JPS6364290A - Equipment for manufacture of el device - Google Patents

Equipment for manufacture of el device

Info

Publication number
JPS6364290A
JPS6364290A JP61207863A JP20786386A JPS6364290A JP S6364290 A JPS6364290 A JP S6364290A JP 61207863 A JP61207863 A JP 61207863A JP 20786386 A JP20786386 A JP 20786386A JP S6364290 A JPS6364290 A JP S6364290A
Authority
JP
Japan
Prior art keywords
light
film
emitting layer
concentration
luminescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61207863A
Other languages
Japanese (ja)
Inventor
雅人 右田
金久 修
正敏 椎木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61207863A priority Critical patent/JPS6364290A/en
Publication of JPS6364290A publication Critical patent/JPS6364290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発光素子製造装置に係シ、特に、gL素子作製
に好適なりL素子製造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a light emitting device manufacturing apparatus, and particularly to an L element manufacturing apparatus suitable for manufacturing a gL element.

〔従来の技術〕[Conventional technology]

従来°のEL素子製造には、電子線(EB)蒸着法、ス
パッタ法、原子・−エピタキシー(ALE)(MOCV
D法)が用いられる。これらの手法を用いた薄膜BL素
子製造装置は、特開昭60−216495号に記載のよ
うに、形成しつつあるgL発光層中のドーパント浸度分
布fin−situK@測する点てついては配慮されて
いなかった。
Conventional EL device manufacturing methods include electron beam (EB) evaporation, sputtering, and atomic epitaxy (ALE) (MOCV).
D method) is used. The thin film BL device manufacturing apparatus using these methods takes into consideration the point of measuring the dopant immersion distribution fin-situ in the gL light-emitting layer that is being formed, as described in JP-A No. 60-216495. It wasn't.

そのため、現在均一な発光中心の浸度分布を有する。又
、4構造の如き榎雑な構造の発光中心の濃度分布を有す
るEL発光素子を作成することは困難であ°り九。この
原因は1例えば、EB蒸着法によるznSiMnの作成
では、ターゲツト材中のmr1度のバラツキ、蒸着時の
ターゲツト材の熱的変化などが主原因となり、このため
均一なん(n濃度分布を待つZflSiMnの作成が現
在のところ不可能であり、解決の手段が見出されていな
い。
Therefore, it currently has a uniform immersion distribution of the luminescent center. Furthermore, it is difficult to create an EL light-emitting element having a concentration distribution of luminescent centers having a complicated structure such as the four-structure structure. The reason for this is 1. For example, when creating ZnSiMn using the EB evaporation method, the main causes include variations in mr of 1 degree in the target material and thermal changes in the target material during evaporation. It is currently impossible to create one, and no solution has been found.

このことは八(r12°の黄色発光の発光効率を低下さ
せる原因となる。なぜならば1Mnが局所的に高濃度に
分布するとMnの一種の会合状態が生成され、これが赤
色光乃至7i無発光を示してエネルギーを損失せしめる
からである。この点が改良されh  +r+’ 7  
n  ()  +  II  r+  3.1F 霞バ
ー ビ丸j&/1−hzFI片−!r’−tL−J−=
ものと期待される。、〜10cVD法に用いたZn5i
″:V1ngL1n作成に於いては、マンガンの原料ガ
ス、例、jばト’Jカルポニルンク口ペンタジエニルマ
ンガンの蒸気圧力室温で著しく低い。その為、該原料ガ
スてかかわる微少流量制例計を含む全配管系を高温加熱
する必要があるが、その為疋は量の読みが不正確知なり
、父、突沸も起こりやすくなり。
This causes a decrease in the luminous efficiency of yellow light emission at 8(r12°). This is because when 1Mn is locally distributed in high concentration, a kind of association state of Mn is generated, which causes red light to 7i non-emission. This is because the problem is caused by a loss of energy.This point has been improved and h +r+' 7
n () + II r+ 3.1F Kasumi bar bimaru j&/1-hzFI piece-! r'-tL-J-=
It is expected that ,~10cVD method Zn5i
'': When creating V1ngL1n, the vapor pressure of manganese raw material gas, e.g., pentadienyl manganese, is extremely low at room temperature. It is necessary to heat the entire piping system, including the oil, to a high temperature, which can lead to inaccurate readings and increase the likelihood of bumping.

