JPS636437A - Pyramidal indenter for electron microscope - Google Patents

Pyramidal indenter for electron microscope

Info

Publication number
JPS636437A
JPS636437A JP61141461A JP14146186A JPS636437A JP S636437 A JPS636437 A JP S636437A JP 61141461 A JP61141461 A JP 61141461A JP 14146186 A JP14146186 A JP 14146186A JP S636437 A JPS636437 A JP S636437A
Authority
JP
Japan
Prior art keywords
indentation
angle
electron microscope
indenter
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61141461A
Other languages
Japanese (ja)
Inventor
Shinpei Fukuo
福尾 信平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akashi Seisakusho KK
Original Assignee
Akashi Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akashi Seisakusho KK filed Critical Akashi Seisakusho KK
Priority to JP61141461A priority Critical patent/JPS636437A/en
Publication of JPS636437A publication Critical patent/JPS636437A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the angle of the bevel of a identation and to improve the contrast of an image, and to accurately measure the size of the indentation by setting the angle of the slanting surface forming the pyramid of a pyramidal indenter for an electron microscope to the center line to 35-55 deg.. CONSTITUTION:The pyramidal indenter 10 is in a rectangular pyramidal shape, the angle of the bevel 11 to the center line 12 is 45 deg., and an indentation having a 90 deg. spread angle is formed in a material. When this indentation is irradiated with an electron beam (e) from the scanning electron microscope, a reflected electron beam 17 is generated on the bevel 15 of the indentation 13 almost horizontally toward the opposite slanting surface 16 in addition to a secondary electron beam 14 and detected by the secondary electron beam detector of the scanning electron microscope. Consequently, the generation quantity of the secondary electron increases, so the contrast is improved and the contour part 19 of the indentation 13 appears clearly, so that the size of the indentation 13 is accurately measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は角錐圧子に係り、特に圧痕を電子顕微鏡て観察
し、材料の特性を知るため材料表面に所定の押圧力て押
し付ける電子顕微鏡用角錐圧子に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a pyramidal indenter, and in particular to a pyramidal indenter for electron microscopy, which is pressed against the surface of a material with a predetermined pressing force in order to observe the indentation using an electron microscope and learn the characteristics of the material. Regarding indenters.

〔従来の技術〕[Conventional technology]

従来、材料の硬度を測定する硬さ試験装置として、ビッ
カース硬さ試験機か用いられている。これは第5図及び
第7図に示すように、ダイヤモンドて形成し、相対向す
る斜面のなす角度を136度とした四角錐の圧子1を材
料2に当て、所定の一定荷重Fを加えて取り外し、第6
図に示すように材料の表面に残った四角錐形状の圧痕3
の対角方向寸法dを測定して材料2の硬度に換算するよ
うにしたものである。
Conventionally, a Vickers hardness tester has been used as a hardness tester for measuring the hardness of materials. As shown in Figures 5 and 7, this is done by applying a square pyramid indenter 1 made of diamond and having opposing slopes forming an angle of 136 degrees to the material 2, and applying a predetermined constant load F. Removal, 6th
As shown in the figure, a square pyramid-shaped indentation 3 remains on the surface of the material.
The diagonal dimension d of the material 2 is measured and converted into the hardness of the material 2.

(発明が解決しようとする問題点〕 ところで、近年半導体、薄膜等の技術の進歩に伴ない、
その機械的強度の評価のため微細領域(例えば深さ方向
て50nm程度、11@方向て10gm以下の領域)て
硬さ試験を行なうことかある。このため、上述したもの
と同様の硬さ試験を行なうのであるか、この場合角錐圧
子を材料に押圧する荷重は微小なものであり、微細な領
域に付ける痕跡は小さく、光学顕微鏡てはその寸法の測
定を行うことばてきす、走査電子顕微鏡で観察を行なう
ようにしている。しかしながら、上述したビラカース硬
さ試験用の四角錐圧子て付けた圧痕を走査電子顕微鏡で
は正確に観測測定てきないという問題かある。
(Problems to be solved by the invention) By the way, with the recent advances in semiconductor, thin film, etc. technology,
In order to evaluate its mechanical strength, a hardness test may be conducted in a minute area (for example, an area of about 50 nm in the depth direction and 10 gm or less in the 11@ direction). For this reason, the hardness test similar to the one described above is performed.In this case, the load of pressing the pyramidal indenter against the material is minute, and the traces left in minute areas are small, and the dimensions of the material cannot be measured using an optical microscope. We use a scanning electron microscope to make observations. However, there is a problem in that it is not possible to accurately observe and measure the indentations made with the square pyramid indenter for the Viracas hardness test described above using a scanning electron microscope.

