JPH0730459B2 - Ceramic coating method on metal - Google Patents

Ceramic coating method on metal

Info

Publication number
JPH0730459B2
JPH0730459B2 JP62192591A JP19259187A JPH0730459B2 JP H0730459 B2 JPH0730459 B2 JP H0730459B2 JP 62192591 A JP62192591 A JP 62192591A JP 19259187 A JP19259187 A JP 19259187A JP H0730459 B2 JPH0730459 B2 JP H0730459B2
Authority
JP
Japan
Prior art keywords
coating
metal
ceramic coating
ceramic
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62192591A
Other languages
Japanese (ja)
Other versions
JPS6436774A (en
Inventor
喜夫 盛屋
宗栄 小泉
正智 神田
安信 松島
Original Assignee
日本パ−カライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パ−カライジング株式会社 filed Critical 日本パ−カライジング株式会社
Priority to JP62192591A priority Critical patent/JPH0730459B2/en
Priority to EP88112601A priority patent/EP0302465A3/en
Priority to BR8803842A priority patent/BR8803842A/en
Priority to AU20386/88A priority patent/AU606726B2/en
Priority to MX012534A priority patent/MX170165B/en
Publication of JPS6436774A publication Critical patent/JPS6436774A/en
Publication of JPH0730459B2 publication Critical patent/JPH0730459B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/36Phosphatising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属へのセラミックコーティング法に関するも
のである。近年、耐熱性、耐酸化性向上のため金属にセ
ラミックコーティングを行なうことが盛んに成りつつあ
り、高温に暴されても剥離し難いセラミックコーティン
グを施すための種々の提案がなされている。本発明は、
かかる性質を達成するために、金属の前処理を行なうこ
とを特徴とする金属のセラミックコーティング方法に関
するものである。
TECHNICAL FIELD The present invention relates to a method for coating a metal with a ceramic. In recent years, it has become popular to apply a ceramic coating to a metal in order to improve heat resistance and oxidation resistance, and various proposals have been made for applying a ceramic coating that is difficult to peel even when exposed to high temperatures. The present invention is
The present invention relates to a method for ceramic coating of metal, which comprises performing pretreatment of metal to achieve such properties.

(従来の技術) 近年、耐熱性、耐酸化性が要求される金属材料に対して
セラミックコーティングを行なうことが盛んになりつつ
ある。
(Prior Art) In recent years, it has become popular to apply ceramic coating to a metal material that is required to have heat resistance and oxidation resistance.

「セラミックコーティング技術の開発動向及び新産業分
野への利用動向に関する調査研究(財団法人 日本産業
技術振興協会、1985年3月発行)」の第206〜209頁によ
ると、TiC,SiCなどの炭化物系、TiN,Si3N4などの窒化物
系、TiB2などの硼化物系、Al2O3などの酸化物系、MoSi2
などのケイ化物系などのセラミックを金属にコーティン
グすることにより耐熱性、耐酸化性などに関して金属の
性質は格段と改良されることが説明されている。
According to pages 206 to 209 of "Survey research on development of ceramic coating technology and usage trends in new industrial fields (Japan Industrial Technology Association, published in March 1985)", carbide-based materials such as TiC and SiC , Nitrides such as TiN, Si 3 N 4 , borides such as TiB 2 , oxides such as Al 2 O 3 , MoSi 2
It is described that by coating a metal with a ceramic such as a silicide, the properties of the metal are significantly improved with respect to heat resistance and oxidation resistance.

また、セラミックスを金属上にコーティングする方法と
しては容射法、イオンパッタリング法、化学蒸着法(CV
D法)、塗布乾燥法、塗布焼付法などがある。塗布焼付
法は、ガラスフリットなどを利用して677〜871℃という
高温で処理する方法(特公昭55-26714号参照)と、通常
の無機塗料の焼付温度で処理する方法とがある。
In addition, as a method of coating ceramics on a metal, a radiation method, an ion sputtering method, a chemical vapor deposition method (CV
D method), coating drying method, coating baking method and the like. The coating and baking method includes a method of treating at a high temperature of 677 to 871 ° C. using a glass frit (see Japanese Patent Publication No. 55-26714) and a method of treating at the ordinary baking temperature of an inorganic paint.

これらのいずれの方法でも、機械的もしくは化学的に清
浄にした金属表面に直接セラミックスをコーティングす
るものである。
In any of these methods, a ceramic surface is directly coated on a mechanically or chemically cleaned metal surface.

