KR960000879B1 - After-treatment method for treating an aluminium deposition of - Google Patents

After-treatment method for treating an aluminium deposition of Download PDF

Info

Publication number
KR960000879B1
KR960000879B1 KR1019930022381A KR930022381A KR960000879B1 KR 960000879 B1 KR960000879 B1 KR 960000879B1 KR 1019930022381 A KR1019930022381 A KR 1019930022381A KR 930022381 A KR930022381 A KR 930022381A KR 960000879 B1 KR960000879 B1 KR 960000879B1
Authority
KR
South Korea
Prior art keywords
aluminum
steel sheet
deposited
treatment
post
Prior art date
Application number
KR1019930022381A
Other languages
Korean (ko)
Other versions
KR950011645A (en
Inventor
전재호
최장현
정진호
신정철
Original Assignee
한국신철강기술연구조합
백덕현
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국신철강기술연구조합, 백덕현 filed Critical 한국신철강기술연구조합
Priority to KR1019930022381A priority Critical patent/KR960000879B1/en
Publication of KR950011645A publication Critical patent/KR950011645A/en
Application granted granted Critical
Publication of KR960000879B1 publication Critical patent/KR960000879B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Abstract

The aftertreatment of aluminium-deposited steel plate is conducted by heat treating the plated steel plate at 450-550 deg.C for less than 2 mins, and bathing it in the distilled water at the temperature higher than 80 deg.C for more than 10 mins. The method is much simpler than the conventional chromate process. Aluminium-plated steel plate treated by this method has an excellent anti-corrosion property and can be used for outdoor structural material.

Description

알루미늄 증착도금강판의 후처리방법Post-treatment method of aluminum evaporated plated steel sheet

본 발명은 내식성을 증가시키기 위해 알루미늄 증착도금강판의 후처리를 실시함에 있어서, 우선 강판표면에 진공증착 방법으로 알루미늄을 증착시킨 후 알루미늄이 도금된 강판을 적절히 열처리하여 알루미늄도금층 표면위에 산화막과 수화막을 형성하여 내식성을 증가시키는 방법에 관한 것이다.In the present invention, in performing the post-treatment of an aluminum-coated plated steel sheet to increase the corrosion resistance, first, by depositing aluminum on the surface of the steel sheet by vacuum deposition method, and then heat treatment of the aluminum-plated steel sheet by appropriate heat treatment, It relates to a method of forming to increase the corrosion resistance.

강판은 원래 강판자체의 기계적 성질이 우수하고 가공성이 양호하며 쉽게 구할 수 있어 자동차, 가전제품 및 건재 등의 구조재로 널리 이용되고 있다. 그러나 강판자체는 내식성이 떨어지기 때문에 부식을 방지하기 위해 아연이나 알루미늄 등을 도금한 표면처리 강판이 널리 사용되고 있다. 특히 건재 및 가전제품에 사용이 확대되고 있는 알루미늄 도금강판은 알루미늄의 전기화학적 특성 때문에 수용액을 이용한 전기도금방법으로는 제조하기 어려우며 주로 용융도금법으로 제조된다.Steel sheets are widely used as structural materials for automobiles, home appliances, and building materials because they have excellent mechanical properties, good processability, and are readily available. However, since the steel sheet itself is poor in corrosion resistance, surface-treated steel sheets coated with zinc or aluminum are widely used to prevent corrosion. In particular, aluminum plated steel sheets, which are being used for building materials and home appliances, are difficult to be manufactured by an electroplating method using an aqueous solution due to the electrochemical properties of aluminum, and are mainly manufactured by hot dip plating.

