JPS6364462B2 - - Google Patents

Info

Publication number
JPS6364462B2
JPS6364462B2 JP6276981A JP6276981A JPS6364462B2 JP S6364462 B2 JPS6364462 B2 JP S6364462B2 JP 6276981 A JP6276981 A JP 6276981A JP 6276981 A JP6276981 A JP 6276981A JP S6364462 B2 JPS6364462 B2 JP S6364462B2
Authority
JP
Japan
Prior art keywords
filler
pellets
hydrogenated
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6276981A
Other languages
Japanese (ja)
Other versions
JPS57179230A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6276981A priority Critical patent/JPS57179230A/en
Publication of JPS57179230A publication Critical patent/JPS57179230A/en
Publication of JPS6364462B2 publication Critical patent/JPS6364462B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱可塑性樹脂に配合使用する充てん剤
ペレツトに関するものである。詳しくは粉末状無
機充てん剤と、核内水素化率80%以上の水素化芳
香族系石油樹脂および臭素化10以下の水素化ジシ
クロペンタジエン系石油樹脂から選ばれる平均分
子量200〜3000、軟化点80〜150℃の水素化樹脂と
からなり、平均粒子容積0.1〜500mm3である熱可
塑性樹脂に配合使用する充てん剤含有ペレツトに
関するものである。 従来無機充てん剤を熱可塑性樹脂に配合し、熱
可塑性樹脂の物性改良や、価格低下を図ることは
良く知られている。この様な場合、熱可塑性樹脂
と無機充てん剤を秤量し、ニーダーの様な混練機
で溶融混練しながら均一な無機充てん剤含有熱可
塑性樹脂コンパウンドとした後、冷却、粉砕し、
押出機及びペレタイザーでペレツト化し、成形機
のホツパーに供給、成形されるのが一般的であ
る。 しかし、この一連の工程を同一成形加工工場で
行うのは、混合時の粉じんと最終成形製品とが同
一工場内で混在する形となり好ましくなく、また
同一成形加工工場が混合からペレツト化までの混
合機、粉砕機、押出機、ペレタイザー等を設備す
ることは多額な経費がかかり有利ではない。この
様な背景から、最近無機充てん剤をあらかじめポ
リエチレン(PE)やポリプロピレン(PP)など
の熱可塑性樹脂に多量に充てんしたマスターバツ
チペレツトや、低溶融粘度の非結晶性ポリプロピ
レン(APP)に高濃度に充てんした充てん剤ペ
レツト等が熱可塑性樹脂配合用に使用されてい
る。 前者の場合、無機充てん剤粉末の配合含量に対
応して流動性が著しく低下し、加工性に問題を生
じ多量の充てん剤を充てんすることが困難とな
る。後者の充てん剤ペレツトは、低溶融粘度の
APPなどをベースとしているため、70〜85重量
%の無機充てん剤の含有が可能であり、価格も比
較的安価であるが、成形を行つた場合冷却固化
後、製品表面に充てん剤ペレツトのバインダーで
あつたAPPがブリードし、型物成形品の場合に
は光沢低下、表面粘着化などで商品価値の低下を
引き起し、フイルムの場合にはブロツキングの原
因となる。また、物性の低下も著しい。 本発明は充てん剤配合熱可塑性樹脂の加工上問
題となつている以上の様な点をふまえ鋭意研究し
た結果、成形加工性、物性、価格において非常に
優れた充てん剤含有ペレツトの開発に成功したこ
とに基づくものである。すなわち、粉末状無機充
てん剤90〜50重量%と、核内水素化率80%以上の
水素化芳香族系石油樹脂および臭素価10以下の水
素化ジシクロペンタジエン系石油樹脂から選ばれ
る平均分子量200〜3000、軟化点80〜150℃の水素
化樹脂10〜50重量%とからなり、平均粒子容積
0.0〜500mm3である熱可塑性樹脂に配合使用する
優れた充てん剤含有ペレツトを提供するものであ
る。 本発明は充てん剤含有ペレツトを熱可塑性樹脂
ペレツトとドライ混合して成形する場合、その加
工流動性を低下させず、熱可塑性樹脂の耐熱性、
寸法安定性、剛性などの物性を向上させることが
でき、さらに焼却時の発熱量の低下にも有効であ
る。特に従来のAPP系などの充てん剤含有ペレ
ツトにない特長は、PEやPPに配合した場合に、
これら樹脂の大きな欠点である印刷性や塗装性も
同時に改良されるほか、延伸用PEやPPに混合使
用することにより、織布や不織布の加工工程で熱
圧着温度を低下させ、圧着後の固化を速めること
も有利な特長のひとつである。さらにポリスチレ
ン、アクリロニトリル―けスチレン共重合体、
ABS樹脂などの芳香族系熱可塑性樹脂への応用
についても優れた特性を示すことは述べるまでも
ない。次の本発明を構成する個々について詳細に
説明する。 本発明でいう粉末状無機充てん剤とは、通常、
平均粒径が0.01μm〜500μmの無機質粉末であり、
