JPS636455A - Analyzer for ammonia in water - Google Patents

Analyzer for ammonia in water

Info

Publication number
JPS636455A
JPS636455A JP61148252A JP14825286A JPS636455A JP S636455 A JPS636455 A JP S636455A JP 61148252 A JP61148252 A JP 61148252A JP 14825286 A JP14825286 A JP 14825286A JP S636455 A JPS636455 A JP S636455A
Authority
JP
Japan
Prior art keywords
gas
water
test water
tank
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61148252A
Other languages
Japanese (ja)
Inventor
Ryohei Tanuma
良平 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61148252A priority Critical patent/JPS636455A/en
Publication of JPS636455A publication Critical patent/JPS636455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably measure the concn. of ammonia nitrogen in water with high sensitivity by providing a gas-liquid contact part which incorporates the gas in a gaseous phase part into test water to equilibrate the concn. of NH3 in the test water and the gaseous phase and a standard soln. injecting mechanism. CONSTITUTION:The test water 1 is pumped P1 into a gas-liquid contact tank 2 and an alkali agent is added by an alkali injecting mechanism 6 into the test water 1 to convert the NH3-N in the test water to NH3. The test water is circulated from the bottom 2a of the tank 2 to the upper part 2b to incorporate the gas in the gaseous phase part 17 into the test water, by which the gas-liquid contact is effectively executed and the concn. of the NH3 between both the gaseous and liquid phases is equilibrated. The standard soln. such as NH4Cl is then added to the test water by the standard soln. injecting mechanism 11. The concn. of the NH3 in the gaseous phase before and after the addition of the standard soln. is measured by a gas permeation type ammonia electrode 7 and the concn. of the NH3 in the test water is determined from the output change of the electrode 7.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は水中のアンモニア性窒素(以下N H,−Nと
略記する)4度をオンライン測定する水中アンモニア分
析装置に係り、特にメンテナンスが容易で長期にわたっ
て安定した測定が可能であるとともに、低1度のNH3
−N?Q度の測定にも適用し得る水中アンモニア分析=
2に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an ammonia analyzer in water that measures 4 degrees of ammonia nitrogen (hereinafter abbreviated as NH, -N) in water online, and is particularly easy to maintain. In addition to enabling stable measurement over a long period of time,
-N? Ammonia analysis in water that can also be applied to Q degree measurement =
Regarding 2.

〔従来技術とその問題点〕[Prior art and its problems]

生物学的脱窒プロセスでは、プロセスを監視するために
処理水中のアンモニア性窒素(以下N H’x−Nと略
記する)濃度を測定する必要がある。−方、浄水場では
原水の汚染の指標としてNH,−Nの重要性が知られて
いる。このようにNH3−N?7g度の測定、特にオン
ラインで長期にわたり自動分析が可能な装置に対する必
要性が各方面で指摘されている。
In the biological denitrification process, it is necessary to measure the ammonia nitrogen (hereinafter abbreviated as NH'x-N) concentration in the treated water in order to monitor the process. On the other hand, in water treatment plants, the importance of NH and -N as indicators of contamination of raw water is known. Like this, NH3-N? The need for a device that can measure 7g degrees, especially a device that can automatically analyze it online over a long period of time, has been pointed out in various quarters.

このような要求を満たすために本出願人はガスパージ型
アンモニア分析計に関する提亥を行い、特願昭59−2
81422号として特許出願中である。このWWは検水
をアルカリ性にして空気でバブリングし、排出ガス中に
含まれるNH3分析計度を測定することを基本原理とし
、これに標準添加法を応用したものである。
In order to meet such demands, the present applicant proposed a gas purge type ammonia analyzer, and filed a patent application filed in 1983-2.
A patent application is pending as No. 81422. The basic principle of this WW is to make the sample water alkaline and bubble it with air to measure the NH3 content in the exhaust gas, and the standard addition method is applied to this.