현재 용융알루미늄 도금강판은 5~10%의 규소(Si)가 첨가된 700℃ 정도의 용융알루미늄 도금욕에 강판을 통과시켜 제조하고 있다. 그런데 700℃의 고온 도금용을 통과시켜 만들어지므로 강판의 기계적 성질을 약화시켜서 도금전의 강판의 기계적 성질을 유지할 수 없으며, 또한 소지강판 선택에 제약이 따른다. 그리고 가공시 도금층과 지지강판 사이클 기점으로 크랙이 생겨 소지강판이 외부환경에 노출되어 내식성을 저하시킬 수 있는 단점들을 가지고 있다.Currently, a molten aluminum plated steel sheet is manufactured by passing a steel plate through a molten aluminum plating bath at about 700 ° C. to which 5 to 10% of silicon (Si) is added. However, since it is made by passing the high temperature plating for 700 ℃, it is not possible to maintain the mechanical properties of the steel sheet before plating by weakening the mechanical properties of the steel sheet, and there is a restriction in the selection of the steel sheet. In addition, cracks may occur as a starting point of the plating layer and the supporting steel sheet during processing, and thus the base steel sheet may be exposed to the external environment, thereby reducing corrosion resistance.

그래서 최근에는 진공증착방법에 의한 알루미늄 도금방법이 개발되어 왔다. 이 방법은 350℃ 이하의 비교적 낮은 온도에서 증착도금이 이루어지므로 강판과 알루미늄 도금층 계면에서 알루미늄-철(Al-Fe) 합금층이 형성되지 않을 뿐 아니라 소재강판의 기계적 성질에 미치는 영향이 적어 도금전후 강판의 기계적 성질을 일정하게 유지시킬 수 있고 가공시에도 도금층과 소지강판사이의 크랙이 잘 생기지 않는다는 장점이 있다.In recent years, an aluminum plating method has been developed by a vacuum deposition method. In this method, the deposition plating is performed at a relatively low temperature of 350 ° C. or lower, so that the aluminum-iron (Al-Fe) alloy layer is not formed at the interface between the steel plate and the aluminum plating layer, and has little influence on the mechanical properties of the material steel sheet. The mechanical properties of the steel sheet can be kept constant and there is an advantage that the crack between the plated layer and the base steel sheet does not easily occur during processing.

그러나 용융 알루미늄 도금강판이나 증착 알루미늄 도금강판은 알루미늄 금속의 특성상 무도장상태에서 옥외구조제 등으로 사용시, 초기에 흑변이 발생하여 외관이 불량해진다는 결점을 가지고 있다. 그래서 알루미늄을 도금한 후에도 초기내식성을 증가시키기 위해 후처리를 실시한다.However, molten aluminum plated or deposited aluminum plated steel sheet has the drawback that when it is used as an outdoor structural agent in an unpainted state due to the characteristics of the aluminum metal, black edges are initially generated and appearance is poor. Therefore, after plating aluminum, post treatment is performed to increase the initial corrosion resistance.

지금까지 개발되어 온 대표적인 알루미늄금속의 후처리 기술에는 크로메이트처리 방법이 있다. 크로메이트처리 방법은 알루미늄 도금강판을 프로라이드 (Fluoride) 이온 등을 포함한 크롬산용액속에 침적하거나, 크롬산 용액을 도금강판에 직접 스프레이(Sparay)시켜 표면에 크롬산 산화피막을 형성하는 방법이다. 그러나 이러한 크로메이트처리 방법은 프로라이드(Fluoride) 이온을 포함한 6가 크롬산과(CrO3)을 용액으로 사용하기 때문에 작업환경이 나쁘고 공해문제를 유발하기 쉬우며, 중크롬산을 포함한 폐액의 폐수처리가 별도로 필요하게 된다. 그래서, 최근에는 건식도금법에 의해 산화막을 형성시키는 방법이 개발되고 있으나, 아직 만족할 만한 결과를 보여주지 못하고 있다.Representative aluminum metal post-treatment technology has been developed so far chromate treatment method. The chromate treatment method is a method of depositing an aluminum plated steel plate in a chromic acid solution containing fluoride ions or the like, or spraying the chromic acid solution directly on the plated steel sheet to form a chromium oxide film on the surface. However, the chromate treatment method uses hexavalent chromic acid (CrO 3 ) containing fluoride ions as a solution, which makes the working environment worse and causes pollution problems, and requires separate treatment of wastewater containing dichromic acid. Done. Therefore, in recent years, a method of forming an oxide film by a dry plating method has been developed, but has not yet been satisfactory.