たとえば各種軽質および重質炭酸カルシウム、タ
ルク、クレー、シリカ、水酸化アルミニウム、け
い藻土、けい砂、雲母粉、硫酸アルミニウム、硫
酸バリウム、硫酸カルシウム、亜硫酸カルシウ
ム、リトポン、軽石粉、ガラス粉、亜鉛華、炭酸
マグネシウム、金属粉、アスベスト粉、酸化チタ
ン、スレート粉、フライアツシユ、火山ガラス中
空体またはこれら混合物などである。 本発明でいう核内水素化率80%以上の水素化芳
香族系石油樹脂とは、重合性芳香族炭化水素を主
成分とする石油留分を重合して得られる芳香族系
石油樹脂の芳香族成分を核内水素化率80%以上に
水素化して得られる淡色の樹脂である。この芳香
族系石油樹脂としては、石油類の熱分解によつて
得られる分解油中、沸点範囲が140〜280℃の分解
油留分をそのまま、もしくは更にその内の特定留
分を分離して、熱又は酸触媒により重合して得ら
れる芳香族系石油樹脂のほか、これらの重合性芳
香族炭化水素と共にこれに対して等量以下の他の
オレフイン類、ジエン類、テルペン類を共重合し
て得られる石油樹脂も含まれる。 核内水素化の方法は従来公知の方法を用いるこ
とができる。その核内水素化率は赤外線吸収スペ
クトルによる700cm-1の吸光度から次式によつて
算出される。 核内水素化率(%) =100×(1−水素化後の石油樹脂の吸光度/水素化
前の石油樹脂の吸光度) 本発明は、核内水素化率が80%以上、更に好ま
しくは90%以上であること必要である。80%未満
では、耐熱性が不十分となり熱可塑性樹脂とブレ
ンドとして使用するに当り、着色の原因となり好
ましくない。 これらの核内水素化率80%以上の水素化芳香族
系石油樹脂としては、国内では荒川化学(株)より
「アルコンP」の商標で販売されている。 本発明でいう臭素価10以下の水素化ジシクロペ
ンタジエン系石油樹脂とは、シクロペンタジエ
ン、ジシクロペンタジエン及びこれらのアルキル
置換体から選ばれた1種もしくは2種以上の混合
物、もしくはこれらと共にこれに対して等量以下
の共重合性成分との混合物を熱又は酸触媒により
重合して得られるジシクロペンタジエン系石油樹
脂を臭素価10以下に水素化して得られる淡色の樹
脂である。 これらジシクロペンタジエン系石油樹脂の水素
化の方法は、従来公知の方法を用いることができ
る。その水素化の程度は臭素価から知ることがで
きる。臭素価はASTM D1159−77の方法により
求めることでき、本発明は臭素価10以下、更に好
ましくは5以下であることが必要である。臭素価
が10を越えると、耐熱性が不十分となり、熱可塑
性樹脂とブレンドして使用するに当り、着色の原
因となり好ましくない。 これらの臭素価10以下の水素化ジシクロペンタ
ジエン系樹脂としては、国内ではエツソ化学(株)よ
り「エスコレツツ5000シリーズ」として販売され
ている。 本発明でいう核内水素化率80%以上の水素化芳
香族系石油樹脂および臭素価10以下の水素化ジシ
クロペンタジエン系石油樹脂から選ばれる水素化
石油樹脂は、平均分子量が200〜3000、好ましく
は300〜2000であることが必要である。平均分子
量が200以下の場合は、軟化点が低くなり好まし
くなく、3000以上では成形加工性が劣るため好ま
しくない。 又、これら水素化石油樹脂の軟化点は、環球法
(JIS−K−2207)で測定された軟化点が80〜150
℃好ましくは90〜140℃の範囲にあることが必要
である。80℃以下では、充てん剤含有ペレツトに
表面粘着性が生じ好ましくなく150℃以上では成
形加工性が劣るため好ましくない。 本発明の充てん剤ペレツトが応用できる熱可塑
性樹脂としては、ポリエチレン、ポリプロピレ
ン、ポリブテン―1、それらの共重合体、ポリス
チレン、アクリロニトリル―スチレン共重合体、
熱可塑性ゴム、ABS樹脂、ポリα―メチルスチ
レン、ポリ塩化ビニル、ポリメチルメタアクリレ
ート、ポリカーボネート、ポリアミド、ポリエス
テル、ポリアクリロニトリルなど一般に知られた
熱可塑性樹脂を挙げことができるが、これらの内
で特にポリエチレン、ポリプロピレン、ポリブテ
ン―1などのポリオレフインおよびそれらの共重
合体が好ましい。該熱可塑性樹脂への配合割合
は、用途により適宜選択しうる。 粉末状無機充てん剤と水素化石油樹脂との量的
関係は、粉末状無機充てん剤90〜50重量%、好ま
しくは85〜60重量%に対して、平均分子量200〜
3000、軟化点80〜150℃の水素化石油樹脂10〜50
重量%、好ましくは15〜40重量%であるが、水素
化石油樹脂が10重量%より少ない場合には、粉末
状無機充てん剤とともに高温下で混練しても流動
性がある様な可塑化状態にはならず、ペレツト状
に成形することはできない。 水素化石油樹脂が50重量%よりも多い場合には
流動性は非常に向上するが、本発明の充てん剤含
有ペレツトでの水素化石油樹脂の役割は、流動性
を保持させたうえでの粉末状無機充てん剤のバイ
ンダーであり、このバインダーが多過ぎる場合に
は所期の物性向上が望めないばかりか、その熱可
塑性樹脂固有の特性を損なう結果となる。また本
発明の充てん剤含有ペレツトには、必要に応じて
少量の酸化防止剤、加工助剤、顔料、染料などを
添加することができる。 本発明の充てん剤含有ペレツトの平均粒子容積
は0.1〜500mm3、好ましくは1〜400mm3であるが、
これは汎用の熱可塑性樹脂が粉状ないしは容積
500mm3以下のペレツト状もしくはクラム状である
ためで、充てん剤含有ペレツトの機能を十分に発