第2図に前記特許出願に係る分析装置の構成図を示す。FIG. 2 shows a configuration diagram of the analyzer according to the patent application.

第2図において、検水1がサンプリングポンプP1によ
り一定量サンプリングされ、気液接触槽2に注入される
。この検水1中にデイフユーザ3を通して空気が注入さ
れ、ばっ気が行われる。P2は空気を供給するためのエ
アポンプ、4は空気流量を調整するためのバルブ、5は
背圧弁である。サンプリング後、アルカリ剤注入機構6
により検水1中に水酸化ナトリウムが添加され、検水1
のpHを11以上にする。水中のNHzNはNH,およ
びNH,”として存在し両者の関係は、N l(、+ 
H2O= NH,−+OH−(1)と表される。ところ
がpH>11では反応はほぼ完全に左側にシフトする。
In FIG. 2, a certain amount of test water 1 is sampled by a sampling pump P1 and injected into a gas-liquid contact tank 2. During this water test 1, air is injected through the diffuser 3 to perform aeration. P2 is an air pump for supplying air, 4 is a valve for adjusting the air flow rate, and 5 is a back pressure valve. After sampling, alkali injection mechanism 6
Sodium hydroxide is added to test water 1, and test water 1
to a pH of 11 or higher. NHzN in water exists as NH, and NH,'' and the relationship between them is N l(, +
It is expressed as H2O=NH, -+OH- (1). However, at pH>11 the reaction shifts almost completely to the left.

すなわち、NH,−Nは溶存NHffガスとして存在す
ることになる。この状態で上述のようなばっ気を行うと
、上昇気泡中へ水中のNH3が放出され、排出ガス中に
はNHjが含まれる。今、水中のNH3?m”度をχ1
、排ガス中のN H3′4度をχ。とすると、χG−に
χL(2) となる。ここでには比例定数である。排ガスはガス透過
形N H、iJ電極が挿入されている電極ハウジング8
内を通過して大気中へ放出される。したがって電極7は
χ。に対応する出力Eを発生する。
That is, NH and -N exist as dissolved NHff gas. When aeration as described above is performed in this state, NH3 in the water is released into the rising bubbles, and the exhaust gas contains NHj. NH3 in water now? m” degree χ1
, NH3'4 degrees in the exhaust gas is χ. Then, χG- becomes χL(2). Here it is a proportionality constant. The exhaust gas is passed through the electrode housing 8 in which the gas permeable NH and iJ electrodes are inserted.
It passes through the air and is released into the atmosphere. Therefore, the electrode 7 is χ. generates an output E corresponding to .

χ0とEとの関係は E  =  EO−Sl、1χ0 F となる。ここでRはガス定数、Tは絶対温度、Fはファ
ラディ定数、nは電極内反応に関与するイオンの電荷数
、Eoはχ。=1におけるEである。
The relationship between χ0 and E is E = EO-Sl, 1χ0 F. Here, R is the gas constant, T is the absolute temperature, F is the Faraday constant, n is the number of charges of ions involved in the reaction within the electrode, and Eo is χ. = E at 1.

この式は一般にネルンストの式と呼ばれている。This equation is generally called the Nernst equation.

式(3)に式(2)を代入すると、 E   =   E ’ o     S l−n Z
 LE′。 −E、−SR,χL(4) を得る。すなわち、χ、とEの関係も式(3)と同様、
ネルンストの式で表すことができる。したがって、検水
1をアルカリ性にしてばっ気を行い、電力出力が定常値
になった時点では式(4)が成り立つ。
Substituting equation (2) into equation (3), E = E' o S l-n Z
LE′. -E, -SR, χL (4) are obtained. In other words, the relationship between χ and E is similar to equation (3),
It can be expressed by the Nernst equation. Therefore, when the test water 1 is made alkaline and aerated and the power output reaches a steady value, equation (4) holds true.