したがって正確な□qna度制御は困難であった。Therefore, it has been difficult to accurately control the □qna degree.

他の製膜方法に於いても同様な事情により現在。Other film forming methods are currently being used due to similar circumstances.

発光中心の膜内濃度及び濃度分布を1iilJ御するE
L素子製造方法が見出されておらず、不満足な発光性能
を有するEL素子しか得られていない。
E to control the concentration and concentration distribution in the film of the luminescent center
No method for manufacturing L elements has been found, and only EL elements with unsatisfactory light emitting performance have been obtained.

〔発明が解決しょうとする間頂点〕[The pinnacle of the invention while trying to solve the problem]

上記従来技術では、膜中の該発光性物質の濃度が均一に
分布した該発光−膜?有するEL素子の製造方法が配慮
されていない。そのため、膜形成後に熱的アニーリング
を行ない該発光中心の熱拡散と助長せしめ、膜中濃度の
均一性の向上を計9゜輝度向上2行なっていた。しかし
素材の熱的耐性。
In the above conventional technology, the luminescent film in which the concentration of the luminescent substance in the film is uniformly distributed? No consideration has been given to the manufacturing method of the EL element. Therefore, thermal annealing was performed after film formation to promote thermal diffusion of the luminescent center, thereby improving the uniformity of the concentration in the film and increasing the brightness by a total of 9 degrees. However, the thermal resistance of the material.

例えば透明電極(In、5n)02膜の熱1耐性は55
0C以丁と低く1発元中心の十分ンこ均一な分布を達成
すること;つ:できず、満足なオ岨を達成できなかった
。また、従来の技術では発光中心・1変分布Kel十〜
数巨人のスケールで構造2待たせた。
For example, the heat 1 resistance of transparent electrode (In, 5n) 02 film is 55
Achieving a uniform distribution with a low 0C and a center of 1 shot was not possible, and a satisfactory radius could not be achieved. In addition, in the conventional technology, the emission center and univariate distribution Kel
I made Structure 2 wait on the scale of several giants.

いわゆる超fJ造分有する発光素子を作成する・:て;
ま。
Creating a light emitting device with so-called super fJ fraction.
Ma.

該発光中心のし横圧の制御ヰが悪く間項があった。The control of the lateral force of the light emitting center was poor and there were problems.

父、この問題を解決するためて、素子を500C程度に
加熱することは、超構造の拡孜が起こる為。
Father, in order to solve this problem, heating the element to about 500C will cause the superstructure to expand.

素子の破壊てつながり問題があった。There was a connection problem due to element destruction.

本范明の目的は、発光層中の該発光中心の深さ方向のA
度分布分最高50人の分解能で制御することKある。
The purpose of this method is to measure A in the depth direction of the luminescent center in the luminescent layer.
It is possible to control the degree distribution with a resolution of up to 50 people.

本発明ハ、母本がzns、Zn、9e、  CaS、5
IISなどの場合に適用でき、−また1発光中心は、八
(nや、f’b、 Pr、 gu、 Sm、 Tm な
どの遷移金M オよび希±頃元素などを含ひf1″料か
らなるEL素子作製に適用できる。
The present invention is based on zns, Zn, 9e, CaS, 5
It can be applied in cases such as IIS, and one luminescent center can be formed from f1'' materials, including transition metals such as n, f'b, Pr, gu, Sm, Tm, and rare elements. It can be applied to the production of EL devices.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、EL発九層形成時に、該発光7−表面上の
微少領域に、該発光層材料の光学定数よシ決定される適
当な波長のパルスレーザ−ビームを照射し、それにより
発現する発光の減梗曲線を検知し、該減投白線に情報と
して含まれる発光中心の膜中濃度(C)を求め、その値
と目的温度(Colとのずれ(ΔC=CoClを検出し
、結果をEL製造装置の発光中心」度制御パラメーター
The above purpose is achieved by irradiating a minute region on the surface of the light emitting layer with a pulsed laser beam of an appropriate wavelength determined by the optical constant of the material of the light emitting layer when forming the nine EL emitting layers. Detect the luminescence attenuation curve, determine the concentration (C) of the luminescence center in the film included as information in the attenuation white line, detect the difference between that value and the target temperature (Col (ΔC = CoCl), and calculate the result. Luminescence center' degree control parameter of EL manufacturing equipment.