揮させるためには、熱可塑性樹脂とのドライブレ
ンド混合物が成形機のホツパー内で均一な混合状
態を保持している必要があり、このためペレツト
の容積は混合する熱可塑性樹脂と同程度であるこ
とが好ましい。 この充てん剤含有ペレツトの形状は、球状、円
柱状、角状いずれでもよく、押出機―ペレタイザ
ー法で製造される場合は円柱状が好ましく製造さ
れる。 これら充てん剤含有ペレツトの配合、調製は、
ニーダー、ヘンシエルミキサー、バンバリーミキ
サー、ロールなどの通常の汎用プラスチツクの混
練、混合で使用される機械により容易に混合しう
るが、特に無機充てん剤の粒度が粗い場合には混
合物は高温下で液状の高流動性を示すため、簡単
な加熱可能な混合容器により、水素化石油樹脂の
軟化点以上の温度で、短時間に均一混合すること
ができる。 この混合物をペレツト化すにあたつては、混合
物を押出機により押出して切断する方法(ペレタ
イザー法)、クラツシヤーによ粉砕粒状化する方
法、ロールによりシート化して細断する方法など
種々の手段を応用することができる。以下実施例
により本発明を更に具体的に詳説する。 実施例 1〜2 水素化芳香族系石油樹脂(アルコンP115、水
素化率95%以上、軟化点115℃、荒川化学工業(株))
2.1Kg、粉末状無機充てん剤として重質炭酸カル
シウム(K#300、旭鉱末(資))12.75Kg、加工
助剤(ハイワツクス310MP、三井石油化学工業
(株)0.15Kgを10ニーダーを用い150℃で均一に混
合し、冷却後粉砕して平均粒子容積25mm3の充て
ん剤ペレツトを得、次にこのペレツトとポリプロ
ピレンペレツト(三井ノーブレンJHH−G、三
井東圧化学(株))をタンブラーミキサーを使用し、
重質炭酸カルシウム含量が25重量%および50重量
%になる様にドライブレンド調製を行つた後、こ
れを射出成形して成形品を作製し、射出成形性
(日精樹脂工業(株)製AU20射出成形機、スクリユ
ーL/D=15、C.R.2.5を使用)および射出物メ
ルトインデツクス(M.I.)を測定し、表1に示し
た。 比較例 1〜2 ポリプロピレンペレツト(実施例1と同じ)と
重質炭酸カルシウム(実施例1と同じ)を、200
℃の10ニーダーを用い重質炭酸カルシウム含量
が実施例1および実施例2と対応する様に調製、
ペレツト化した後、射出成形して実施例1〜2と
比較し表1に示した。 表1より明らかな様に本発明の充てん剤含有ペ
レツトを使用した実施例1〜2は、M.I.が示す結
果でも明らかな様に流動性に優れ、成形時のトル
クが低いために油圧モーターの電力消費量の低
減、チヤージが早いことによる成形サイクルの向
上など、非常に経済的であり、また成形品の外観
も良好であつた。
The present invention relates to filler pellets for use in thermoplastic resins. In detail, powdered inorganic fillers, hydrogenated aromatic petroleum resins with a nuclear hydrogenation rate of 80% or more, and hydrogenated dicyclopentadiene petroleum resins with a bromination rate of 10 or less with an average molecular weight of 200 to 3000 and a softening point. The present invention relates to filler-containing pellets which are made of a hydrogenated resin at 80 to 150°C and which are mixed with a thermoplastic resin and have an average particle volume of 0.1 to 500 mm 3 . It has been well known that inorganic fillers are blended into thermoplastic resins in order to improve their physical properties and lower their prices. In such cases, the thermoplastic resin and the inorganic filler are weighed, melted and kneaded using a kneader such as a kneader to form a uniform thermoplastic resin compound containing the inorganic filler, and then cooled and pulverized.