即ち、高倍率て11111測しても、第9図に示すよう
に四角錐圧子の圧痕の輪郭Vj6(第9図中に破線て示
した)は観測てきず、圧痕の陵線7付近のみに像7か表
れることとなり、対角方向の正確な寸法測定かてきない
のである。
That is, even if the measurement was carried out at a high magnification of 11111, the contour Vj6 (indicated by a broken line in FIG. 9) of the indentation of the quadrangular pyramid indenter could not be observed, as shown in FIG. 9, but only near the ridge line 7 of the indentation. Image 7 will appear, making it impossible to accurately measure dimensions in the diagonal direction.

これは第8図に示すように材料に形成さ4る圧痕3の斜
面4か電子顕微鏡の照射する電子線eに対して68°と
水平に近いため、水平(電子線に対して90” )であ
る−膜面部5とのコントラストかつきにくいためである
As shown in Fig. 8, the slope 4 of the indentation 3 formed on the material is 68 degrees to the electron beam e irradiated by the electron microscope, which is close to horizontal, so it is horizontal (90" to the electron beam). - This is because the contrast with the film surface portion 5 is difficult to form.

そこてコントラストをつけるために材料を傾けたとして
も、部分的にコントラストは向上するが他方ではよりコ
ントラストが低下し、実用的てはない。
Therefore, even if the material is tilted to increase contrast, the contrast will improve in some areas, but the contrast will decrease in other areas, which is not practical.

(問題点を解決するための手段〕 上記の技術課題を解決するための本発明の技術手段は、
上記のよう電子顕微鏡用角錐圧子において角錐を形成す
る傾斜面の中心線に対する角度を35度乃至55度とし
たことである。
(Means for solving the problems) The technical means of the present invention for solving the above technical problems are as follows:
As described above, in the pyramid indenter for electron microscopes, the angle of the inclined surface forming the pyramid with respect to the center line is set to 35 degrees to 55 degrees.

(実施例) 以下本発明に係る電子顕微鏡用角錐圧子の実施例を図面
に基づいて説明する。
(Example) Examples of the pyramidal indenter for electron microscopes according to the present invention will be described below based on the drawings.

第1図乃至第3図は本発明に係る電子顕微鏡用角錐圧子
の実施例を示すものである。この実施例において角錐圧
子lOは第1図に示すように、四角錐形状て、斜面11
の中心線12となす角は45度、即ち相対向する斜面1
1の成す角度を90度としている。従って材料には、第
3図に示すように、開き角90度の圧痕か形成される。
1 to 3 show examples of the pyramid indenter for electron microscopes according to the present invention. In this embodiment, the pyramidal indenter lO has a quadrangular pyramidal shape with a slope 11
The angle it makes with the center line 12 is 45 degrees, that is, the opposite slope 1
The angle formed by 1 is 90 degrees. Therefore, an indentation with an opening angle of 90 degrees is formed in the material, as shown in FIG.

この圧痕に走査電子顕微鏡の電子線eか照射されると、
第3図に示すように材料2に形成された圧痕13の斜面
15からは二次電子線14の他、相対向する斜面16に
向けて略本平方向に反射電子線17が第3図に実線で示
したような分布でキ発生する。そしてこの反射電子&1
17を受け、相対向する斜面16からも二次出電子線1
8が発生して、相対向する斜面16から出た二次電子線
18も電子線eか照射された斜面15からの二次電子線
14と同様に、走査電子顕微鏡の二次電子線検出器(図
示していない)に検出される。従って本実施例に係る角
錐圧子を使用すると、従来に比べて圧痕の斜面の角度か
大きくなるため、この斜面においては一般の水平部分に
比べて二次電子の発生量か多くなるほか、この相対向す
る斜面16からの二次電子線18か加わるため、コント
ラストか向りし、圧痕13の輪郭19か明確に表れ、圧
痕13の寸法の正確な測定を行なうことがてきる。
When this indentation is irradiated with an electron beam e from a scanning electron microscope,
As shown in FIG. 3, from the slope 15 of the indentation 13 formed in the material 2, in addition to the secondary electron beam 14, a reflected electron beam 17 is emitted approximately in the horizontal direction toward the opposing slope 16. Ki occurs with the distribution shown by the solid line. And this reflected electron &1
17, the secondary electron beam 1 is also emitted from the opposing slope 16.
8 is generated and the secondary electron beam 18 emitted from the opposing slope 16 is also detected by the secondary electron beam detector of the scanning electron microscope in the same way as the secondary electron beam 14 from the slope 15 irradiated with the electron beam e. (not shown). Therefore, when the pyramidal indenter according to this embodiment is used, the angle of the slope of the indentation becomes larger than that of the conventional one, so that the amount of secondary electrons generated on this slope is larger than that of a general horizontal part, and the relative Since the secondary electron beam 18 from the facing slope 16 is applied, the contrast is also directed, the outline 19 of the indentation 13 is clearly visible, and the dimensions of the indentation 13 can be measured accurately.