この点に関し、前掲「セラミックスコーティング..調査
研究」によると、金属アルコキシド系塗料では、下地は
アルカリ清浄のみでよいとされ(第25頁)、アルカリ金
属ケイ酸塩系塗料ではサンドブラストによる粗面化に加
えて塗料に反応性化学結合を導入し、下地金属と反応さ
せることが必要であるとされ、また高温用コーティング
剤ではセラミックと金属とを化学結合により結合させる
ことが重要である、との説明がなされている。
In this regard, according to the above-mentioned “Ceramics coating .. Research study”, it is said that for metal alkoxide-based paints, the base only needs to be cleaned with an alkali (page 25), and for alkali metal silicate-based paints, roughening by sandblasting. In addition to that, it is said that it is necessary to introduce a reactive chemical bond into the paint to react with the underlying metal, and in the coating agent for high temperature, it is important to bond the ceramic and the metal by a chemical bond. It is explained.

また、シリコーン塗料の一種として、バインダーに変成
シリコーンワニスを使用し、セラミックとしてアルミナ
・シリカ短繊維を使用した耐熱塗料が最近市販された
(日経ニューマテリアル、1986,5-19,第101頁)。この
塗料の特長の一つは塗膜が金属の膨張に追従できるとこ
ろにあると紹介されている。
As a kind of silicone paint, a heat-resistant paint using modified silicone varnish as a binder and alumina / silica short fibers as a ceramic has recently been marketed (Nikkei New Material, 1986, 5-19, p. 101). It has been introduced that one of the features of this paint is that the paint film can follow the expansion of the metal.

(発明が解決しようとする問題点) 従来の方法では、CVD法以外はコーティング被膜と素地
金属との密着性が充分でなく、セラミックコーティング
の使用を意図する高温下では金属とセラミックスの熱膨
張率の違いや素地金属の酸化により、セラミックコーテ
イングが剥離する問題があった。
(Problems to be solved by the invention) In the conventional methods, except for the CVD method, the adhesion between the coating film and the base metal is not sufficient, and the thermal expansion coefficient of the metal and the ceramic is high under the high temperature intended for the use of the ceramic coating. However, there was a problem that the ceramic coating peeled off due to the difference in temperature and the oxidation of the base metal.

これに対して、従来から塗料(セラミック)と金属の反
応を高める観点からの考案はあったが、この方法は金属
と塗料の化学組成による適用制限が原理的に存在するの
で、本発明はこのような制限がない手段によって、金属
上にコーティングしたセラミックス被膜が高温下で剥離
したり、素地金属が高温酸化する事を防止し、もって、
充分に実用に耐えられるようなセラミックコーティング
方法を提供することを目的とする。
On the other hand, there has been a device from the viewpoint of enhancing the reaction between the coating material (ceramic) and the metal, but this method has the limitation of application due to the chemical composition of the metal and the coating material. By such a non-limiting means, it is possible to prevent the ceramic coating coated on the metal from peeling off at high temperature and to prevent the base metal from being oxidized at high temperature.
It is an object of the present invention to provide a ceramic coating method that can be sufficiently put to practical use.

(問題点を解決するための手段) 高温下でのセラミックコーティングの剥離、素地金属の
高温酸化等の問題を解決する為、本発明者らは、先ず、
従来法で金属表面をできるだけ清浄にする事を試みた
が、前記問題は解決できなかった。そこで、セラミック
コーティングを行なう前の前処理として種々の表面処理
を検討した結果、リン酸アルミニウム被膜を形成させた
上にセラミックコーティングを施すと、高温での素地金
属の酸化が抑制され、又、セラミックコーティングが高
温下で剥離しないことを見出した。
(Means for Solving Problems) In order to solve problems such as peeling of a ceramic coating at high temperature and high temperature oxidation of a base metal, the present inventors first
Attempts have been made to clean the metal surface as much as possible by the conventional method, but the above problems could not be solved. Therefore, as a result of studying various surface treatments as a pretreatment before performing the ceramic coating, when the ceramic coating is applied after forming the aluminum phosphate coating, the oxidation of the base metal at high temperature is suppressed, and It was found that the coating did not peel off at elevated temperatures.

ここで述べるリン酸アルミニウム被膜とは、特公昭53-6
945号公報において、本出願人が、アルミニウムイオン
を0.01〜10g/lリン酸イオンを1〜100g/l含有するpH1.5
〜5の酸性リン酸液で化成処理又は電解処理する事によ
り被膜形成方法を提案したもので、被膜の主成分はリン
酸アルミニウム(AlPO4.XH2O)である。
The aluminum phosphate coating described here is Japanese Patent Publication No. Sho 53-6.
In Japanese Patent No. 945, the present applicant has found that a pH of 1.5 containing aluminum ion 0.01 to 10 g / l phosphate ion 1 to 100 g / l.
Which it was proposed a film forming method by which a chemical conversion treatment or an electrolytic treatment in an acidic phosphate solution to 5, the main component of the coating is aluminum phosphate (AlPO 4 .XH 2 O).

