JPS6364039B2 - - Google Patents

Info

Publication number
JPS6364039B2
JPS6364039B2 JP25373585A JP25373585A JPS6364039B2 JP S6364039 B2 JPS6364039 B2 JP S6364039B2 JP 25373585 A JP25373585 A JP 25373585A JP 25373585 A JP25373585 A JP 25373585A JP S6364039 B2 JPS6364039 B2 JP S6364039B2
Authority
JP
Japan
Prior art keywords
oxidation
graphite
polymetaphosphate
micropores
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP25373585A
Other languages
Japanese (ja)
Other versions
JPS62115688A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP25373585A priority Critical patent/JPS62115688A/en
Publication of JPS62115688A publication Critical patent/JPS62115688A/en
Publication of JPS6364039B2 publication Critical patent/JPS6364039B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Discharge Heating (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

「産業上の利用分野」 本発明は、電気炉製鋼用黒鉛電極の酸化損耗を
効果的に防止する方法に関する。 「従来の技術」 電気炉製鋼法に使用する黒鉛電極は、アーク発
生に伴なう電気的・機械的損耗のほかに操業時の
高温高熱雰囲気によつて電極側面部から酸化され
て次第に損耗する。 さらに、近時省エネルギー化の一環として電気
炉の高負荷操業が一般化しているために、この酸
化損耗はますます増大化の傾向にあり電極の使用
寿命の短縮化を促進している。 このため、従来から黒鉛電極表面に酸化防止剤
を塗布、浸漬、吹きつけ等の手段により耐酸化性
の被膜層を形成させて酸化損耗を防止する各種の
提案がおこなわれている。 例えばSiO2、Al2O3、TiO2、MgOなどの金属
酸化物、B4C、SiCなどの金属炭化物あるいは金
属窒化物、金属ケイ化物などの耐酸化性物質の懸
濁液で電極表面を処理する方法がある。しかし、
これらの耐酸化性物質は導電性が小さいために電
気抵抗の増大をもたらし、電気炉操業時において
電極把持部からの通電性を著しく阻害する。した
がつて、電極把持部から下側の電極部分のみに被
膜層を形成させる等の処置が必要となり、実用上
の欠点となつている。 一方、導電性を付与するために導電性の金属粉
末を混合して耐酸化性の被膜を形成するもの、あ
るいは耐酸化性被膜層の上にAlやCrなどの金属
を溶射して導電性の被膜を形成する方法なども提
案されている。しかし工程が複雑になり、処理費
が高くなる等の難点がある。 これらの見地から、出願人は、先にアルカリ金
属またはアルカリ土類金属の第一リン酸塩水溶液
を浸透して乾燥後250℃の温度で熱処理を施し、
次いで表層部の硬化固着物を切削除去する方法を
提案した。この方法においては、黒鉛基材内部の
ミクロポアに浸透した第一リン酸塩が熱処理によ
つてメタリン酸塩に転化し、黒鉛基材と物理化学
的に強固に結合して保護被膜を形成し酸化防止に
効果的に機能する。 「発明が解決しようとする問題点」 しかし、黒鉛基材内部のミクロポアに浸透した
第一リン酸塩の一部は加熱処理時に黒鉛基材の表
面に流出して硬化固着する。この硬化固着物は、
大きな電気抵抗を有し、黒鉛電極の導電性を阻害
するために表層部を切削除去して導電性を確保し
なければならないという難点があつた。 本発明は、この問題点を解消して電気炉製鋼用
黒鉛電極の酸化損耗を低減するとともに、導電性
の低下を抑制し得る耐酸化処理法を提供するもの
である。 「問題点を解決するための手段」 すなわち、本発明はアルカリ金属のポリメタリ
ン酸塩水溶液を浸透した後緩徐に水分を蒸発除去
し、次いで200〜300℃の温度で加熱処理すること
を構成的特徴とする黒鉛電極の耐酸化処理法であ
る。 ナトリウム、カリウムなどのポリメタリン酸塩
は水に易溶であり、均質、高濃度の水溶液として
浸漬、塗布、吹きつけ等の処理手段により、黒鉛
基材内部のミクロポア中に容易に浸透させること
ができる。 黒鉛基材内部のミクロポア中に浸透したポリメ
タリン酸アルカリ金属塩水溶液は、自然乾燥ある
いは低温乾燥等によつて緩徐に水分を蒸発除去し
た後200〜300℃に加熱処理することにより更に重
合して、高重合度のポリメタリン酸塩に転化す
る。この熱処理により、ミクロポア中において生
成した高重合度のポリメタリン酸塩はガラス質を
示し、黒鉛基材と物理化学的に強固に結合してミ
クロポア内壁に保護被膜を形成し耐酸化機能を発
揮する。 一方、ポリメタリン酸アルカリ金属塩の水溶液
は、コロイド溶液の性質を示し、また粘度が高い
特徴を有している。この特徴はポリメタリン酸塩
の濃度が大きい程著しいため、ミクロポア中に浸
透した水溶液は水分をできるだけ蒸発除去した上
で加熱処理される。この際急速に水分の蒸発除去
を行なうと、ミクロポア中のポリメタリン酸塩の
一部が表層部に流出するため緩徐に行なう必要が
ある。その結果、黒鉛基材内部のミクロポア中に
存在するポリメタリン酸塩は、加熱処理時にも黒
鉛基材表面に流出し難く、黒鉛電極表面部に電気
抵抗の大きい硬化固着物の生成は効果的に抑制さ
れる。 「作用」 本発明の耐酸化処理法は、黒鉛基材内部のミク
ロポア中に浸透したポリメタリン酸のアルカリ金
属塩水溶液の有する高い粘性により、加熱処理時
にもミクロポア外への流出が防止され、またミク
ロポア中に残留して、その内壁面に耐酸化性の大
きい、高度に重合したポリメタリン酸塩の強固な
保護被膜が形成される。 「実施例」 60×30×15mmの板状体黒鉛試験片を20および40
重量%のヘキサメタリン酸ナトリウムの水溶液中
に、常温常圧下に1時間浸漬して試験片内部のミ
クロポア中に浸透させた。次いで、大気中に放置
して自然乾燥し、ミクロポア中の水分を緩徐に蒸
発させた後この試験片を加熱処理して高重合度の
ポリメタリン酸塩に転化した。 これらの処理を行なつた各試験片は、空気を流
通させた酸化性雰囲気の電気炉中に850℃で2時
間保持し、その重量変化により酸化損耗度合を測
定した。また50Kg/cm2の荷重下に銅板との接触抵
抗を測定し、未処理の比較例と対比して表に示し
た。