電極出力は変換器9を介して演算器10に入力されてお
り、演算器10はこの時点の電極出力をホールドする。
The electrode output is input to the arithmetic unit 10 via the converter 9, and the arithmetic unit 10 holds the electrode output at this point in time.

このホールド値をE、とすると、E、  =  E’。If this hold value is E, then E, = E'.

 −SIRχL(5)となる。次に標準溶液注入機構1
1が作動し、既知濃度のN Ha Cf! 溶液が一定
量注入される。これにより検水1中のNHs?Hr度は
増加し、電極出力も変化する。NH3濃度変化を△χ1
、変化後の電力出力をE2とすると、 E、=E’。−81,l(χ、+△χL)     (
6)となる。式(6)から式(5)を引くと、ΔχL ΔE=Ez−E+=−sza(1+  −)  (7)
χL となる、△EとΔχ、は既知であり、温度センサ12に
より電極ハウジング内の温度を測定することによりSも
求めることができる。したがって、式(7)を利用して
口約とするχ4が測定される。測定が終了するとピンチ
弁13が開いて検水1が排出され、次の測定に移る。
-SIRχL(5). Next, standard solution injection mechanism 1
1 is activated and a known concentration of N Ha Cf! A fixed amount of solution is injected. As a result, NHs in test water 1? The Hr degree increases and the electrode output also changes. NH3 concentration change is △χ1
, if the power output after the change is E2, then E, = E'. -81,l(χ,+△χL) (
6). Subtracting equation (5) from equation (6), ΔχL ΔE=Ez−E+=−sza(1+ −) (7)
ΔE and Δχ, which are χL, are known, and S can also be determined by measuring the temperature inside the electrode housing with the temperature sensor 12. Therefore, the estimated χ4 is measured using equation (7). When the measurement is completed, the pinch valve 13 is opened, the test water 1 is discharged, and the next measurement is started.

上述のアンモニア分析計は排ガス中のN H3濃度を測
定することにより、水中のNHs?1度を測定するため
、検水とセンサが接触せず、電極膜の汚染によるトラブ
ルを防止することができる。また、電極の特性変化、水
質変動等によるにの変化はE′。の変動として現れるが
、標準溶液添加方式によりE′。の変化に影響されない
で測定が可能である。
The ammonia analyzer mentioned above detects NHs in water by measuring the NH3 concentration in exhaust gas. Since the sensor measures 1 degree, there is no contact between the sample water and the sensor, which prevents problems caused by contamination of the electrode membrane. Also, changes in water due to changes in electrode characteristics, changes in water quality, etc. are E'. However, depending on the standard solution addition method, E'. Measurement is possible without being affected by changes in

以上のように本出願人にかかる前述のNH3分析計は優
れた特徴を有するが、反面、以下のような欠点をも有し
ている。
As described above, the above-mentioned NH3 analyzer according to the present applicant has excellent features, but on the other hand, it also has the following drawbacks.

まず第1に、式(2)に示したように、χ。はχLに比
例するが、χ、はχ、に対する平衡濃度よりも低い。す
なわち、排ガス中のNH3分圧は水中のそれよりも低い
。このことはNH3電極の定量下限付近での測定では、
従来の電極を直接液中に挿入する測定法(水中のNH,
分圧を測定する)に比較して不利となる。
First, as shown in equation (2), χ. is proportional to χL, but χ, is lower than the equilibrium concentration for χ. That is, the NH3 partial pressure in the exhaust gas is lower than that in water. This means that in measurements near the lower limit of quantification with the NH3 electrode,
Conventional measurement method in which an electrode is inserted directly into the liquid (NH in water,
(measures partial pressure).