この公報の発明は、その「発明の詳細な説明」の欄に記
載されてある通り、鉄鋼材料の防錆処理を目的として、
それ以前の亜鉛、マンガン、カルシウム等のリン酸塩、
クロメート被膜に代わる被膜を形成することを提案して
おり、また塗装の具体例としてはアクリル樹脂塗料が挙
げられているに過ぎない。
The invention of this publication, as described in the section of "Detailed Description of the Invention", is for the purpose of rust prevention treatment of steel materials,
Previous phosphates such as zinc, manganese, calcium,
It has been proposed to form a film in place of the chromate film, and acrylic resin paint is only mentioned as a specific example of the coating.

(作用) 前記リン酸アルミニウム被膜がセラミックコーティング
下地として優れたものであることは本発明者による重大
なる発見であるので、リン酸アルミニウム被膜の作用に
ついて詳しく述べる。
(Function) Since it is a serious finding by the present inventor that the aluminum phosphate coating is excellent as a ceramic coating base, the function of the aluminum phosphate coating will be described in detail.

第1図は上記公報記載の方法で調製したリン酸アルミニ
ウム被膜の熱重量変化および示差熱分析を500℃まで行
なった結果を示すグラフである。リン酸アルミニウム被
膜は非晶質のAlPO4・XH2Oであるが、第1図に示す様に1
50℃〜200℃位でXH2Oが失われ(約12%の重量減)、そ
の後500℃までの高温で安定なAlPO4となる。
FIG. 1 is a graph showing the results of thermogravimetric changes and differential thermal analysis up to 500 ° C. of the aluminum phosphate coating prepared by the method described in the above publication. The aluminum phosphate coating is amorphous AlPO 4 .XH 2 O, but as shown in FIG.
XH 2 O is lost (about 12% weight loss) at around 50 ° C to 200 ° C, and then AlPO 4 becomes stable at high temperatures up to 500 ° C.

即ち、50〜100℃では吸着水が、150℃付近では結晶水が
夫々失われるが200℃以上では重量変化がなく、従って
熱的に安定したAlPO4を示しているのである。本発明に
おいては、リン酸アルミニウム被膜の乾燥温度を特定す
るものではなく、その被膜を例えば常温乾燥しても被膜
に含まれる水分・結晶水等は次のセラミックコーティン
グの焼付けの際に飛散するので該コーティングの密着性
に影響しないものと想定される。
That is, adsorbed water is lost at 50 to 100 ° C, and crystal water is lost at around 150 ° C, but there is no weight change at 200 ° C or higher, and thus thermally stable AlPO 4 is shown. In the present invention, the drying temperature of the aluminum phosphate coating is not specified, and even if the coating is dried at room temperature, water, crystal water, etc. contained in the coating will be scattered during the subsequent baking of the ceramic coating. It is assumed that it does not affect the adhesion of the coating.

セラミックのコーティングの際の焼付け、CVD等で基材
表面の温度が高温になるが、AlPO4は上記した脱水以上
の分解をせず、セラミックコーティングとの密着性を高
める下地として作用する。
Although the temperature of the surface of the base material becomes high due to baking, CVD, etc. at the time of coating the ceramic, AlPO 4 does not decompose beyond the above-mentioned dehydration, and acts as a base for improving the adhesion with the ceramic coating.

従来方法の様に金属表面を清浄にしてセラミックコーテ
ィングを施した場合は耐熱試験で金属表面が酸化され、
又セラミックコーティングが剥離してしまう。これに対
して、リン酸アルミニウム被膜の上にセラミックコーテ
ィングを行なったものは耐熱試験でセラミックコーティ
ングが全く剥離せず金属の酸化も抑制される。これによ
りセラミックコーティングの本来の目的である耐熱コー
ティングとしての性能が一層高められる。
When the metal surface is cleaned and the ceramic coating is applied as in the conventional method, the metal surface is oxidized in the heat resistance test,
Also, the ceramic coating is peeled off. On the other hand, in the case where a ceramic coating is applied on the aluminum phosphate coating, the ceramic coating is not peeled at all in the heat resistance test, and the oxidation of the metal is suppressed. This further enhances the performance of the ceramic coating as a heat resistant coating, which is the original purpose of the ceramic coating.

以下、本発明の具体的構成について詳しく説明する。Hereinafter, a specific configuration of the present invention will be described in detail.