본 발명은 내식성을 증가시키기 위해 알루미늄 증착도금강판의 후처리를 실시함에 있어, 기존의 기술보다 제조공정이 간단하고 공해유발요인이 없는 후처리 기술 및 그 제품의 제조방법에 관한 것이다.The present invention relates to a post-treatment technique and a method of manufacturing the product in the post-treatment of an aluminum-coated plated steel sheet to increase the corrosion resistance, the manufacturing process is simpler than the existing technique and there is no pollution-causing factor.

본 발명의 제조공정을 상세히 설명하면 다음과 같다.Hereinafter, the manufacturing process of the present invention will be described in detail.

먼저 소지기판인 일반냉연강판을 아세톤 및 알콜 용액에서 초음파 세척을 한 후 진공증착 챔버내에 장입시키고 알루미늄 금속 낟알(grain)을 수냉식 구리 도가니에 채운 후 진공배기시키고 전자빔을 이용하여 알루미늄을 진공증착시킨다. 그리고 알루미늄이 증착된 도금강판위에 산화막을 형성시키기 위해 공기중에서 가열시키는데, 온도는 450℃ 이상 600℃ 미만의 온도에서 2분 미만 동안 가열시켜야 한다. 여기서 가열온도를 450℃ 이상에서 하는 이유는 450℃ 이하에서는 안정한 알루미늄 산화막인 r-Al2O3가 제대로 형성하지 못하기 때문이고, 상한온도를 600℃ 미만으로 하는 이유는 600℃ 이상에서는 소지강판의 기계적 성질에 영향을 줄 뿐 아니라 소지금속에 있는 Fe가 도금층까지 확산하여 도금층 조직을 변화시켜 내식성 및 밀착성을 나쁘게 하기 때문이다. 그리고 가열시간을 2분 이상 증가시키면 도금층의 조직 및 기계적 성질을 약화시키기 때문에 2분 미만으로 가열하는 것이 중요하다.First, the general cold rolled steel plate, which is a base plate, is ultrasonically cleaned in acetone and alcohol solution, then charged into a vacuum deposition chamber, filled with aluminum metal grains in a water-cooled copper crucible, vacuum evacuated, and vacuum-evaporated aluminum using an electron beam. And in order to form an oxide film on the aluminum-deposited coated steel sheet is heated in air, the temperature should be heated for less than 2 minutes at a temperature of 450 ℃ to less than 600 ℃. The reason why the heating temperature is above 450 ° C. is because r-Al 2 O 3, which is a stable aluminum oxide film, is not formed properly at 450 ° C. or lower, and the reason why the upper limit temperature is lower than 600 ° C. is a steel sheet at 600 ° C. or higher. This is because not only affects the mechanical properties of Fe but also Fe spreads on the plating metal to the plating layer, thereby changing the structure of the plating layer, thereby deteriorating corrosion resistance and adhesion. Increasing the heating time by 2 minutes or more weakens the structure and mechanical properties of the plating layer, so it is important to heat it to less than 2 minutes.

공기중에서 가열된 시편은 곧바로 80℃ 이상의 증류수에 탕욕을 시켜야 한다. 탕욕을 시키는 이유는 다음과 같다. 일반적으로 공기중에서 가열된 알루미늄 도금강판의 표면은 알루미늄 산화막을 형성하게 되는데, 형성된 산화피막은 기공이 존재하여 밑에 있는 도금층을 완전히 보호해 줄 수 없다. 그래서 고온의 증류수에 탕욕을 시킴으로 물에 의한 밀봉작용을 하기 위한 것이다. 밀봉작용은 고온의 증류수(H2O)와 r-Al2O3가 반응하여 Bochmite 등의 여러가지 알루미늄계 수화물을 형성하는 것과 관계가 있다. 그리고 80℃ 이하의 증류수에서는 증류수와 r-Al2O3와의 반응이 충분히 일어나지 못하기 때문에 적어도 80℃ 이상의 증류수에서는 탕욕을 시켜야 한다. 또한 탕욕 침적시간도 충분한 반응시간을 주기위해 약 10분간 이상 침적해야 한다.Specimens heated in air should be immediately bathed in distilled water at or above 80 ° C. The reason for bathing is as follows. In general, the surface of the aluminum plated steel sheet heated in the air forms an aluminum oxide film, the formed oxide film can not completely protect the underlying plating layer due to the presence of pores. So it is to seal the water by putting a hot bath in hot distilled water. The sealing action is related to the formation of various aluminum hydrates such as Bochmite by the reaction of hot distilled water (H 2 O) with r-Al 2 O 3 . In distilled water of 80 ° C. or less, the reaction between distilled water and r-Al 2 O 3 does not occur sufficiently. The bath bath deposition time should also be deposited for at least 10 minutes to give sufficient reaction time.