第2の欠点はばっ気による気液接触槽内での発泡の問題
である。特に、廃水を対象とした測定では泡が生じ易く
、泡が液面上に蓄積して電極ホルダー8内にまで達する
ことがある。発泡は気液接触f#2および配管内部を濡
らし、汚染する。汚染された部分にはN Hxが吸収さ
れやすいため、χLの変化に対するχ。の応答が著しく
遅れ、ついには測定不能となる。
The second drawback is the problem of foaming in the gas-liquid contact tank due to aeration. In particular, when measuring wastewater, bubbles are likely to occur, and the bubbles may accumulate on the liquid surface and even reach the inside of the electrode holder 8. Foaming wets and contaminates the gas-liquid contact f#2 and the inside of the piping. Since N Hx is easily absorbed in contaminated areas, χ with respect to the change in χL. The response is significantly delayed and eventually becomes unmeasurable.

〔発明の目的〕[Purpose of the invention]

本発明は上述のような従来のアンモニア分析装置の欠点
を解決するためになされたものであって、その目的はメ
ンテナンスが容易で長期にわたり安定な測定が可能であ
るとともに、低濃度のNH3−Nの濃度の測定にも適用
し得るオンライン用水中アンモニア分析装置を提供する
ことにある。
The present invention was made to solve the above-mentioned drawbacks of the conventional ammonia analyzer, and its purpose is to provide easy maintenance and stable measurement over a long period of time, as well as to make it possible to analyze low concentrations of NH3-N. An object of the present invention is to provide an on-line water ammonia analyzer that can be applied to the measurement of the concentration of .

〔発明の要点〕[Key points of the invention]

前述の目的を達成するため、本発明によれば、−定量の
検水が填充された気泡接触槽と、前記槽中の検水を槽底
部から上部に循環して槽内気相部のガスを検水中に巻き
込む検水循環系統と、前記気相部に接するように前記槽
内に挿入されたガスi3過型アンモニア測定電極と、前
記槽に連結され、検水中アルカリ剤を注入するアルカリ
注入機構と、前記槽に連結され、検水中に既知濃度のア
ンモニア性窒素を含む標準溶液を注入する標準?8液注
入機構とを備え、検水をアルカリ注入機構からのアルカ
リ剤の注入によってアルカリ性にした後、前記電極出力
が一定値に達したときの出力値をホールドし、次いで前
記標準溶液注入機構からの前記標準液を一定量検水中に
注入して電極出力の前記ホールド値からの変化量を求め
、この変化量から検水中のアンモニア性窒素濃度を測定
することを特徴とする。
In order to achieve the above-mentioned object, the present invention provides: - a bubble contact tank filled with a fixed amount of test water, and a gas in the gas phase in the tank by circulating the test water in the tank from the bottom to the top; a test water circulation system that involves the test water in the test water, a gas i3 type ammonia measuring electrode inserted into the tank so as to be in contact with the gas phase, and an alkali injection mechanism connected to the tank and injecting an alkaline agent into the test water. and a standard that is connected to the tank and injects a standard solution containing a known concentration of ammonia nitrogen into the sample water. After making the sample water alkaline by injecting an alkaline agent from the alkali injection mechanism, the output value is held when the electrode output reaches a certain value, and then from the standard solution injection mechanism. The present invention is characterized in that a fixed amount of the standard solution is injected into the test water to determine the amount of change in the electrode output from the hold value, and the ammonia nitrogen concentration in the test water is measured from this amount of change.

前述の本発明は要するに、−定量の検水が導入され、気
相部のガスを検水中に分散させる手段を有する気液接触
部と、気相部ガスに接触するように配置されたN Hs
測定電極とを存し、検水中のN H3濃度と気相中のN
 H3濃度が平衡関係になるようにしつつ、検水に既知
量のNH3−Nを添加し、その際の電極出力変化から検
水中のN H:1濃度を測定するものである。
The above-mentioned present invention can be summarized as follows: - a gas-liquid contact part into which a fixed amount of test water is introduced, and having means for dispersing the gas in the gas phase into the test water;
A measuring electrode is used to measure the N H3 concentration in the sample water and the N in the gas phase.
A known amount of NH3-N is added to the test water while keeping the H3 concentration in an equilibrium relationship, and the NH:1 concentration in the test water is measured from the change in electrode output at that time.