リン酸アルミニウム被膜の処理液に使用するアルミニウ
ムイオンは硝酸アルミニウム、水酸化アルミニウム、硫
酸アルミニウム等のアルミニウム化合物を酸性リン酸溶
液に固体又は液体として添加後pH調整する事により調製
される。溶液中のアルミニウムイオン含有量は0.01〜10
g/l好ましくは0.2〜3g/lとする。0.01g/l未満ではリン
酸アルミニウム被膜の付着量が少なく、3g/lを越えると
経済的に不利である。酸性リン酸溶液はリン酸又は第1
リン酸ソーダ、第2リン酸ソーダ等を水で希釈してリン
酸イオンとして1〜100g/l好ましくは5〜50g/l含有す
る様に調整され、例えばリン酸溶液にアルミニウム化合
物添加後苛性ソーダ、苛性カリ、アンモニア等によりpH
=1.5〜5.0に調整する。pH1.5未満では被処理物である
金属のエッチング作用が大であり、pH5.0を越えると、
浴中にリン酸アルミニウム、水酸化アルミニウムの沈殿
が多量に生成し不利である。必要に応じては酸化剤およ
び被膜促進剤として硝酸イオン0〜20g/l、好ましくは
1〜5g/l、塩素酸イオン0〜20g/l、好ましくは1〜5g/
l、ニッケルイオン0〜5g/l、好ましくは0.01〜2g/l等
を酸性リン酸溶液含有させることができる。また被膜重
量を増加させるために、硫酸イオン0〜10g/lを含有さ
せる事もできる。
The aluminum ion used in the treatment liquid for the aluminum phosphate coating is prepared by adding an aluminum compound such as aluminum nitrate, aluminum hydroxide or aluminum sulfate to the acidic phosphoric acid solution as a solid or liquid and then adjusting the pH. Aluminum ion content in solution is 0.01-10
g / l It is preferably 0.2 to 3 g / l. If it is less than 0.01 g / l, the amount of aluminum phosphate coating adhered is small, and if it exceeds 3 g / l, it is economically disadvantageous. Acidic phosphoric acid solution is phosphoric acid or first
Sodium phosphate, dibasic sodium phosphate, etc. are diluted with water and adjusted to contain 1 to 100 g / l, preferably 5 to 50 g / l as phosphate ions. For example, caustic soda after addition of aluminum compound to phosphoric acid solution, PH due to caustic potash, ammonia, etc.
= Adjust to 1.5 to 5.0. If the pH is less than 1.5, the etching effect of the metal to be treated is large, and if the pH exceeds 5.0,
This is disadvantageous because a large amount of aluminum phosphate and aluminum hydroxide precipitates in the bath. If necessary, as an oxidant and a film promoter, nitrate ion 0 to 20 g / l, preferably 1 to 5 g / l, chlorate ion 0 to 20 g / l, preferably 1 to 5 g / l
1 and nickel ions 0 to 5 g / l, preferably 0.01 to 2 g / l can be contained in the acidic phosphoric acid solution. Further, in order to increase the coating weight, 0-10 g / l of sulfate ion can be contained.

本発明に使用される金属としては鉄、鋼、ステンレス鋼
板、耐熱鋼、アルミニウム、アルミニウム合金等のリン
酸によりエッチング可能でかつ耐熱性向上の必要のある
金属材料を挙げる事ができる。
Examples of the metal used in the present invention include metal materials such as iron, steel, stainless steel plate, heat resistant steel, aluminum and aluminum alloys which can be etched by phosphoric acid and need to have improved heat resistance.

被膜形成の操作としては、金属を、30〜90℃に加温した
上記酸性リン酸溶液に1〜5分間浸漬或いはスプレーし
て通常の化成処理と同様に被膜化成を行なうか又は被処
理物である金属を両極或いは対極をカーボン電極、アル
ミニウム、ステンレスを使用して極間距離20〜500m/m電
流密度0.1〜20A/dm2、好ましくは3〜5A/dm2、通電時間
5秒〜5分で交流電解化成を行なう。更に被処理物であ
る金属を陰極にし、対極を上記電極を用いて陰極電解化
成し、必要に応じては電解化成に浸漬化成を併用する事
が出来る。
The operation of forming a film is as follows: a metal is immersed or sprayed in the above-mentioned acidic phosphoric acid solution heated to 30 to 90 ° C for 1 to 5 minutes to form a film in the same manner as a normal chemical conversion treatment, or a metal to be treated is used. Carbon metal, aluminum, or stainless steel is used for both poles or counter electrodes of a certain metal. Distance between poles 20 to 500 m / m Current density 0.1 to 20 A / dm 2 , preferably 3 to 5 A / dm 2 , energizing time 5 seconds to 5 minutes AC electrolytic formation is carried out. Further, the metal to be treated can be used as a cathode, and the counter electrode can be subjected to cathodic electrolytic formation using the above electrode, and if necessary, dip formation can be used in combination with electrolytic formation.

この様にして被膜を形成させた後、乾燥焼付けをして15
0℃以上の温度で行なう事が望ましい。
After forming the film in this way, dry baking
It is desirable to carry out at a temperature of 0 ° C or higher.