본 발명의 구체적인 실시예를 설명하면 다음과 같다.Hereinafter, specific embodiments of the present invention will be described.

발명예(1~5)Invention example (1-5)

본 발명에서는 일반 냉연강판을 알칼리 용액에서 탈지한 후 아세톤 및 알콜 용액에서 초음파세척을 하여 전처리를 실시하였다. 이렇게 전처리를 거친 강판을 진공조에 장입하여 10-4torr까지 진공배기하였다. 진공배기 후 기판을 250℃ 온도까지 가열하고 전자빔을 이용 알루미늄을 5㎛ 두께로 증착하여 알루미늄 도금강판을 제조하였다. 후처리는 알루미늄진공증착 강판을 온도 450℃, 500℃, 550℃에서 각각 1분간 열처리를 실시한 후, 80℃ 이상의 온도에서 10분 이상 탕욕을 시켰다.In the present invention, the general cold rolled steel sheet is degreased in an alkaline solution, and then pretreated by ultrasonic cleaning in acetone and alcohol solution. The pretreated steel sheet was charged into a vacuum chamber and evacuated to 10 -4 torr. After vacuum evacuation, the substrate was heated to a temperature of 250 ° C., and aluminum was deposited to a thickness of 5 μm using an electron beam to prepare an aluminum plated steel sheet. In the post-treatment, the aluminum vacuum-deposited steel sheet was heat-treated at temperatures of 450 ° C., 500 ° C. and 550 ° C. for 1 minute, and the bath was heated for 10 minutes or more at a temperature of 80 ° C. or higher.

비교예(1~3)Comparative example (1-3)

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 400℃, 600℃, 650℃에서 1분간 열처리를 실시하고 80℃ 이상의 증류수에 20분간 침적하였다.After the aluminum was deposited to a thickness of 5 μm by the same method as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, heat treatment was performed at 400 ° C., 600 ° C., and 650 ° C. for 1 minute as distilled water. Was soaked for 20 minutes.

비교예(4~5)Comparative example (4-5)

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 500℃에서 각각 2분, 3분간 열처리를 실시하고 80℃ 이상의 증류수에 20분간 침적하였다.After the aluminum was deposited to a thickness of 5 μm by the same method as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, heat treatment was performed at 500 ° C. for 2 minutes and 3 minutes, respectively. It was deposited for a minute.

비교예 6Comparative Example 6

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리를 실시하지 않았다.After the aluminum was deposited to a thickness of 5 μm by the same method as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, no post-treatment was performed.

비교예 7Comparative Example 7

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 500℃에서 1분간 열처리를 실시하였다.Aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and then heat-treated at 500 ° C. for 1 minute as a post-treatment.

비교예 8Comparative Example 8

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 500℃에서 1분간 열처리를 실시하고 80℃ 이상의 증류수에 2분간 침적하였다.Aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and then heat-treated at 500 ° C. for 1 minute and immersed in distilled water at 80 ° C. or higher for 2 minutes.

비교예 9Comparative Example 9

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 80℃ 이상의 증류수에 20분간 침적하였다.Aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and then deposited in distilled water of 80 ° C. or higher for 20 minutes as a post-treatment.

비교예(10~11)Comparative example (10-11)

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 프로라이드(Floride) 이온을 함유된 크롬산용액을 스프레이시켜 크로메이트 처리를 실시하였다.Aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and then chromate treatment was performed by spraying a chromic acid solution containing a Floride ion as a post treatment. .

비교예(12~13)Comparative example (12-13)

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 진공증착 방법으로 Cr2O3를 각각 1000Å, 500Å 두께로 증착하였다.Aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and then, as a post-treatment, Cr 2 O 3 was deposited to 1000 μs and 500 μs by vacuum deposition.