Generally, the pellets are formed into pellets using an extruder and a pelletizer, and then fed to a hopper of a molding machine and molded. However, it is undesirable to perform this series of processes in the same molding factory because the dust during mixing and the final molded product will be mixed in the same factory. It is not advantageous to install machines, crushers, extruders, pelletizers, etc., as it requires a large amount of expense. Against this background, recently masterbatch pellets, which are thermoplastic resins such as polyethylene (PE) and polypropylene (PP) filled with inorganic fillers in large quantities, and amorphous polypropylene (APP) with low melt viscosity have been developed. Highly concentrated filler pellets are used in thermoplastic resin formulations. In the former case, the fluidity decreases significantly depending on the blended content of the inorganic filler powder, causing problems in processability and making it difficult to fill with a large amount of filler. The latter filler pellets have a low melt viscosity.
Because it is based on APP, it is possible to contain 70 to 85% by weight of inorganic filler, and the price is relatively low. However, when molding is performed, after cooling and solidifying, the binder of filler pellets is deposited on the surface of the product. The hot APP bleeds out, causing a decrease in product value in the case of molded products due to reduced gloss and surface adhesion, and in the case of films, it causes blocking. In addition, the physical properties are significantly deteriorated. The present invention has been made based on intensive research on the above-mentioned processing problems of filler-containing thermoplastic resins, and has succeeded in developing filler-containing pellets that are excellent in moldability, physical properties, and cost. It is based on this. That is, 90 to 50% by weight of a powdered inorganic filler, an average molecular weight of 200 selected from hydrogenated aromatic petroleum resins with a nuclear hydrogenation rate of 80% or more, and hydrogenated dicyclopentadiene petroleum resins with a bromine number of 10 or less. ~3000, consisting of 10~50% by weight of hydrogenated resin with a softening point of 80~150℃, average particle volume
The present invention provides an excellent filler-containing pellet for use in a thermoplastic resin having a size of 0.0 to 500 mm 3 . In the present invention, when filler-containing pellets are dry mixed with thermoplastic resin pellets and molded, the process fluidity is not reduced, and the heat resistance of the thermoplastic resin is improved.