この被膜の上にセラミックコーティングを施すのである
が、塗膜の焼付けあるいは塗膜の使用時の温度が高温に
なってAlPO4の耐熱性を活用できるのであれば、セラミ
ックコーティング剤としては特に制限がなく、セラミッ
クの種類としては炭化物系、窒化物系、硼化物系、酸化
物系、ケイ化物系、これらの混合物および化合物系など
を採用することができ、またアルカリ金属ケイ酸塩系、
金属アルコキシド系、シリカゾル系、シリコーン系など
を採用することができる。またセラミックコーティング
方法は塗布焼付法とすると従来のCVD法にほぼ匹敵する
塗膜密着性が得られる。但し、CVD法においても基材が
高温になるから、リン酸アルミニウム被膜の耐熱性がセ
ラミックコーティング中に活用される。さらに基材をセ
ラミックコーティング中に200〜400に加熱してもよい。
A ceramic coating is applied on top of this coating, but there is no particular limitation as a ceramic coating agent as long as the temperature during baking or use of the coating becomes high and the heat resistance of AlPO 4 can be utilized. However, as the type of ceramic, it is possible to adopt a carbide type, a nitride type, a boride type, an oxide type, a silicide type, a mixture or compound type thereof, and an alkali metal silicate type,
A metal alkoxide type, a silica sol type, a silicone type or the like can be adopted. Further, when the ceramic coating method is a coating and baking method, it is possible to obtain coating film adhesion almost equal to that of the conventional CVD method. However, the heat resistance of the aluminum phosphate coating is utilized during the ceramic coating because the substrate becomes hot even in the CVD method. Further, the substrate may be heated to 200-400 during the ceramic coating.

また、イオンスパッタ法、あるいは容射法においても上
記と同様の効果が期待される。
Further, the same effect as above can be expected in the ion sputtering method or the radiation method.

以下、さらに実施例により本発明をより詳しく説明す
る。
Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 化成処理 試験片:SPCC鋼板(70×150×0.8mm) 処理液組成: PO4 - 22.8g/l Al3+ 0.8g/l NO3 - 3.1g/l 上記処理液を水酸化ナトリウムで中和し、pH2.5程度に
調整する。
Example 1 conversion treatment specimens: SPCC steel plate (70 × 150 × 0.8mm) treatment solution composition: PO 4 - 22.8g / l Al 3+ 0.8g / l NO 3 - 3.1g / l sodium hydroxide the processing solution Neutralize with and adjust pH to about 2.5.

処理条件:浸漬処理 温度 60℃ 処理時間 3分 上記処理条件で予め表面を清浄にした試験片を化成処理
し、更に水洗・乾燥した結果、被膜重量1g/m2の被膜が
得られた。次いで、この上に市販セラミックコーティン
グ剤((株)日板研究所製グラスカ90、金属アルコキシ
ド系(無色透明)セラミックコーティング剤、セラミッ
ク成分−アルコキシシラン:19〜23%)を浸漬塗布し、1
50℃にて30分間焼付け、無色透明なセラミックコーティ
ングを形成させた。膜厚は5μmであった。
Treatment conditions: Immersion treatment Temperature 60 ° C. Treatment time 3 minutes Under the above treatment conditions, a test piece whose surface had been cleaned in advance was subjected to chemical conversion treatment, followed by washing with water and drying, and as a result, a coating having a coating weight of 1 g / m 2 was obtained. Then, a commercially available ceramic coating agent (GLASCA 90, manufactured by Nichiban Kenkyusho Co., Ltd., a metal alkoxide-based (colorless transparent) ceramic coating agent, ceramic component-alkoxysilane: 19 to 23%) is dip-coated on this, 1
It was baked at 50 ° C. for 30 minutes to form a colorless and transparent ceramic coating. The film thickness was 5 μm.

実施例2 電解処理 試験片:SPCC鋼板(70×150×0.8mm) 処理液組成: PO4 3- 25g/l Al3+ 1.2g/l NO3 - 9.0g/l 上記処理液を水酸化ナトリウムで中和し、pH2.5に調整
した。
Example 2 electrolyzed specimen: SPCC steel plate (70 × 150 × 0.8mm) treatment solution composition: PO 4 3- 25g / l Al 3+ 1.2g / l NO 3 - Sodium hydroxide 9.0 g / l the treatment liquid It was neutralized with and adjusted to pH 2.5.

処理条件: 処理温度 65℃ 電流密度 5A/dm2 通電時間 30秒 極比 1:1 極間距離 40mm 対極 カーボン板 上記条件にて予め表面を清浄にした試験板を陰極にして
直流電解化成処理した。次いで、水洗し、乾燥したの
ち、この上に実施例1と同じセラミックコーティングを
施した。又、比較として無処理(脱脂により表面を清浄
にしたのみの鋼板)に実施例1、2と同じセラミックコ
ーティングを施したものを用意した。
Treatment conditions: Treatment temperature 65 ° C Current density 5A / dm 2 Current flow time 30 seconds Pole ratio 1: 1 Interelectrode distance 40mm Counter electrode carbon plate DC electrolysis treatment was performed with the test plate whose surface was cleaned under the above conditions as the cathode. . Then, after washing with water and drying, the same ceramic coating as in Example 1 was applied thereon. Further, as a comparison, a non-treated (steel plate whose surface was only cleaned by degreasing) coated with the same ceramic coating as in Examples 1 and 2 was prepared.