上述の先願にかかる水中アンモニア分析計がばっ見方式
を採用しているのは気液間でNH,を平衡状態とするた
めには長期間を要するという考えに基づいている。すな
わち、ばっ見方式では排ガス中のN Hy >la度は
水中のN H3?a度に対する平衡4度とはならないが
、式(2)の比例関係は成り立つ。平衡関係ではないか
らには水質、気泡径等により変化するが、標準添加法に
よりにの変動に依存しない形で測定できればよいという
考え方である。
The reason why the underwater ammonia analyzer according to the above-mentioned prior application employs the glance method is based on the idea that it takes a long time to bring NH into an equilibrium state between gas and liquid. In other words, in the glance method, if N Hy > la degree in the exhaust gas, is N H3 in water? Although the equilibrium of 4 degrees with respect to a degree is not achieved, the proportional relationship of equation (2) holds true. Since it is not an equilibrium relationship, it will vary depending on water quality, bubble diameter, etc., but the idea is that it is sufficient to be able to measure it in a manner that does not depend on fluctuations using the standard addition method.

これに対して、本発明者らは実験、研究を重ねた結果、
NH,の場合、気液平衡が容易に達成されることを見い
出した。さらに、NH,は管理に吸着し易いため、液中
のN Hs fi度変化に対する気相中のNH,ガス濃
度変化の応答を早くするためには気液間でのガス交換速
度を高める必要があることが明らかになった。本発明は
このような知見に基づくものであって、以下実施例によ
り詳細に説明する。
On the other hand, as a result of repeated experiments and research, the present inventors found that
It has been found that vapor-liquid equilibrium is easily achieved in the case of NH. Furthermore, since NH is easily adsorbed in the control, it is necessary to increase the gas exchange rate between gas and liquid in order to speed up the response of changes in NH gas concentration in the gas phase to changes in NHs fi degree in the liquid. One thing became clear. The present invention is based on such knowledge, and will be explained in detail with reference to Examples below.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明にかかる水中アンモニア分析装置の一具
体例の構成図である。図中、第2図と同じ番号は同じ名
称を表す。測定開始とともに検水サンプリングポンプP
1が作動して検水lが気液接触槽2内に注入され、填充
される。槽2内に前回の検水が残っている場合には検水
注入により一部新しい検水とともにオーバーフロー管1
4、水封ポット15を通じて排出され、新しい検水に入
れ替えられる。検水1のサンプリングが終了すると、槽
2に連結されたアルカリ注入機構6が作動して検水I中
にアルカリ剤を注入し、検水IのpHを11以上とする
。これにより検水1中のN H3NはN H3となる。
FIG. 1 is a block diagram of a specific example of an ammonia in water analyzer according to the present invention. In the figure, the same numbers as in FIG. 2 represent the same names. At the start of measurement, the water sampling pump P
1 is activated and test water 1 is injected into the gas-liquid contact tank 2 to fill it. If there is any water left in tank 2 from the previous test, some new sample water will be added to the overflow pipe 1.
4. The water is discharged through the water seal pot 15 and replaced with new test water. When the sampling of the test water 1 is completed, the alkali injection mechanism 6 connected to the tank 2 is activated to inject an alkaline agent into the test water I to make the pH of the test water I 11 or higher. As a result, N H3N in test water 1 becomes N H3.

