes of the respective light beams 13 are orthogonal to each other. That is, in the case of FIG. 10, a three-dimensional reflector 41 is provided in the center, and light beam splitters 42 are installed in three directions orthogonal to the three-dimensional reflector 41. The light-emitting optical system 4 and the light-receiving optical system 8 are positioned so that the light-emitting beam and the light-receiving beam are on the same optical axis, thereby eliminating errors caused by the optical axis difference between the light-emitting beam and the light-receiving beam. However, the optical path length L in this case is the distance from the light receiving optical system 4 to the three-dimensional reflector 41. It is necessary to attach a cover member 22 to the three-dimensional reflector 41 to protect it from rain, as in FIG. 3. In consideration of this cover member 22, each cross-sectional area must be kept the same. Generally, if the direction of rainfall is θ from the Z axis and φ from the x axis, the respective correction coefficients cosαi
(i = x, y, z) with reference to Figure 11 becomes. Therefore, the number of output pulses for each
If Pci (i = x, y, z), Pcx 2 + Pcy 2 + Pcz 2 = (Pccosα x ) 2 + (Pccosα y ) 2 +
(Pccosα z ) 2 = 2Pc 2 ...(15) The number of pulses Pc passing through the same cross-sectional area S in the plane perpendicular to the direction of rainfall is Pc can be determined regardless of the direction of rainfall. The rainfall intensity is calculated from this Pc using equation (7). As described above, the rain gauge of the present invention converts the light from the light emitting light source into a focused light beam, receives the light beam by a light receiving element placed a certain distance away (a finite distance such as 2 m or less), By using a photoelectric method that detects changes in the intensity of light when raindrops pass through a light beam, it is possible to quickly respond to rainfall intensity and precipitation measurement, and in this case, the raindrops are counted by converting them into electrical signal pulses. It is possible to measure the amount of rainfall instantaneously. Furthermore, since the optical path of the light beam can be set extremely short in the present invention, the light emitting part and the light receiving part can be integrated into an integrated structure, so that the entire device can be made compact, and can be installed, for example, in the windshield wiper part of an automobile. This has the advantage of being able to be attached to various devices, such as automatically driving the wipers when it starts to rain while driving.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は
系統図、第2図A,Bは弱雨時の信号波形図及び
強雨時の信号波形図、第3図A,Bは他の実施例
の要部を示す平面図、第4図は光ビーム部の説明
図、第5図は出力パルス数と降雨強度との関係曲
線図、第6図は雨滴の体積確率密度関数図、第7
図は出力パルス数と降雨強度の実測値、計算値及
び補正値を示す関係曲線図、第8図A,Bは光ビ
ームに対し降雨方向をもつたときの説明図、第9
図は発光光学部と受光光学部を一体化構造とした
実施例の斜面図、第10図は同一体化構造を3個
組合わせた実施例の斜面図、第11図は降雨方向
の補正関係を示す説明図である。 1……光源、2……変調器、3……集光光学素
子、4……発光光学系、5……受光光学素子、6
……光電変換素子、7……前置増幅器、8……受
光光学系、9……検波回路、10……2乗検出
器、11……パルス整形回路、12……計数回
路、13……光ビーム。
The drawings show an embodiment of the present invention. Fig. 1 is a system diagram, Fig. 2 A and B are signal waveform diagrams during light rain and signal waveform diagrams during heavy rain, and Fig. 3 A and B are other diagrams. 4 is an explanatory diagram of the light beam section, FIG. 5 is a relationship curve diagram between the number of output pulses and rainfall intensity, and FIG. 6 is a volume probability density function diagram of raindrops. 7th
The figure is a relationship curve diagram showing the actual measured value, calculated value, and correction value of the number of output pulses and rainfall intensity. Figures 8A and B are explanatory diagrams when the light beam has a direction of rainfall. Figure 9
The figure is a perspective view of an embodiment in which the light-emitting optical section and the light-receiving optical section are integrated, FIG. 10 is a perspective view of an embodiment in which three integrated structures are combined, and FIG. 11 is the correction relationship in the direction of rainfall. FIG. DESCRIPTION OF SYMBOLS 1... Light source, 2... Modulator, 3... Condensing optical element, 4... Emitting optical system, 5... Light receiving optical element, 6
... Photoelectric conversion element, 7 ... Preamplifier, 8 ... Light receiving optical system, 9 ... Detection circuit, 10 ... Square detector, 11 ... Pulse shaping circuit, 12 ... Counting circuit, 13 ... light beam.