例えばIfi、謎、温度上昇ンこよる蒸気圧等にフィー
ドバックし、ΔCが最小になるようにコントロールする
ことKより、達成される。この時、照射レーザ光波長で
の母体結晶の吸光係数で決定されるレーザー光の膜中浸
入深さで、深さ方向の制御可能な分解能が決まる。例え
ば、母体結晶<znseを用いレーザー照射課長を42
5 nmのHe −cdレーザー光を用いた場合、・吸
光係数ε21s°≧10’cm −’であり、父、42
5nmでのbl n吸光係数はこの値に対して無祝し得
るのでznse衣面!ニジ入射した光は約50人でl/
10の強度に減衰し50Å以上の領:aより発する発光
は、50人以内の発光に対して無視できる。又、母体結
晶にZnSを粗いレーザ$4多K :(n 8 nmの
Y e C/−エキシマレーザ−光を用いた場合、吸光
係数’ X’ag ”M l0L−1であり、又308
nmでの、〜f口の吸光係数はこの値に対して無視し得
るので、ZnS表面より入射した光は約300人で1/
10の強度に、li衰する。
For example, this can be achieved by controlling ΔC to a minimum by feeding back to Ifi, temperature rise, vapor pressure, etc. At this time, the controllable resolution in the depth direction is determined by the penetration depth of the laser light into the film, which is determined by the extinction coefficient of the host crystal at the wavelength of the irradiated laser light. For example, if the laser irradiation section manager is set to 42 using the host crystal <znse,
When a 5 nm He-cd laser beam is used, the extinction coefficient ε21s°≧10'cm −', and the father, 42
The bl n extinction coefficient at 5 nm can be ignored for this value, so don't worry! The incident light is about 50 people l/
The light emitted from the region:a of 50 Å or more and which is attenuated to an intensity of 10 is negligible compared to the light emitted by 50 people or less. In addition, when ZnS is used as the host crystal using a rough laser beam, the extinction coefficient is 'X'ag''Ml0L-1, and 308
Since the extinction coefficient of ~f in nm can be ignored for this value, the light incident from the ZnS surface is 1/1 for about 300 people.
It decays to an intensity of 10 li.

したがって、膜内発光中心濃度分布を著しく正確ンζか
つznse母体の場合には50人の分解能で1またZn
S母体の場合には300人の分解能で制御したEL素子
を作製できるので、最終的に高効率EL素子、又は超構
造を有するEL素子が作製できる。
Therefore, in the case of Znse matrix, it is possible to estimate the luminescent center concentration distribution within the film with extremely high accuracy and with a resolution of 50 people.
In the case of the S matrix, an EL element controlled with a resolution of 300 people can be manufactured, so a high-efficiency EL element or an EL element having a superstructure can be finally manufactured.

〔作用〕[Effect]

本発明に係わるEL素子製造装置を用いて。 Using the EL element manufacturing apparatus according to the present invention.

EL素子を作製すると1発光性物質の温度が均一に分布
した。父、該濃度の分布に任意の構造?持たせたEL発
光層を作製できるので、高効率な発光を示すEL素子が
作製できる利点がある。
When an EL device was manufactured, the temperature of one luminescent substance was uniformly distributed. Father, any structure in the concentration distribution? Since it is possible to manufacture an EL light-emitting layer having the same properties, there is an advantage that an EL element that emits light with high efficiency can be manufactured.

〔実施例〕〔Example〕

以下1本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

実施例1 0〜2Qmoj%の種々のマンガン濃窒のZ n S二
Mn単結晶のマンガン濃度と3QQnm付近の紫外パル
ス光励起時のマンガンの発光減衰寿命(τ)との相関(
第4図)をあらかじめ田II定し、コンピュータからな
る装置(第1図−1O)4(記憶させる。次て発光層作
成時に585μmの発光の、レーザー励起後100μ(
8)(1+)と400μ(8)(t2)の二時刻に於け
る光強度を検出する。その時の発光強度(I (t+)
、  I (t2))とtl+  t2を用いて、以下
の弐によりtc+の時定数τ′を求める。
Example 1 Correlation between the manganese concentration of ZnS2Mn single crystals with various manganese-concentrated nitrides of 0 to 2Qmoj% and the emission decay lifetime (τ) of manganese upon excitation with ultraviolet pulse light around 3QQnm (
(Fig. 4) is determined in advance, and stored in a device consisting of a computer (Fig. 1-1O) 4 (Fig.
8) Detect the light intensity at two times: (1+) and 400 μ (8) (t2). Emission intensity at that time (I (t+)
, I (t2)) and tl+t2, find the time constant τ' of tc+ using the following formula.