これら無処理、実施例1、実施例2の試験片を250℃、4
00℃、500℃で2時間オーブン中で加熱し、その後、室
温にて放冷し、外観を調べた結果を表1に示す。尚、金
属表面の酸化変色性については透明なセラミック被膜を
通して又はその被膜が剥離した場合は剥離部の金属表面
に対して夫々目視観察したものである。
These untreated test pieces of Example 1 and Example 2 were heated at 250 ° C. for 4 hours.
Table 1 shows the results of examining the appearance by heating in an oven at 00 ° C and 500 ° C for 2 hours and then allowing to cool at room temperature. The oxidative discoloration of the metal surface was visually observed through the transparent ceramic coating or when the coating was peeled off, with respect to the metal surface at the peeled portion.

以上の試験結果により明らかな如く、セラミックコーテ
ィング前にリン酸アルミニウム被膜を形成させると、そ
のコーティングの高温付着性が優れかつ素地金属の変色
も抑制されるといった効果が付与されるが、その効果の
主因はリン酸アルミニウム被膜の耐熱性に負う処が大で
ある。
As is clear from the above test results, when the aluminum phosphate coating is formed before the ceramic coating, the effect that the high temperature adhesion of the coating is excellent and the discoloration of the base metal is suppressed is provided. The main reason is that the heat resistance of the aluminum phosphate coating is a major factor.

実施例3 実施例1及び2の化成処理を行なった後、表2に示した
各種市販のセラミックコーティングを施し、試験に供し
た。その結果を表3に示す。
Example 3 After performing the chemical conversion treatments of Examples 1 and 2, various commercially available ceramic coatings shown in Table 2 were applied and subjected to the test. The results are shown in Table 3.

試験方法 1.耐食性 イ.方法:塩水噴霧試験にて行なう ロ.評価:ASTM-D714-56塗膜ブリスタ発生評価
基準のブリスタを錆におき換えて評価 錆サイズ:(優)10変化なし>0錆大(劣) 錆面積 :(優)F密度小>M>MD>D全面錆(劣) 2.耐熱性評価 イ.方法:下地処理及びセラミックコーティング施工
後、オーブン中で各温度にて加熱後、室温まで冷却する ロ.評価:セラミックコーティングの密着性と試験板素
地の変化を目視にて観察 コーティング密着性:(優)5剥離なし>0全面剥離 素地変化 :(優)5変化なし>0 ブルーイング 表2の各種セラミックコーティングはいずれも浸漬処理
により塗布し、焼付けを各々の条件で行ない試験に供し
た。その結果は表3の通りである。
Test method 1. Corrosion resistance a. Method: Perform salt spray test b. Evaluation: ASTM-D714-56 Evaluation of coating film blister generation
Evaluation by replacing the standard blister with rust Rust size: (excellent) 10 No change> 0 Large rust (inferior) Rust area: (excellent) F density small>M>MD> D Full surface rust (inferior) 2. Heat resistance Evaluation b. Method: After surface treatment and ceramic coating, heat in oven at each temperature and cool to room temperature. B. Evaluation: Visual observation of adhesion of ceramic coating and change of test plate substrate Coating adhesion: (excellent) 5 No peeling> 0 Overall peeling of substrate: (excellent) 5 No change> 0 Blueing Various ceramics in Table 2 All the coatings were applied by a dipping treatment, baking was performed under each condition, and the test was performed. The results are shown in Table 3.

(発明の効果) 前処理なしにセラミックコーティングを施すと、金属表
面が酸化された上、セラミックコーティングが剥離して
しまうが、リン酸アルミニウム被膜を形成させたもので
は500℃まで剥離せず、又金属表面の酸化も抑制されて
いる。
(Effect of the invention) When ceramic coating is applied without pretreatment, the metal surface is oxidized and the ceramic coating peels off, but the aluminum phosphate coating does not peel off up to 500 ° C. Oxidation of the metal surface is also suppressed.

このような塗布焼付け法により達成された耐熱性は従来
のCVD法に匹敵するものである。そこで本発明の方法
は、処理温度が高く、素材が熱変形を起こし、かつ処理
時間が2〜8時間と長く生産性が悪く、しかも装置コス
トが高値であるというCVD法の欠点をもたない方法であ
る。即ち、本発明を塗布焼付法に適用すると、処理法が
簡単で、生産性も高く、応用範囲が広いという特長があ
る。
The heat resistance achieved by such a coating and baking method is comparable to the conventional CVD method. Therefore, the method of the present invention does not have the drawbacks of the CVD method in that the processing temperature is high, the material is thermally deformed, the processing time is 2 to 8 hours, the productivity is low, and the apparatus cost is high. Is the way. That is, when the present invention is applied to the coating and baking method, it has advantages that the processing method is simple, the productivity is high, and the application range is wide.