Claims (1)

【特許請求の範囲】 1 変調器を備えた光源と集光光学素子をもつて
形成した光ビームを発する発光光学系と、該発光
光学系に対し有限距離を隔てて設置した受光光学
素子と光電変換素子及び前置増幅器よりなる受光
光学系を配し、且つ前記前置増幅器に検波回路と
2乗検出器を接続し1雨滴が光ビームを通過する
ことによつて生ずる光の強度変化を電気信号に変
換すると共に、前記検波回路にパルス整形回路と
計数回路を接続し前記電気信号を1パルスに変換
し、このパルスの単位時間当たりの個数を計算し
定量的に降雨強度を算出することを特徴とした光
電式雨量計。 2 変調器を備えた光源と集光光学素子をもつて
形成した光ビームを発する発光光学系と、該発光
光学系に対し有限距離を隔てて設置した受光光学
素子と光電変換素子及び前置増幅器よりなる受光
光学系を配した光電式雨量計において、前記変調
された発光光源から光ビームを発する発光光学系
とこの光ビームを受ける受光光学系を一体化構造
とした検出手段を3台形成し、各検出手段をそれ
ぞれの光ビームが互いに直交する3方向に配設
し、それぞれの出力パルス数の2乗和を求めて降
雨方向に無関係に降雨強度を測定することを特徴
とした光電式雨量計。
[Scope of Claims] 1. A light emitting optical system that emits a light beam formed by a light source equipped with a modulator and a condensing optical element, and a light receiving optical element and a photoelectronic device installed at a finite distance from the light emitting optical system. A light receiving optical system consisting of a conversion element and a preamplifier is provided, and a detection circuit and a square detector are connected to the preamplifier to electrically detect changes in light intensity caused by one raindrop passing through the light beam. In addition to converting the electrical signal into a signal, a pulse shaping circuit and a counting circuit are connected to the detection circuit to convert the electrical signal into one pulse, and the number of pulses per unit time is calculated to quantitatively calculate the rainfall intensity. Features a photoelectric rain gauge. 2. A light emitting optical system that emits a light beam formed by a light source equipped with a modulator and a focusing optical element, and a light receiving optical element, a photoelectric conversion element, and a preamplifier installed at a finite distance from the light emitting optical system. In the photoelectric rain gauge equipped with a light-receiving optical system, three detecting means are formed in which the light-emitting optical system that emits a light beam from the modulated light-emitting light source and the light-receiving optical system that receives the light beam are integrated. , a photoelectric rain gauge characterized in that each detection means is arranged in three directions where the respective light beams are orthogonal to each other, and the rainfall intensity is measured regardless of the rainfall direction by calculating the square sum of the respective output pulse numbers. Total.
JP56056788A 1981-04-15 1981-04-15 Photoelectric pluviometer Granted JPS57171279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56056788A JPS57171279A (en) 1981-04-15 1981-04-15 Photoelectric pluviometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56056788A JPS57171279A (en) 1981-04-15 1981-04-15 Photoelectric pluviometer

Publications (2)

Publication Number Publication Date
JPS57171279A JPS57171279A (en) 1982-10-21
JPS6364753B2 true JPS6364753B2 (en) 1988-12-13

Family

ID=13037148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56056788A Granted JPS57171279A (en) 1981-04-15 1981-04-15 Photoelectric pluviometer

Country Status (1)

Country Link
JP (1) JPS57171279A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63101855U (en) * 1986-12-22 1988-07-02
JPS63101856U (en) * 1986-12-22 1988-07-02
JPH0815449A (en) * 1994-04-26 1996-01-19 Omron Corp Rain drop sensor and rain-drop measuring device using the sensor as well as wiper driving device using the measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720680B2 (en) * 1975-12-24 1982-04-30

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720680U (en) * 1980-07-11 1982-02-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720680B2 (en) * 1975-12-24 1982-04-30

Also Published As

Publication number Publication date
JPS57171279A (en) 1982-10-21

Similar Documents

Publication Publication Date Title
US4936676A (en) Surface position sensor
US4803470A (en) Substance detector device
US8334972B2 (en) Method and device for detecting soiling
US6781705B2 (en) Distance determination
US8576396B2 (en) Cell construction for light scatter detectors having self-focusing properties
US5880836A (en) Apparatus and method for measuring visibility and present weather
KR20010040931A (en) Laser scanner measurement system
EP0078411A2 (en) Non-contact sensor with particular utility for measurement of road profile
EP0394888A3 (en) Object detection apparatus of the photoelectric reflection type
US4767934A (en) Active ranging system
US5808734A (en) Method and apparatus for detecting impurities on plate surface
US7463339B2 (en) Device for measuring the distance to far-off objects and close objects
SE467553B (en) OPTICAL METHOD TO DETECT AND CLASSIFY RETURNS BY DETECTING SPRITT RESP BACKGROUND LIGHT FROM A BRIGHT
KR101311312B1 (en) Measuring apparatus for present visibility and weather equipped with different light
US20020131038A1 (en) Method for measuring light transmittance and apparatus therefor
JPS6364753B2 (en)
US4771181A (en) Method for detecting dripping droplet with refracted and reflected light
WO2001014231A1 (en) Edge detector
US20030122054A1 (en) Vertical cavity surface emitting laser array for velocity measurement
JP2681827B2 (en) Raindrop measuring device
JPS63120201A (en) Optical-fiber movement measuring device
JP2587023Y2 (en) Moisture measuring device for sheet-like objects
JPH07198341A (en) Water film measurement device
CN211086082U (en) Turbidity measuring device
JP2522499Y2 (en) Laser radar receiver