Aは検水循環系統であって、槽2中の検水1を槽2の底
部2aから上部2bに循環して慣2内の気相部17のガ
スを検水1中に巻き込む。すなわち、検水lは気液接触
槽2の底部2aがらパイプ18を介して引き抜かれ、循
環ポンプP3により再び槽2の上部2bから槽2内に流
入するように循環される。この際、検水1の上部2aが
らの落下により槽2内の気相部17のガスが検水l中に
巻き込まれ、気液接触が効果的に行われる。この方式で
は検水1の水面に浮遊している泡は水中に巻き込まれて
消えるため、従来のように泡が水面上に蓄積されるよう
な心配がない。
Reference numeral A denotes a test water circulation system, which circulates the test water 1 in the tank 2 from the bottom 2a to the top 2b of the tank 2, and involves the gas in the gas phase 17 in the tank 2 into the test water 1. That is, the sample water I is drawn out from the bottom 2a of the gas-liquid contact tank 2 via the pipe 18, and is circulated again by the circulation pump P3 so as to flow into the tank 2 from the top 2b of the tank 2. At this time, as the upper part 2a of the test water 1 falls, the gas in the gas phase portion 17 in the tank 2 is drawn into the test water 1, and gas-liquid contact is effectively performed. With this method, the bubbles floating on the water surface of test water 1 are caught up in the water and disappear, so there is no need to worry about bubbles accumulating on the water surface, unlike in the conventional method.

ガス透過型アンモニア電極7は槽2の上部2bから槽内
部の気相部17に挿入して装着され、その出力信号は信
号変換器9を介して演算器1oに入力される。測定開始
後−定時間を経過すると、水中のNH,濃度χ、と気相
中のNH,濃度χ、は平衡に達する。すなわち、 χ6=(1/H) χL(8) となる。ここでHはヘンリー定数である。したがって、
前述の標準添加法が適用できる。すなわち、電極出力が
安定したところでその値をホールドし、その後、槽2に
連結された標準溶液注入機構11が作動し、この作動に
より、標準溶液注入機構11は検水1中に既知7農度の
アンモニア性窒素を含む標皐溶液、例えばN84Cj!
標準溶液を一定N注入する。これにより電力出力は変化
し、ホールド値からの出力変化量をもとにχ、が算出さ
れる。これら−連の演算は演算器10により行われる。
The gas-permeable ammonia electrode 7 is inserted into the gas phase section 17 inside the tank 2 from the upper part 2b of the tank 2, and its output signal is inputted to the arithmetic unit 1o via the signal converter 9. After a certain period of time elapses after the start of the measurement, the NH concentration χ in water and the NH concentration χ in the gas phase reach equilibrium. That is, χ6=(1/H) χL(8). Here H is Henry's constant. therefore,
The standard addition method described above can be applied. That is, when the electrode output becomes stable, the value is held, and then the standard solution injection mechanism 11 connected to the tank 2 is activated. A solution containing ammoniacal nitrogen, such as N84Cj!
Inject constant N of standard solution. As a result, the power output changes, and χ is calculated based on the amount of change in the output from the hold value. These series of operations are performed by the computing unit 10.

また、検水サンプリング、薬注機構の作動、演算のタイ
ミング等の制御はソーケンスコントローラ16によって
行われる。
Further, control of water sampling, operation of the chemical injection mechanism, calculation timing, etc. is performed by the soak controller 16.

〔発明の効果〕〔Effect of the invention〕

以上のとおり、本発明にかかる水中アンモニア分析装置
は気液接触槽内気相部のガスを水中に巻き込むように気
液接触が行われるため、発泡によるトラブルが起こらな
い。また、槽内壁が清浄に保たれるため、N H3の吸
着による応答の遅れが少ない。さらにこの方法では気液
間のガス交換速度が高いことも応答速度の改善に役立っ
ている。
As described above, in the ammonia in water analyzer according to the present invention, the gas-liquid contact is performed so that the gas in the gas phase in the gas-liquid contact tank is involved in water, so troubles due to foaming do not occur. Furthermore, since the inner wall of the tank is kept clean, there is less delay in response due to NH3 adsorption. Furthermore, in this method, the high rate of gas exchange between gas and liquid also helps to improve response speed.

従来のばっ置方式では、泡の発生を抑制するために注入
空気atを大きくすることができなかった。
In the conventional vapor deposition method, it was not possible to increase the amount of air injected at to suppress the generation of bubbles.