It can improve physical properties such as dimensional stability and rigidity, and is also effective in reducing the amount of heat generated during incineration. In particular, the feature that conventional filler-containing pellets such as APP type do not have is that when mixed with PE or PP,
In addition to improving printability and paintability, which are major drawbacks of these resins, by mixing them with PE and PP for stretching, it lowers the thermocompression temperature in the processing process of woven and nonwoven fabrics, and prevents solidification after compression. Another advantageous feature is that it speeds up the process. Furthermore, polystyrene, acrylonitrile-based styrene copolymer,
Needless to say, it also exhibits excellent properties when applied to aromatic thermoplastic resins such as ABS resin. Each component of the present invention will be explained in detail below. The powdered inorganic filler referred to in the present invention usually refers to
It is an inorganic powder with an average particle size of 0.01μm to 500μm,
Examples include various types of light and heavy calcium carbonate, talc, clay, silica, aluminum hydroxide, diatomaceous earth, silica sand, mica powder, aluminum sulfate, barium sulfate, calcium sulfate, calcium sulfite, lithopone, pumice powder, glass powder, zinc. Magnesium carbonate, metal powder, asbestos powder, titanium oxide, slate powder, fly ash, volcanic glass hollow body, or a mixture thereof. The hydrogenated aromatic petroleum resin with a nuclear hydrogenation rate of 80% or more in the present invention is an aromatic aromatic petroleum resin obtained by polymerizing a petroleum fraction whose main component is a polymerizable aromatic hydrocarbon. It is a light-colored resin obtained by hydrogenating group components to a nuclear hydrogenation rate of 80% or more. This aromatic petroleum resin can be obtained by directly separating the cracked oil fraction with a boiling point range of 140 to 280°C from the cracked oil obtained by thermal decomposition of petroleum, or by further separating a specific fraction thereof. In addition to aromatic petroleum resins obtained by polymerization with heat or acid catalysts, these polymerizable aromatic hydrocarbons are copolymerized with other olefins, dienes, and terpenes in equal amounts or less. It also includes petroleum resins obtained by Conventionally known methods can be used for intranuclear hydrogenation. The intranuclear hydrogenation rate is calculated from the absorbance at 700 cm -1 according to the infrared absorption spectrum using the following formula. Intranuclear hydrogenation rate (%) = 100 x (1 - absorbance of petroleum resin after hydrogenation/absorbance of petroleum resin before hydrogenation) In the present invention, the intranuclear hydrogenation rate is 80% or more, more preferably 90%. % or more. If it is less than 80%, the heat resistance will be insufficient and when used as a blend with a thermoplastic resin, it will cause discoloration, which is undesirable. These hydrogenated aromatic petroleum resins with a nuclear hydrogenation rate of 80% or more are sold domestically by Arakawa Chemical Co., Ltd. under the trademark "Alcon P." In the present invention, the hydrogenated dicyclopentadiene petroleum resin having a bromine number of 10 or less refers to one or a mixture of two or more selected from cyclopentadiene, dicyclopentadiene, and alkyl substituted products thereof, or a mixture thereof together with these. It is a light-colored resin obtained by hydrogenating a dicyclopentadiene-based petroleum resin obtained by polymerizing a mixture with a copolymerizable component in an amount equal to or less than that using a heat or acid catalyst to a bromine number of 10 or less. Conventionally known methods can be used to hydrogenate these dicyclopentadiene petroleum resins. The degree of hydrogenation can be determined from the bromine number. The bromine number can be determined by the method of ASTM D1159-77, and in the present invention it is necessary that the bromine number is 10 or less, more preferably 5 or less. If the bromine number exceeds 10, the heat resistance will be insufficient and, when blended with a thermoplastic resin, it will cause discoloration, which is undesirable. These hydrogenated dicyclopentadiene resins with a bromine number of 10 or less are sold domestically by Etsuso Kagaku Co., Ltd. as the "Escolets 5000 Series." The hydrogenated petroleum resin selected from hydrogenated aromatic petroleum resins with a nuclear hydrogenation rate of 80% or more and hydrogenated dicyclopentadiene petroleum resins with a bromine number of 10 or less in the present invention has an average molecular weight of 200 to 3000, It is preferably between 300 and 2000. If the average molecular weight is 200 or less, the softening point will be low, which is undesirable, and if it is 3000 or more, moldability will be poor, which is not preferred. In addition, the softening point of these hydrogenated petroleum resins is 80 to 150 as measured by the ring and ball method (JIS-K-2207).