また、圧痕の像のコントラストか向上するから材料のど
の部分に圧痕があ−るかを容易に発見することかてきる
他、隣接した領域への新たな試験のための角錐圧子の位
置決めを容易に行なうことかできる。更には、第4図に
示すように、圧痕13の角部のクラック20を調べるこ
とにより、例えば、セラミック素材の脆性試験KIC(
ケイ・ワン・シー)の評価法や引っかき試験等も容易に
観察することかてきるものとすることかてきる。
It also improves the contrast of the image of the indentation, making it easier to find where the indentation is in the material, and making it easier to position the pyramid indenter for a new test on an adjacent area. What can you do? Furthermore, as shown in FIG. 4, by examining the cracks 20 at the corners of the indentations 13, for example, the ceramic material brittleness test KIC (
Evaluation methods such as K-Wan-C and scratch tests can also be easily observed.

尚、上記の実施例においては角錐圧子の傾斜面の中心線
に対する角度は45度としたか、この角度は、コントラ
ストを向上させるため少なくしすぎても、硬さ試験とし
ての対角線長さと硬度との関連に問題か生じ、l;l膜
を試験する場合等には、薄膜を形成した下地の影響か発
生するし、また大きすぎてはコントラスト向りを図るこ
とかてきないか、35度乃至55度の範囲てあれば、上
記実施例の45度の場合と同様の効果を有することか、
本願発明の発明者による実験により確認されている。
In the above example, the angle of the inclined surface of the pyramidal indenter with respect to the center line was set at 45 degrees, but even if this angle is too small to improve the contrast, the diagonal length and hardness in the hardness test When testing a l;l film, the influence of the base on which the thin film is formed may occur, and if it is too large, it may be impossible to improve the contrast, or the angle of 35 degrees or If it is in the range of 55 degrees, it will have the same effect as in the case of 45 degrees in the above example.
This has been confirmed through experiments by the inventor of the present invention.

また上記の実施例において圧子の形状は四角錐としたか
、これは三角銀等の他の角錐形状てあってもよいのは勿
論である。
Further, in the above embodiments, the shape of the indenter is a square pyramid, but it goes without saying that the shape of the indenter may be another pyramid shape such as triangular silver.

(発明の効果) 本発明によれば、電子顕微鏡用角錐圧子の角錐を形成す
る傾斜面の中心線に対する角度を35度乃至55度とし
たから、圧痕の斜面の角度か大きくなり、画像のコント
ラストか向上し、圧痕の輪郭か明確に表れ、圧痕の寸法
の正確な測定を行なうことかてき、正確な硬さ試験を行
なうことかてきるという効果を奏する。
(Effects of the Invention) According to the present invention, since the angle of the inclined surface forming the pyramid of the electron microscope indenter with respect to the center line is set to 35 degrees to 55 degrees, the angle of the inclined surface of the indentation becomes large, and the contrast of the image increases. This has the effect that the contour of the indentation is clearly displayed, the dimensions of the indentation can be accurately measured, and the hardness test can be carried out accurately.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案に係る電子顕微鏡用角錐圧子を示す斜視
図、第2図は第1図中■−■線断面図、第3図は圧痕に
電子線を照射した状態を示す断面図、第4図は脆性試験
の圧痕の電子顕微鏡による像を示す平面図、第5図はビ
ッカース硬さ試験機の圧子を示す側面図、第6図は従来
のビッカース硬さ試験の圧痕を示す平面図、第7図は従
来のビッカース硬さ試験用の角錐圧子を示す斜視図、第
8図は:Jr、5図中W−VI&911EIr、面図、
第9図は第6図に示した圧痕の電子顕微鏡による像を示
す平面図である。 10−・・角錐圧子 11・・・傾斜面 12・・・中心線 特許出願人   株式会社明石製作所 代 理 人   弁理士 土橋 皓゛ 第1図 第2図 1゜ 第3vA
FIG. 1 is a perspective view showing a pyramidal indenter for an electron microscope according to the present invention, FIG. 2 is a sectional view taken along the line ■-■ in FIG. Figure 4 is a plan view showing an electron microscope image of an indentation from a brittleness test, Figure 5 is a side view showing an indenter of a Vickers hardness tester, and Figure 6 is a plan view showing an indentation from a conventional Vickers hardness test. , Fig. 7 is a perspective view showing a conventional pyramid indenter for Vickers hardness testing, Fig. 8 is: Jr, W-VI & 911EIr in Fig. 5, side view;
FIG. 9 is a plan view showing an image of the indentation shown in FIG. 6 with an electron microscope. 10 - Pyramid indenter 11... Inclined surface 12... Center line Patent applicant Akashi Seisakusho Co., Ltd. Representative Patent attorney Hajime Tsuchibashi Figure 1 Figure 2 Figure 1 ° 3rd vA