そのため、液中からのNH3放出量が少なく、吸着のE
lを受は易かった。すなわち、水中のNH。
Therefore, the amount of NH3 released from the liquid is small, and the adsorption E
It was easy to receive l. That is, NH in water.

濃度の変化に伴い、放出ガス中のNH,が変化した後、
電極部のNHz濃度が素速く一定値に落ち着くためには
、槽内気相部と内壁との間でNH。
After the NH in the released gas changes with the change in concentration,
In order for the NHz concentration in the electrode part to quickly settle to a constant value, NH must be removed between the gas phase part and the inner wall of the tank.

が早く吸着平衡に達する必要がある。そのためには気液
間でのN H3交喚速度を高くしなければならないが、
従来法ではそれができない。これに対して、本発明では
発泡の心配がないことにより、検水の循環量を増してガ
スの巻き込み量(従来法の注入空気量に相当)を大きく
し、ガス交換速度を高めることができる。
must reach adsorption equilibrium quickly. To achieve this, it is necessary to increase the rate of NH3 exchange between gas and liquid.
Conventional methods cannot do that. In contrast, with the present invention, since there is no need to worry about foaming, it is possible to increase the amount of sample water circulated, increase the amount of gas entrained (equivalent to the amount of air injected in the conventional method), and increase the gas exchange rate. .

次に、本発明では式(2)と同様の式(8)の関係を利
用している。しかし、弐(8)のχ6はχLに対する平
衡濃度であるため、(1/H)>にである。
Next, the present invention utilizes the relationship of equation (8), which is similar to equation (2). However, since χ6 in (8) is the equilibrium concentration with respect to χL, (1/H)>.

すなわち、同一検水に対し、本発明の場合では電極部の
NHi?W度は従来のそれより高い。したがって、本発
明によれば、より#、濃度の測定が可能となる。また、
弐(8)は気液平衡関係であるため、Hは温度の関数で
あり、にのように様々な要因で変動することがなく、こ
のことも安定な測定を得る上で有利な点である。
That is, for the same sample water, in the case of the present invention, the NHi? The degree of W is higher than that of conventional products. Therefore, according to the present invention, it is possible to measure a higher concentration. Also,
Since (8) is a vapor-liquid equilibrium relationship, H is a function of temperature and does not vary due to various factors as in (8), which is also an advantage in obtaining stable measurements. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる装置の一具体例の構成図を示し
、第2図は従来装置の構成図を示す。 1・・検水、2・・気液接触槽、2a・・底部、2b・
・上部、6・・アルカリ注入機構、7・・ガス透過型ア
ンモニア電極、 11・・標準溶液注入機構、17・・気相部、A・・検
水循環系統。
FIG. 1 shows a configuration diagram of a specific example of the device according to the present invention, and FIG. 2 shows a configuration diagram of a conventional device. 1. Water test, 2. Gas-liquid contact tank, 2a. Bottom, 2b.
・Upper part, 6. Alkali injection mechanism, 7. Gas-permeable ammonia electrode, 11. Standard solution injection mechanism, 17. Gas phase section, A. Water test circulation system.

Claims (1)