It is necessary that the temperature is preferably in the range of 90 to 140°C. If it is below 80°C, the filler-containing pellets will develop surface tackiness, which is undesirable, and if it is above 150°C, the molding processability will be poor, which is not preferable. Thermoplastic resins to which the filler pellets of the present invention can be applied include polyethylene, polypropylene, polybutene-1, copolymers thereof, polystyrene, acrylonitrile-styrene copolymers,
Commonly known thermoplastic resins include thermoplastic rubber, ABS resin, polyα-methylstyrene, polyvinyl chloride, polymethyl methacrylate, polycarbonate, polyamide, polyester, and polyacrylonitrile. Polyolefins such as polyethylene, polypropylene, polybutene-1, and copolymers thereof are preferred. The blending ratio in the thermoplastic resin can be appropriately selected depending on the application. The quantitative relationship between the powdered inorganic filler and the hydrogenated petroleum resin is such that the powdered inorganic filler has an average molecular weight of 200 to 200% by weight, preferably 85 to 60% by weight.
3000, hydrogenated petroleum resin 10-50 with softening point 80-150℃
% by weight, preferably 15 to 40% by weight, but if the hydrogenated petroleum resin is less than 10% by weight, the plasticized state is such that it remains fluid even when kneaded at high temperatures with a powdered inorganic filler. It cannot be formed into pellets. When the hydrogenated petroleum resin is more than 50% by weight, the fluidity is greatly improved, but the role of the hydrogenated petroleum resin in the filler-containing pellets of the present invention is to maintain the fluidity as a powder. If there is too much of this binder, not only the desired improvement in physical properties cannot be expected, but also the properties specific to the thermoplastic resin will be impaired. Furthermore, small amounts of antioxidants, processing aids, pigments, dyes, etc. can be added to the filler-containing pellets of the present invention, if necessary. The filler-containing pellets of the present invention have an average particle volume of 0.1 to 500 mm 3 , preferably 1 to 400 mm 3 ,
This is a general-purpose thermoplastic resin in powder form or volume.
This is because it is in the form of pellets or crumbs with a size of 500 mm 3 or less, and in order to fully demonstrate the function of the filler-containing pellets, the dry blend mixture with the thermoplastic resin must be maintained in a uniform mixed state in the hopper of the molding machine. Therefore, it is preferable that the volume of the pellets is approximately the same as that of the thermoplastic resin to be mixed. The shape of the filler-containing pellets may be spherical, cylindrical, or angular; when produced by an extruder-pelletizer method, a cylindrical shape is preferred. The formulation and preparation of these filler-containing pellets are as follows:
It can be easily mixed by machines used for kneading and mixing general-purpose plastics, such as kneaders, Henschel mixers, Banbury mixers, and rolls, but especially when the particle size of the inorganic filler is coarse, the mixture becomes liquid at high temperatures. Because of its high fluidity, it can be uniformly mixed in a short time at a temperature above the softening point of hydrogenated petroleum resin using a simple heatable mixing vessel. To pelletize this mixture, various methods can be applied, such as extruding the mixture using an extruder and cutting it (pelletizer method), pulverizing it into granules using a crusher, and forming sheets using rolls and shredding them. can do. The present invention will be explained in more detail below with reference to Examples. Examples 1-2 Hydrogenated aromatic petroleum resin (Alcon P115, hydrogenation rate 95% or more, softening point 115°C, Arakawa Chemical Industry Co., Ltd.)
2.1Kg, powdered inorganic filler: heavy calcium carbonate (K#300, Asahi Kosui Co., Ltd.) 12.75Kg, processing aid (HIWATUX 310MP, Mitsui Petrochemical Industries)
Co., Ltd. 0.15Kg was uniformly mixed at 150℃ using a 10 kneader, cooled and pulverized to obtain filler pellets with an average particle volume of 25mm3 , and then this pellet and polypropylene pellets (Mitsui Noblen JHH-G, Mitsui Toatsu Chemical Co., Ltd. using a tumbler mixer,
After preparing a dry blend so that the heavy calcium carbonate content is 25% by weight and 50% by weight, this is injection molded to produce a molded product. A molding machine, screw L/D=15, CR2.5 was used) and the melt index (MI) of the injection product were measured and shown in Table 1. Comparative Examples 1-2 Polypropylene pellets (same as Example 1) and heavy calcium carbonate (same as Example 1) were
Prepared using a kneader at 10°C so that the heavy calcium carbonate content corresponded to Example 1 and Example 2.