また、本発明の方法はCVD法等にも適用可能であって、
この場合は密着性を一層優れたものとする。
In addition, the method of the present invention is applicable to the CVD method,
In this case, the adhesion is further improved.

【図面の簡単な説明】[Brief description of drawings]

第1図はリン酸アルミニウム被膜の、加熱温度と、熱重
量変化および示差熱分析結果との関係を示すグラフであ
る。
FIG. 1 is a graph showing the relationship between the heating temperature, the thermogravimetric change and the differential thermal analysis result of the aluminum phosphate coating.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属材料を化成処理又は電解処理してリン
酸アルミニウム被膜を形成させ、次いで、該被膜上にセ
ラミックコーティングを施すことを特徴とする金属への
セラミックコーティング法。
1. A ceramic coating method for a metal, which comprises subjecting a metal material to chemical conversion treatment or electrolytic treatment to form an aluminum phosphate coating film, and then applying a ceramic coating on the coating film.
【請求項2】アルミニウムイオンを0.01〜10g/l、リン
酸イオンを1〜100g/l含有するpH1.5〜5.0の酸性リン酸
溶液中で上記処理を行なうことを特徴とする特許請求の
範囲第1項に記載の方法。
2. The above-mentioned treatment is carried out in an acidic phosphoric acid solution having a pH of 1.5 to 5.0 containing 0.01 to 10 g / l of aluminum ions and 1 to 100 g / l of phosphate ions. The method according to item 1.
JP62192591A 1987-08-03 1987-08-03 Ceramic coating method on metal Expired - Lifetime JPH0730459B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62192591A JPH0730459B2 (en) 1987-08-03 1987-08-03 Ceramic coating method on metal
EP88112601A EP0302465A3 (en) 1987-08-03 1988-08-03 Method for ceramic coating on metals
BR8803842A BR8803842A (en) 1987-08-03 1988-08-03 PROCESS FOR THE CERAMIC FINISHING OF METALS AND TEMPERATURE AND OXIDATION RESISTANT ARTICLE
AU20386/88A AU606726B2 (en) 1987-08-03 1988-08-03 Method for ceramic coating on metals
MX012534A MX170165B (en) 1987-08-03 1988-08-31 METHOD FOR COATING CERAMICS ON METALS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62192591A JPH0730459B2 (en) 1987-08-03 1987-08-03 Ceramic coating method on metal

Publications (2)

Publication Number Publication Date
JPS6436774A JPS6436774A (en) 1989-02-07
JPH0730459B2 true JPH0730459B2 (en) 1995-04-05

Family

ID=16293823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62192591A Expired - Lifetime JPH0730459B2 (en) 1987-08-03 1987-08-03 Ceramic coating method on metal

Country Status (5)

Country Link
EP (1) EP0302465A3 (en)
JP (1) JPH0730459B2 (en)
AU (1) AU606726B2 (en)
BR (1) BR8803842A (en)
MX (1) MX170165B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5925043A (en) * 1997-04-30 1999-07-20 Medquest Products, Inc. Electrosurgical electrode with a conductive, non-stick coating
DE10014035B4 (en) * 2000-03-22 2006-07-13 Electro Chemical Engineering Gmbh Colored conversion layer, a solution for their preparation and their use
US7678465B2 (en) 2002-07-24 2010-03-16 Applied Thin Films, Inc. Aluminum phosphate compounds, compositions, materials and related metal coatings
CA2497468C (en) 2002-08-14 2011-10-11 Applied Thin Films, Inc. Aluminum phosphate compounds, compositions, materials and related composites.
JP2006515535A (en) 2002-12-23 2006-06-01 アプライド シン フィルムズ,インコーポレイティッド Aluminum phosphate coating
AU2003304644B2 (en) * 2003-11-19 2010-09-30 Applied Thin Films, Inc. Aluminum phosphate compounds, compositions, materials and related metal coatings
ES2688274T3 (en) 2005-06-30 2018-10-31 Unifrax I Llc Inorganic phosphate coated fiber and methods of preparation and use
JP5153063B2 (en) 2005-07-15 2013-02-27 日本発條株式会社 Steel surface treatment method
JP2008106340A (en) * 2006-10-27 2008-05-08 Nhk Spring Co Ltd Aluminum-phosphate-based chemical conversion treatment liquid for iron and steel, and preparing method therefor
US8497018B2 (en) 2010-01-27 2013-07-30 Applied Thin Films, Inc. High temperature stable amorphous silica-rich aluminosilicates
CN103044995A (en) * 2013-01-28 2013-04-17 陈立晓 High temperature coating for diesel engine exhaust air duct
RU2015143291A (en) 2013-03-15 2017-04-24 ЮНИФРАКС АЙ ЭлЭлСи MINERAL FIBER
CN103741195B (en) * 2013-12-23 2016-06-15 南通恒新金属工艺科技有限公司 Electrolytic phosphating of steel wires processes device
US10023491B2 (en) 2014-07-16 2018-07-17 Unifrax I Llc Inorganic fiber
CN107002295B (en) 2014-07-16 2020-03-06 尤尼弗瑞克斯 I 有限责任公司 Inorganic fibers having improved shrinkage and strength
CA2953765A1 (en) 2014-07-17 2016-01-21 Unifrax I Llc Inorganic fiber with improved shrinkage and strength
US9919957B2 (en) 2016-01-19 2018-03-20 Unifrax I Llc Inorganic fiber
US11203551B2 (en) 2017-10-10 2021-12-21 Unifrax I Llc Low biopersistence inorganic fiber free of crystalline silica
US10882779B2 (en) 2018-05-25 2021-01-05 Unifrax I Llc Inorganic fiber
CN110438485A (en) * 2019-07-29 2019-11-12 吴俊杰 A kind of phosphatization treatment system of PVC spray-bonding craft