【特許請求の範囲】[Claims] 一定量の検水が填充された気液接触槽と、前記槽中の検
水を槽底部から上部に循環して槽内気相部のガスを検水
中に巻き込む検水循環系統と、前記気相部に接するよう
に前記槽内に挿入されたガス透過型アンモニア測定電極
と、前記槽に連結され、検水中にアルカリ剤を注入する
アルカリ注入機構と、前記槽に連結され、検水中に既知
濃度のアンモニア性窒素を含む標準溶液を注入する標準
溶液注入機構とを備え、検水をアルカリ注入機構からの
アルカリ剤の注入によってアルカリ性にした後、前記電
極出力が一定値に達したときの出力値をホールドし、次
いで前記標準溶液注入機構からの前記標準液を一定量検
水中に注入して電極出力の前記ホールド値からの変化量
を求め、この変化量から検水中のアンモニア性窒素濃度
を測定することを特徴とする水中アンモニア分析装置。
a gas-liquid contact tank filled with a certain amount of test water; a test water circulation system that circulates the test water in the tank from the bottom of the tank to the top to involve gas in the gas phase in the tank; a gas-permeable ammonia measuring electrode inserted into the tank so as to be in contact with the tank; an alkali injection mechanism connected to the tank to inject an alkaline agent into the test water; and an alkali injection mechanism connected to the tank to inject a known concentration into the test water a standard solution injection mechanism for injecting a standard solution containing ammonia nitrogen of and then inject a certain amount of the standard solution from the standard solution injection mechanism into the sample water to determine the amount of change in the electrode output from the hold value, and measure the ammonia nitrogen concentration in the sample water from this amount of change. An underwater ammonia analyzer characterized by:
JP61148252A 1986-06-26 1986-06-26 Analyzer for ammonia in water Pending JPS636455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61148252A JPS636455A (en) 1986-06-26 1986-06-26 Analyzer for ammonia in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61148252A JPS636455A (en) 1986-06-26 1986-06-26 Analyzer for ammonia in water

Publications (1)

Publication Number Publication Date
JPS636455A true JPS636455A (en) 1988-01-12

Family

ID=15448630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61148252A Pending JPS636455A (en) 1986-06-26 1986-06-26 Analyzer for ammonia in water

Country Status (1)

Country Link
JP (1) JPS636455A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109752503A (en) * 2019-02-27 2019-05-14 浙江索奥环境技术有限公司 Valve control Three-way injector mark-on reclaims and binary channels standard liquid O&M water quality monitoring quality control machine people
US11453947B2 (en) 2017-03-30 2022-09-27 Tata Steel Ijmuiden B.V. Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453947B2 (en) 2017-03-30 2022-09-27 Tata Steel Ijmuiden B.V. Aqueous acidic composition for treating metal surfaces, treating method using this composition and use of treated metal surface
CN109752503A (en) * 2019-02-27 2019-05-14 浙江索奥环境技术有限公司 Valve control Three-way injector mark-on reclaims and binary channels standard liquid O&M water quality monitoring quality control machine people

Similar Documents

Publication Publication Date Title
US2987912A (en) Method and apparatus for measurement of gas dissolved in a liquid
JPS6291861A (en) On-line calibrating apparatus for chemical monitor
JPS636455A (en) Analyzer for ammonia in water
US5889195A (en) Measuring arrangement for determining the concentration of gases from liquid media
JPH11118782A (en) Ammoniacal nitrogen measuring apparatus
US20030178323A1 (en) Method and apparatus for anlyzing a component in a liquid sample
US3467582A (en) Method for the determination of acid-base status in biological fluids
JPH0210456Y2 (en)
JPH0561581B2 (en)
Roy et al. Application of sparging to the automated ion selective electrode determination of Kjeldahl nitrogen
US5364594A (en) Method and apparatus for the coulometric detection of dissolved gases particularly TCO2 in seawater
JPH0543269B2 (en)
CA2040114A1 (en) Method and system for continuously monitoring and controlling a process stream for dechlorination residual
JP2000131308A (en) Apparatus and method for measurement of concentration of dissolved nitrogen in ultrapure water
US3494838A (en) Method for the instantaneous quantitative analysis of ozone
Schulze Versatile Combination Ozone and Sulfur Dioxide Analyzer.
RU14084U1 (en) DEVICE FOR DETERMINING OXYGEN CONTENT IN LIQUID
JPS6153661B2 (en)
JPS5758895A (en) Analytical method of creatinine and apparatus
US3457145A (en) Liquid and gas analysis
JP3697032B2 (en) Condensation prevention device for vaporized liquid
JPS5786053A (en) Method and device for measuring amino compound
JPS5866048A (en) Automatic measuring device for nitrate ion concentration
JPH0224342B2 (en)
JP2003075424A (en) Nitrogen compound analysis method and apparatus