After pelletizing, the pellets were injection molded and compared with Examples 1 and 2, as shown in Table 1. As is clear from Table 1, Examples 1 and 2 using the filler-containing pellets of the present invention have excellent fluidity as shown by the MI results, and the low torque during molding reduces the power consumption of the hydraulic motor. It was very economical, with reduced consumption and improved molding cycles due to faster charging, and the molded products also had a good appearance.

【表】 比較例 3 水素化芳香族系石油樹脂の代りに未水素化芳香
族系石油樹脂(日石ネオポリマー#120、日本石
油化学(株))を用いた他は実施例1と同様に行な
い、成形品の射出成形性および射出物のM.I.を測
定したところ、実施例1とほぼ同じ結果であつ
た。しかし、未水素化芳香族系石油樹脂を用いた
場合は加熱混合時に臭気があり、作業環境が悪化
したばかりか、熱劣化による着色で、充てん剤含
有ペレツトは黄色となつた。このペレツトを用い
た植木鉢の射出成形では淡色な成形品を得ること
ができず、成形工程でも臭気を発し、離型後の最
終製品となつてもこの臭気は残つていた。さらに
屋外に植木鉢を放置したところ、日光にさらされ
ている面が徐々に茶色化して行き、商品としては
不良なものであつた。 実施例3〜4および比較例4〜5 本発明の充てん剤含有ペレツトを低密度ポリエ
チレン(レクスロンJ50、日本石油化学(株)))およ
び高密度ポリエチレン(スタフレンE791、日本
石油化学(株))に応用した結果を実施例と比較例に
より説明する水素化ジシクロペンタジエン系石油
樹脂を用いて調製した充てん剤含有ペレツト2種
の組成を表2に示し、それらをもとに実施例1〜
2と同様にドライブレンドを行つた際の成形性と
物性を表3に示した。比較例4および5は実施例
3および4に無機充てん剤の含量で対応させて調
製したものである。この比較例4,5の配合は
150℃にて10ニーダーを使用して行い、ロール
ミルにより3〜4mmのシート状に分出ししたもの
をシートカツターにより細断粒状化したものであ
る。 表3より、本願充てん剤含有ペレツトを使用し
たキヤビテイー容量63mlの試験片金型による射出
成形において、実施例3〜4は実施例1〜2のポ
リプロピレンの場合と同様に流動性が優れ、成形
加工が容易で加工温度の低下が可能であつた。ま
た物性面でも比較例4〜5と同等もしくはそれ以
上であり、水素化石油樹脂を用いた充てん剤含有
ペレツトが非常に応用性が優れていることを示し
ている。
[Table] Comparative Example 3 Same as Example 1 except that unhydrogenated aromatic petroleum resin (Nisseki Neopolymer #120, Nippon Petrochemical Co., Ltd.) was used instead of hydrogenated aromatic petroleum resin. The injection moldability of the molded product and the MI of the injection product were measured, and the results were almost the same as in Example 1. However, when unhydrogenated aromatic petroleum resin was used, there was an odor during heating and mixing, which not only worsened the working environment, but also caused the filler-containing pellets to turn yellow due to discoloration due to thermal deterioration. Injection molding of flower pots using these pellets did not yield light-colored molded products, and the molding process also emitted an odor, which remained even after the final product was released from the mold. Furthermore, when the flowerpot was left outdoors, the surface exposed to sunlight gradually turned brown, making it a poor product. Examples 3 to 4 and Comparative Examples 4 to 5 Filler-containing pellets of the present invention were applied to low-density polyethylene (Lexron J50, Nippon Petrochemicals Co., Ltd.) and high-density polyethylene (Stafrene E791, Nippon Petrochemicals Co., Ltd.). Table 2 shows the composition of two types of filler-containing pellets prepared using hydrogenated dicyclopentadiene petroleum resin, and based on these, Examples 1-
Table 3 shows the moldability and physical properties when dry blending was performed in the same manner as in Example 2. Comparative Examples 4 and 5 were prepared by corresponding to Examples 3 and 4 in terms of the content of the inorganic filler. The formulation of Comparative Examples 4 and 5 is
This was carried out at 150°C using a 10 kneader, and the sheets were separated into 3-4 mm sheets using a roll mill, which were then cut into granules using a sheet cutter. From Table 3, in injection molding using a test specimen mold with a cavity capacity of 63 ml using pellets containing the filler of the present invention, Examples 3 and 4 had excellent fluidity and molding process as in the case of polypropylene of Examples 1 and 2. It was easy to process and it was possible to lower the processing temperature. Also, in terms of physical properties, they were equivalent to or better than Comparative Examples 4 and 5, indicating that the filler-containing pellets using hydrogenated petroleum resin have excellent applicability.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 粉末状無機充てん剤90〜50重量%と、核内水
素化率80%以上の水素化芳香族系石油樹脂および
臭素価10以下の水素化ジシクロペンタジエン系石
油樹脂から選ばれる平均分子量200〜3000、軟化
点80〜150℃の水素化石油樹脂10〜50重量%とか
らなり、平均粒子容積0.1〜500mm3である熱可塑
性樹脂に配合使用する充てん剤含有ペレツト。
1. 90 to 50% by weight of a powdered inorganic filler and an average molecular weight of 200 to 200 selected from hydrogenated aromatic petroleum resins with an intranuclear hydrogenation rate of 80% or more and hydrogenated dicyclopentadiene petroleum resins with a bromine number of 10 or less. 3000, a filler-containing pellet for use in a thermoplastic resin containing 10 to 50% by weight of a hydrogenated petroleum resin with a softening point of 80 to 150°C and an average particle volume of 0.1 to 500 mm3 .