Claims (1)

【特許請求の範囲】[Claims] 圧痕を電子顕微鏡で観察し、材料の特性を知るため材料
表面に所定の押圧力で押し付ける電子顕微鏡用角錐圧子
において、角錐を形成する傾斜面の中心線に対する角度
を35度乃至55度としたことを特徴とする電子顕微鏡
用角錐圧子。
In a pyramidal indenter for electron microscopes that is pressed against the surface of a material with a predetermined pressing force in order to observe the indentations with an electron microscope and learn the characteristics of the material, the angle of the inclined surface forming the pyramid with respect to the center line is set between 35 degrees and 55 degrees. A pyramidal indenter for electron microscopes featuring:
JP61141461A 1986-06-19 1986-06-19 Pyramidal indenter for electron microscope Pending JPS636437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61141461A JPS636437A (en) 1986-06-19 1986-06-19 Pyramidal indenter for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61141461A JPS636437A (en) 1986-06-19 1986-06-19 Pyramidal indenter for electron microscope

Publications (1)

Publication Number Publication Date
JPS636437A true JPS636437A (en) 1988-01-12

Family

ID=15292423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61141461A Pending JPS636437A (en) 1986-06-19 1986-06-19 Pyramidal indenter for electron microscope

Country Status (1)

Country Link
JP (1) JPS636437A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014281A (en) * 1973-06-07 1975-02-14
JPS5324883A (en) * 1976-08-19 1978-03-08 Seiko Instr & Electronics Ltd Vicker's hardness tester
JPS5720642A (en) * 1980-07-14 1982-02-03 Hamamatsu Tv Kk Hardness tester

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014281A (en) * 1973-06-07 1975-02-14
JPS5324883A (en) * 1976-08-19 1978-03-08 Seiko Instr & Electronics Ltd Vicker's hardness tester
JPS5720642A (en) * 1980-07-14 1982-02-03 Hamamatsu Tv Kk Hardness tester

Similar Documents

Publication Publication Date Title
JP3095226B2 (en) Photon scanning tunneling microscopy
Michael et al. Use of reciprocal lattice layer spacing in electron backscatter diffraction pattern analysis
Walls et al. STM profilometry of low-load Vickers indentations in a silicon crystal
JPS5355953A (en) Scanning electron microscope measuring microscale and method of fabricating same
Oesterschulze et al. Cantilever probes for SNOM applications with single and double aperture tips
JP3196945B2 (en) Scanning optical microscope
Whitehouse Stylus contact method for surface metrology in the ascendancy
Blunt White Light Interferometry–a production worthy technique for measuring surface roughness on semiconductor wafers
JPS636437A (en) Pyramidal indenter for electron microscope
US7209596B2 (en) Method of precision calibration of a microscope and the like
Schmidt et al. Raman spectral imaging—A nondestructive, high resolution analysis technique for local stress measurements in silicon
Malik et al. Surface roughness of silicon wafers on different lateral length scales
Lu et al. Thermal deformation measurement of electronic packages using the atomic force microscope scanning moire technique
US6807314B1 (en) Method of precision calibration of a microscope and the like
JPS60105152A (en) Scanning electron microscope
Wegner et al. In-plane magnetization of garnet films imaged by proximal probe nonlinear magneto-optical microscopy
Martin et al. Resolution test for apertureless near-field optical microscopy
RU2121130C1 (en) Test structure for determination of form and geometrical dimensions of needle of scanning proving microscope
JPS62247203A (en) Noncontact type surface irregularity measurement method
JPH0529424A (en) Inspection of semiconductor device
Lorincik et al. Scanning scattering microscope for surface microtopography and defect imaging
Wallst et al. 1 STM profilometry of low-load Vickers indentations in
Schmitt Characterization of mirror surfaces for laser-gyro applications
Novikov et al. Direct measurement of the linewidth of relief element on AFM in nanometer range
Yu et al. Surface roughness characterization of soft x‐ray multilayer films on the nanometer scale