τ’=(t+  t21J!n(I(t+)/I(tz
))次に、Δt=τ′−τを計算し、しかる後Δtの値
に比例した数の正負両5vディジタルパルスを発生させ
る。この時Δt、>0なら正電圧パルスをΔt(Qなら
負電圧パルスを発生させた。又最大1Δtl=2mse
c  とし、その時のパルス数を200とした。次にこ
のパルスミK比例した適当な電圧?発生する。ニードル
パルプ(18)開閉用パルスモータ−駆動用回路11に
動作させ、電圧が正のディジタルパルスてより発生した
正電圧ならばニードルパルプを開の方向に、逆なら負の
方向て一定の割合で回転させ、ガス流量を増加ないしは
減少させた。このフィードバックに要する時間は約2秒
であった。反応槽4圧力0.6’rorr。
τ'=(t+ t21J!n(I(t+)/I(tz
)) Next, calculate Δt=τ'-τ and then generate a number of positive and negative 5V digital pulses proportional to the value of Δt. At this time, if Δt > 0, a positive voltage pulse was generated at Δt (if Q, a negative voltage pulse was generated. Also, the maximum 1Δtl = 2 mse
c and the number of pulses at that time was 200. Next, an appropriate voltage proportional to this pulse mi K? Occur. The needle pulp (18) opening/closing pulse motor is operated by the driving circuit 11, and if the voltage is a positive voltage generated by a positive digital pulse, the needle pulp is moved in the opening direction, and if the voltage is the opposite, it is moved in the negative direction at a constant rate. It was rotated to increase or decrease the gas flow rate. The time required for this feedback was approximately 2 seconds. Reactor 4 pressure 0.6'rorr.

試料基板5400Cとし、亜鉛、硫黄、マンガン原料と
して、ジエチル亜鉛(DEZI硫化水素(f(z S 
) 及U ト’Jカルボニルメチルシクロペンタジェニ
ルマンガンしL’CM)’&流量比1:0゜2:1で導
入し、ZnS:Mn膜を形成した。この時の膜成長速度
は、2000A/分であるので、測光から制御までの時
間約2秒間の形成した膜の膜厚は70人であシ、十分速
い応答が得られている。
The sample substrate was 5400C, and diethyl zinc (DEZI hydrogen sulfide (f(z S
) and carbonylmethylcyclopentadienylmanganese and L'CM)' were introduced at a flow rate of 1:0° to 2:1 to form a ZnS:Mn film. Since the film growth rate at this time was 2000 A/min, the thickness of the film formed during the time from photometry to control of about 2 seconds was obtained by 70 people, and a sufficiently fast response was obtained.

第2図に本発明罠よる装置で作成した場合のマンガン膜
内濃度の膜厚方向分布をイオンマイクロアナライザー(
Ion m1cro−analyzer )で測定した
結果を示す。本発明の装置によらないもの第2図(Al
に比べて著しい改善が達成された(第2図−(B))。
Figure 2 shows the distribution of the concentration in the film thickness direction of the manganese film prepared using the apparatus according to the present invention using an ion microanalyzer (
The results are shown below. Figure 2 (Al
A significant improvement was achieved compared to (Fig. 2-(B)).

実施例2 実施例1と同様の手法で1本発明による方法及び、本発
明によらない方法の2種の発光層膜を同一絶縁膜上に形
成し、交流駆動EL素子を作製した。5KHz、駆動電
圧220 V、  duty 1/10の交流矩形波で
素子を駆動したところ1本発明に基づく製造装置で作成
したEL素子は、約1.5倍の発光効率を示した。
Example 2 Two types of light-emitting layer films, one according to the present invention and one not according to the present invention, were formed on the same insulating film using the same method as in Example 1 to produce an AC-driven EL element. When the device was driven with an alternating current rectangular wave of 5 KHz, drive voltage of 220 V, and duty of 1/10, the EL device produced by the manufacturing apparatus based on the present invention showed a luminous efficiency of about 1.5 times.