JP6276981A 1981-04-25 1981-04-25 Filler-containing pellet Granted JPS57179230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6276981A JPS57179230A (en) 1981-04-25 1981-04-25 Filler-containing pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6276981A JPS57179230A (en) 1981-04-25 1981-04-25 Filler-containing pellet

Publications (2)

Publication Number Publication Date
JPS57179230A JPS57179230A (en) 1982-11-04
JPS6364462B2 true JPS6364462B2 (en) 1988-12-12

Family

ID=13209919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6276981A Granted JPS57179230A (en) 1981-04-25 1981-04-25 Filler-containing pellet

Country Status (1)

Country Link
JP (1) JPS57179230A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6481836A (en) * 1987-09-24 1989-03-28 Yamaguchi Unmo Kogyosho Kk Lamellar clay mineral filler and granulation thereof
JPS6481835A (en) * 1987-09-24 1989-03-28 Yamaguchi Unmo Kogyosho Kk Mica powder filler and granulation thereof
DE4119397A1 (en) * 1991-06-12 1992-12-17 Rotta Gmbh & Co Dr FLOOR CAPTURE

Also Published As

Publication number Publication date
JPS57179230A (en) 1982-11-04

Similar Documents

Publication Publication Date Title
CA1148290A (en) Thermoplastic compositions of polynorbornene and polyolefin resin
CN105175904B (en) Method for forming TPV
JP5079221B2 (en) Masterbatch composition, polyolefin resin composition containing the same, and molded article thereof
JPH0586722B2 (en)
CN1228101A (en) High density polyethylene films with improved barrier
US6312639B1 (en) Processing aid for thermoplastic resin compositions
JPS6138939B2 (en)
CA2172351A1 (en) Monovinyl aromatic block copolymer containing compositions and microgranules and powders derived therefrom suitable for use in rotational moulding and similar processes
JP2654979B2 (en) Pigment masterbatch for filler-containing polypropylene composition
CN106062089A (en) Pelleted acetylene black
JPS6364462B2 (en)
JPH02105861A (en) Production of filled colored thermoplastic resin composition
JPH0222094B2 (en)
KR102129411B1 (en) Pellet comprising resin and oil
JP2866049B2 (en) Method for producing resin colorant
CN107987370A (en) A kind of high intensity rotational moulding polyethylene mixture and preparation method thereof
CN112029205A (en) Environment-friendly composite plastic with pearlescent effect and multicolor pattern effect and preparation method thereof
CN109438905B (en) Quaternary blending modified ABS material and preparation method thereof
JPWO2003095531A1 (en) Reuse method of pulverized synthetic resin products
CN101280087B (en) Polypropylene resin composition and molded article comprising the same
JPH02212532A (en) Polypropylene composite material reinforced with granulated fibrous magnesium oxysulfate
CN107973974B (en) Thermoplastic elastomer composition, preparation method thereof and sealing gasket
KR100564367B1 (en) Olefin thermo plastic elastomer and process thereof
US2958671A (en) Compositions of polymeric alkenyl aromatic hydrocarbons and monovinyl aromatic hydrocarbon-butadiene copolymers
CN106117767A (en) A kind of method of doped graphene in the substrate