"Field of Industrial Application" The present invention relates to a method for effectively preventing oxidative wear of graphite electrodes for electric furnace steelmaking. ``Prior art'' Graphite electrodes used in electric furnace steelmaking are not only subject to electrical and mechanical wear associated with arc generation, but also to oxidation from the sides of the electrode due to the high-temperature atmosphere during operation, causing gradual wear and tear. . Furthermore, as high-load operation of electric furnaces has recently become common as part of energy saving efforts, this oxidation loss tends to increase more and more, promoting a shortening of the service life of electrodes. For this reason, various proposals have been made to form an oxidation-resistant film layer on the surface of a graphite electrode by coating, dipping, spraying, or other means with an antioxidant to prevent oxidative wear. For example, the electrode surface is coated with a suspension of metal oxides such as SiO 2 , Al 2 O 3 , TiO 2 and MgO, metal carbides such as B 4 C and SiC, or oxidation-resistant substances such as metal nitrides and metal silicides. There is a way to handle it. but,
Since these oxidation-resistant substances have low conductivity, they cause an increase in electrical resistance, which significantly inhibits the conductivity of electricity from the electrode gripping portion during operation of an electric furnace. Therefore, it is necessary to take measures such as forming a coating layer only on the electrode portion below the electrode gripping portion, which is a practical drawback. On the other hand, in order to impart conductivity, conductive metal powder is mixed to form an oxidation-resistant film, or metals such as Al or Cr are thermally sprayed onto the oxidation-resistant film layer to form a conductive film. A method of forming a film has also been proposed. However, there are drawbacks such as a complicated process and high processing costs. From these viewpoints, the applicant first impregnated with an aqueous solution of primary phosphate of an alkali metal or alkaline earth metal, and after drying, heat-treated at a temperature of 250 ° C.
Next, we proposed a method to cut and remove the hardened and adhered substances on the surface layer. In this method, the primary phosphate that has penetrated into the micropores inside the graphite base material is converted into metaphosphate through heat treatment, which physicochemically bonds strongly with the graphite base material to form a protective film and oxidizes. Works effectively in prevention. "Problems to be Solved by the Invention" However, a portion of the primary phosphate that has penetrated into the micropores inside the graphite base material flows out onto the surface of the graphite base material during heat treatment and is hardened and fixed. This hardened solid material is
The problem was that the graphite electrode had a large electrical resistance, which inhibited the conductivity of the graphite electrode, so the surface layer had to be removed to ensure conductivity. The present invention solves this problem and provides an oxidation-resistant treatment method capable of reducing oxidation loss of graphite electrodes for electric furnace steelmaking and suppressing a decrease in conductivity. ``Means for Solving the Problems'' That is, the present invention has a structural feature that after permeating an aqueous solution of alkali metal polymetaphosphate, water is slowly evaporated and