実施例3 ZnSe及び(Zn、Mn)Seをターゲツト材として
1本発明によるフォトルミネッセンス測定制御システム
を含む二銃電子線蒸着法によって。
Example 3 ZnSe and (Zn,Mn)Se were used as target materials by a two-gun electron beam evaporation method including a photoluminescence measurement and control system according to the present invention.

基板19上にZn5e20−ZnSe :Mn21超構
造膜を作製できた。この時Zn8e:Mn層は50人の
膜厚で制御できた(第5図)。
A Zn5e20-ZnSe:Mn21 superstructure film was fabricated on the substrate 19. At this time, the thickness of the Zn8e:Mn layer could be controlled at 50 degrees (FIG. 5).

〔発明の効果〕〔Effect of the invention〕

本発明によれば1発光性物質の濃度分布を正確に制御し
た発光層からなるgL素子を作製できるので、良好な発
光性能を有するEL素子を作製できる効果がある。
According to the present invention, it is possible to fabricate a gL device consisting of a luminescent layer in which the concentration distribution of a luminescent substance is accurately controlled, so that it is possible to fabricate an EL device with good luminescent performance.

【図面の簡単な説明】[Brief explanation of drawings]

is1図は本発明の一実施例の装置縦断面図、東側を示
す図、第4図は膜中濃度と発光寿命の相関を示す図、第
5図は本発明の一実施例の素子縦断面図である。 1・・・レーザー光源、2・・・ミラー、3・・・レー
ザ光入射石英窓、4・・・反応槽、5・・・試料基板、
6・・・排気用管、7・・・ヒーターを含む支持台、8
・・・発光、9・・・石英ファイバー、10・・・コン
ピューターを含む制御系、11・・・パルプ駆動装置、
12・・・加熱装置。 13・・・原料ボンベ、14・・・ガス配管、15・・
・ヒーター、16・・・恒温槽、17・・・流量計、1
8・・・開閉パルプ、19・・・電極、絶縁膜を含む基
板、20・・・Zn5ejfj、21−・Zn5e :
Mn層。     72.へ、代理人 弁理士 小川勝
男;゛1、・ 不  1  区 IO””−’“−7−1′才1゛  15 ヒーター刺
(即成 罵 Z 図 θ   l〃ρ  2θρρ  3ρθρ  4θρρ
Mh  (xジ 劣 3 図 時開(?7′L幻 ■ 4 凹 ρρl   ρl    /ρ    78月1?rイ
6 A7i (7nJ/ d )冨 5 図 ZI Zn5e摺シ
is1 is a vertical cross-sectional view of a device according to an embodiment of the present invention, showing the east side, FIG. 4 is a diagram showing the correlation between concentration in a film and luminescence lifetime, and FIG. 5 is a vertical cross-section of a device according to an embodiment of the present invention. It is a diagram. DESCRIPTION OF SYMBOLS 1... Laser light source, 2... Mirror, 3... Laser beam incidence quartz window, 4... Reaction tank, 5... Sample substrate,
6... Exhaust pipe, 7... Support stand including heater, 8
... Light emission, 9 ... Quartz fiber, 10 ... Control system including computer, 11 ... Pulp drive device,
12... Heating device. 13... Raw material cylinder, 14... Gas piping, 15...
・Heater, 16... Constant temperature chamber, 17... Flow meter, 1
8... Openable pulp, 19... Substrate including electrode and insulating film, 20... Zn5ejfj, 21-.Zn5e:
Mn layer. 72. To, agent patent attorney Katsuo Ogawa;
Mh (xji inferior 3 figure time open (?7'L illusion ■ 4 concave ρρl ρl /ρ 78 month 1?r ii 6 A7i (7nJ/ d) Fuji 5 figure ZI Zn5e print shi

Claims (1)