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR884852A (en) * 1940-05-10 1943-08-30 Opel Adam Ag Method for protecting the interior surface of gasoline tanks and liquid fuel lines from rust
JPS536945B2 (en) * 1973-02-27 1978-03-13
JPS51136539A (en) * 1975-05-22 1976-11-26 Ota Toshuki Process for coating aluminum with inorganic substance
JPS5481132A (en) * 1977-12-13 1979-06-28 Teikoku Kako Kk Steel materials for use in ferroconcretes
JPS54148139A (en) * 1978-04-24 1979-11-20 Nippon Steel Corp Bolt set excellent in ease to paint, corrosion resistance, lubricativity, and co-turning inhibition
US4592958A (en) * 1983-01-18 1986-06-03 Sermatech Coated part, coating therefor and method of forming same

Also Published As

Publication number Publication date
BR8803842A (en) 1989-02-21
EP0302465A3 (en) 1990-01-31
AU2038688A (en) 1989-02-09
JPS6436774A (en) 1989-02-07
EP0302465A2 (en) 1989-02-08
MX170165B (en) 1993-08-10
AU606726B2 (en) 1991-02-14

Similar Documents

Publication Publication Date Title
JPH0730459B2 (en) Ceramic coating method on metal
KR100779334B1 (en) Surface treated tin-plated steel sheet and chemical treatment solution
EP0243473A4 (en) Method of coating articles of magnesium and an electrolytic bath therefor.
JPH0577750B2 (en)
JP2008208464A (en) Metal material coated with metal oxide and/or metal hydroxide and method for production thereof
KR100838445B1 (en) Liquid trivalent chromate for aluminum or aluminum alloy and method for forming corrosion-resistant film over surface of aluminum or aluminum alloy by using same
JPH08506856A (en) Two-step electrochemical method for magnesium coating
US2544139A (en) Process for enameling aluminumrich alloys
UA76580C2 (en) A process for the preparation of steel surface for single-dip zinc galvanizing and a process for steel galvanizing
JP3737168B2 (en) Manufacturing method of electrogalvanized steel sheet with high whiteness and excellent paintability
US4170525A (en) Process for plating a composite structure
US4295899A (en) Process for coating iron and steel
JPH055899B2 (en)
JPH06306632A (en) Bright bluing method for hot dip-aluminum alloy plated steel sheet
JP2816559B2 (en) Manufacturing method of black galvanized steel sheet
JP2794674B2 (en) Blackening treatment method for Al, Al alloy or plated steel sheet thereof
JPS55110783A (en) Surface treated steel plate with excellent spot weldability
KR930011768B1 (en) Method of making chromated electro-galvanized steel sheet having excellent blackning resistance, corrosion resistance and chrom-fitting ratio after alkaline removal of fat
JP2000219975A (en) SURFACE TREATED Mg ALLOY AND SURFACE TREATING METHOD THEREFOR
JPH0192379A (en) Highly corrosion-resistant chromate treatment of aluminized steel sheet
JP2779953B2 (en) Method for forming ceramic film on aluminum substrate surface
KR960000879B1 (en) After-treatment method for treating an aluminium deposition of
JP2002060959A (en) Galvanized steel sheet excellent in corrosion resistance and adhesive strength of coating, chemically treating solution and chemical conversion treating method
JP2000263695A (en) Organic composite coated steel panel
JP3177018B2 (en) Heat-resistant colored Al-based plated steel sheet