removed, and then heat treatment is performed at a temperature of 200 to 300°C. This is an oxidation-resistant treatment method for graphite electrodes. Polymetaphosphates such as sodium and potassium are easily soluble in water, and can be easily infiltrated into the micropores inside the graphite substrate by dipping, coating, spraying, or other treatment methods as a homogeneous, highly concentrated aqueous solution. . The aqueous solution of alkali metal salt of polymetaphosphate that has permeated into the micropores inside the graphite base material is further polymerized by heat treatment at 200 to 300°C after slowly removing moisture by natural drying or low-temperature drying. Converted to polymetaphosphate with a high degree of polymerization. As a result of this heat treatment, the highly polymerized polymetaphosphate produced in the micropores exhibits glassy properties, physicochemically bonds strongly with the graphite base material, forms a protective film on the inner walls of the micropores, and exhibits an oxidation-resistant function. On the other hand, an aqueous solution of an alkali metal salt of polymetaphosphate exhibits the properties of a colloidal solution and is characterized by high viscosity. This characteristic becomes more pronounced as the concentration of polymetaphosphate increases, so the aqueous solution that has permeated into the micropores is heat-treated after evaporating as much water as possible. At this time, if water is rapidly removed by evaporation, a portion of the polymetaphosphate in the micropores will flow out to the surface layer, so it is necessary to remove the water slowly. As a result, the polymetaphosphate present in the micropores inside the graphite base material is difficult to flow out to the graphite base material surface even during heat treatment, and the formation of hardened solids with high electrical resistance on the graphite electrode surface is effectively suppressed. be done. "Function" The oxidation-resistant treatment method of the present invention is characterized by the high viscosity of the aqueous alkali metal salt solution of polymetaphosphoric acid that has penetrated into the micropores inside the graphite base material, which prevents it from flowing out of the micropores even during heat treatment. A strong protective coating of highly polymerized polymetaphosphate with high oxidation resistance is formed on its inner wall surface. "Example" 20 and 40 plate graphite test pieces of 60 x 30 x 15 mm were
It was immersed in an aqueous solution of sodium hexametaphosphate (wt%) at room temperature and pressure for 1 hour to penetrate into the micropores inside the test piece. Next, the test piece was left to air dry to slowly evaporate the water in the micropores, and then the test piece was heat-treated to convert it into a polymetaphosphate with a high degree of polymerization. Each test piece subjected to these treatments was held at 850° C. for 2 hours in an electric furnace in an oxidizing atmosphere with air flowing through it, and the degree of oxidative loss was measured from the change in weight. In addition, the contact resistance with the copper plate was measured under a load of 50 kg/cm 2 and is shown in the table in comparison with an untreated comparative example.