【特許請求の範囲】[Claims] 1. 固有の発光を示す発光中心からなる発光層を形成
する装置において、該発光層に特定の波長のパルス光を
照射する手段と、上記パルス光の照射により発光する発
光の減衰曲線を検知する手段と上記検知した値から上記
発光層の目的濃度と実測濃度との差異を計算し、その結
果を素子製造装置にフイードバツクする手段とを有する
ことを特徴とするEL素子製造装置。
1. An apparatus for forming a light-emitting layer consisting of a light-emitting center exhibiting unique light emission, comprising: means for irradiating the light-emitting layer with pulsed light of a specific wavelength; and means for detecting an attenuation curve of light emitted by the irradiation with the pulsed light. An EL device manufacturing apparatus comprising means for calculating the difference between the target concentration and the measured concentration of the light emitting layer from the detected value and feeding the result back to the device manufacturing apparatus.
JP61207863A 1986-09-05 1986-09-05 Equipment for manufacture of el device Pending JPS6364290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61207863A JPS6364290A (en) 1986-09-05 1986-09-05 Equipment for manufacture of el device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61207863A JPS6364290A (en) 1986-09-05 1986-09-05 Equipment for manufacture of el device

Publications (1)

Publication Number Publication Date
JPS6364290A true JPS6364290A (en) 1988-03-22

Family

ID=16546790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61207863A Pending JPS6364290A (en) 1986-09-05 1986-09-05 Equipment for manufacture of el device

Country Status (1)

Country Link
JP (1) JPS6364290A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296614A (en) * 1988-05-25 1989-11-30 Ricoh Co Ltd Method of controlling thin film crystal growth
WO2003018863A3 (en) * 2001-08-24 2003-05-22 Siemens Ag Method for producing a fluorescent material layer
WO2009038168A1 (en) * 2007-09-21 2009-03-26 Tokyo Electron Limited Film forming apparatus and film forming method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296614A (en) * 1988-05-25 1989-11-30 Ricoh Co Ltd Method of controlling thin film crystal growth
WO2003018863A3 (en) * 2001-08-24 2003-05-22 Siemens Ag Method for producing a fluorescent material layer
WO2009038168A1 (en) * 2007-09-21 2009-03-26 Tokyo Electron Limited Film forming apparatus and film forming method
JPWO2009038168A1 (en) * 2007-09-21 2011-01-06 東京エレクトロン株式会社 Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
US4900584A (en) Rapid thermal annealing of TFEL panels
CN106048726A (en) Epitaxial growth method of yttrium iron garnet film
JPS6364290A (en) Equipment for manufacture of el device
JPH05342B2 (en)
Mochizuki et al. Reversible photoinduced spectral change in Eu 2 O 3 at room temperature
EP1635358A2 (en) Method for producing radiation image conversion panel
US4879186A (en) Photoluminescent materials for outputting reddish-orange light and a process for making the same
Zhigunov et al. Photoluminescence study of the structural evolution of amorphous and crystalline silicon nanoclusters during the thermal annealing of silicon suboxide films with different stoichiometry
Astilean et al. Quantum efficiency and the photonic control of molecular fluorescence in the solid state
Mobsby et al. Intrinsic recombination radiation from GaP
JPH07262801A (en) Thin film luminous element and luminous device
EP1526553B1 (en) Radiation image conversion panel
Hiraga et al. A novel formation method of thin polymer film with densely dispersed organic dye by using vacuum technique
JPH02148688A (en) Thin film el element
JP2004108866A (en) Method for manufacturing fluorescent material sheet and device
Aluker et al. Detectors of Radiation Based on Aluminum Nitride and Aluminum and Silicon Oxides
JP2740903B2 (en) Evaluation method for compound semiconductor substrate
JP2005091146A (en) Radiological image conversion panel and manufacturing method of radiological image conversion panel
Fan et al. Effect of the growth conditions on infrared upconversion efficiency of CaS: Eu, Sm thin films
US3460962A (en) Polychromatic luminescent devices and method of manufacture
JP3997978B2 (en) Radiation image conversion panel
JP2007161952A (en) Radiation image conversion panel and method for producing the same
JPS61240593A (en) Manufacture of zinc sulfide based thin film
Voitovich et al. Radiation-induced color centers in the near-surface layer of lithium fluoride crystals
JP2005255949A (en) Method and apparatus for producing fluorescent substance