【表】【table】

【表】 これらの結果から、未処理の比較例に比べて酸
化損耗速度が著しく低減し、また電気抵抗の増大
化も効果的に防止されることが判明する。 「発明の効果」 上記説明で明らかなように、本発明の耐酸化処
理法により製鋼用黒鉛電極の酸化損耗を著しく低
減することができるとともに電極表面の電気抵抗
の増大も効果的に抑制することが可能となる。し
たがつて、電極の使用寿命を大巾に向上させ、ま
た電極表層部の硬化固着物を切削除去する必要が
ないので作業能率も大いに向上する効果がある。
[Table] From these results, it is clear that the oxidation loss rate is significantly reduced compared to the untreated comparative example, and the increase in electrical resistance is also effectively prevented. "Effects of the Invention" As is clear from the above explanation, the oxidation-resistant treatment method of the present invention can significantly reduce the oxidation loss of graphite electrodes for steel manufacturing, and also effectively suppress the increase in electrical resistance on the electrode surface. becomes possible. Therefore, the service life of the electrode is greatly improved, and since there is no need to cut and remove hardened and adhered substances on the electrode surface layer, the working efficiency is also greatly improved.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ金属のポリメタリン酸塩水溶液を浸
透した後緩徐に水分を蒸発除去し、次いで200〜
300℃の温度で加熱処理することを特徴とする黒
鉛電極の耐酸化処理法。
1 After permeating an aqueous solution of polymetaphosphate of an alkali metal, the water is slowly evaporated and removed, and then 200~
An oxidation-resistant treatment method for graphite electrodes that is characterized by heat treatment at a temperature of 300℃.
JP25373585A 1985-11-14 1985-11-14 Anti-oxidization treatment of graphite electrode Granted JPS62115688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25373585A JPS62115688A (en) 1985-11-14 1985-11-14 Anti-oxidization treatment of graphite electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25373585A JPS62115688A (en) 1985-11-14 1985-11-14 Anti-oxidization treatment of graphite electrode

Publications (2)

Publication Number Publication Date
JPS62115688A JPS62115688A (en) 1987-05-27
JPS6364039B2 true JPS6364039B2 (en) 1988-12-09

Family

ID=17255410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25373585A Granted JPS62115688A (en) 1985-11-14 1985-11-14 Anti-oxidization treatment of graphite electrode

Country Status (1)

Country Link
JP (1) JPS62115688A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5099884B2 (en) * 2007-03-29 2012-12-19 伯東株式会社 Corrosion inhibitor

Also Published As

Publication number Publication date
JPS62115688A (en) 1987-05-27

Similar Documents

Publication Publication Date Title
US4439491A (en) Oxidation retardant for graphite
US8021474B2 (en) Oxidation inhibition of carbon-carbon composites
CA1190042A (en) Coating to prevent the oxidation of electrodes during electric furnace steel making
CN102969150B (en) A kind of capacitor impregnant containing modification potter's clay and preparation method thereof
CN102021632A (en) Method for preparing protective film on copper alloy surface
WO1998001234A1 (en) Protection of aluminum production cell components
JPH0730459B2 (en) Ceramic coating method on metal
CN108930042A (en) A kind of preparation method of Mg alloy surface super-hydrophobic film
JP4169844B2 (en) Method for preventing oxidation of graphite electrode for arc electric furnace
JPS6364039B2 (en)
CN102969160B (en) A kind of capacitor impregnant containing modified alta-mud and preparation method thereof
JPS646129B2 (en)
US4530853A (en) Non-conducting oxidation retardant coating composition for carbon and graphite
CN109750288A (en) A kind of preparation method of the corrosion-resistant composite coating of surface of low-carbon steel highly oxidation resistant
JPS6237113B2 (en)
CN102969158A (en) Capacitor impregnant containing modified aqueous talcum powder and preparation method thereof
JP4130950B2 (en) Silver-based antibacterial composition and method for producing the same
KR20110046486A (en) Method for Forming a Conductive Carbon Laminate on a Support Made of Powder
US2909452A (en) Electric contact carbon brush
RU2779171C1 (en) Method for protecting metallurgical graphitised electrodes against high-temperature oxidation
CN113737249A (en) Preparation method of magnesium alloy black arc discharge ceramic layer
SU1622348A1 (en) Protective coating of plasmatron electrode
CN102969151B (en) A kind of capacitor impregnant containing modified coal ash and preparation method thereof
JPS59105095A (en) Lubricant for hot plastic forming
CN102969159A (en) Capacitor impregnant containing modified vermiculite powder and preparation method thereof