비교예(14~15)Comparative Example (14-15)

발명예(1~5)와 같은 방법으로 알루미늄을 5㎛ 두께로 증착하여 알루미늄진공증착 강판을 제조한 후, 후처리로서 진공증착 방법으로 Cr을 각각 500Å, 2000Å 두께로 증착시키고 다시 500℃에서 1분간 열처리를 실시하여 표면에 Cr2O3를 형성시켰다.After the aluminum was deposited to a thickness of 5 μm in the same manner as inventive examples (1 to 5) to prepare an aluminum vacuum-deposited steel sheet, and as a post-treatment, Cr was deposited to a thickness of 500 kPa and 2000 kPa, respectively, by vacuum evaporation. Heat treatment was performed for a minute to form Cr 2 O 3 on the surface.

상기와 같이 제조된 시편은 다음과 같은 방법으로 도금층의 평가를 실시하였다.The specimen prepared as described above was evaluated for the plating layer in the following manner.

(1) 초기내식성 시험 : 발명제품과 비교제품의 초기내식성을 비교, 평가하기 위해 10㎝×15㎝의 크기로 시편을 제조한 후 각 시편을 ASTM B3317-73에 의거 염수분무장치에서 내식성을 평가하였다. 초기 내식성평가는 염수분무시험중 24시간을 단위로 시면 표면에 흑청이 2개 이상 발생하는 시점을 기준으로 하여 실시하였다.(1) Initial corrosion resistance test: In order to compare and evaluate the initial corrosion resistance of the invention product and the comparative product, after the specimens were prepared in the size of 10cm × 15cm, each specimen was evaluated by the salt spray device according to ASTM B3317-73. It was. Initial corrosion resistance evaluation was performed based on the time when two or more black blues occurred on the surface of the saline spray test in units of 24 hours.

(2) 나내식성 시험 : 발명제품과 비교제품의 나내식성을 비교, 평가하기 위해 10㎝×15㎝의 크기로 시편을 제조한 후 각 시편을 ASTM B3317-73에 의거 염수분무장치에서 내식성을 평가하였다. 나내식성 평가는 염수분무시험중 24시간을 단위로 시편표면에 적청이 5% 발생하는 시점을 기준으로 하여 실시하였다.(2) Corrosion resistance test: In order to compare and evaluate the corrosion resistance of the invention product and the comparative product, the specimens were prepared in the size of 10cm × 15cm, and each specimen was evaluated by the salt spray device according to ASTM B3317-73. It was. The corrosion resistance evaluation was performed based on the time when 5% of red blue color occurred on the surface of the specimen during 24 hours during the salt spray test.

(3) 밀착성 시험 : 발명제품과 비교제품의 밀착성을 비교, 평가하기 위해 각 시편을 180도 Ot 굴곡 후 접착 테이프를 이용하여 도금층의 박리 정도를 다음과 같이 비교, 평가하였다.(3) Adhesion Test: In order to compare and evaluate the adhesion between the invention product and the comparative product, each specimen was subjected to 180 degree Ot bending, and then the degree of peeling of the plating layer was compared and evaluated as follows.

표1의 발명예(1~5)에서 보여주듯이, 알루미늄도금강판을 온도 450℃에서 550℃ 사이로 열처리를 실시한 후 탕욕시킨 시편의 경우는 후처리를 전혀 실시하지 않은 시편인 비교예 6의 경우보다 초기내식성이 약 5배 증가하였고 나내식성이 4배 이상 증가하였다. 또한 크로메이트처리된 시편인 비교예(10~11) 보다 동등 이상의 결과를 보여주고 있다. 그리고 열처리만 실시한 경우나, 탕욕만을 실시한 시편의 경우에는 내식성의 증가가 크게 나타나지 않았고 건식도금방법으로 후처리를 실시한 비교예(12~15)의 경우에도 내식성 및 밀착성이 우수하지 못했다.As shown in Inventive Examples (1 to 5) of Table 1, the specimens in which the aluminum plated steel sheet was heat-treated after being heat treated at a temperature of 450 ° C. to 550 ° C. were compared to the case of Comparative Example 6, which was not subjected to any post-treatment. Initial corrosion resistance increased about 5 times and resistance to corrosion increased more than 4 times. In addition, the results are equal to or greater than those of Comparative Examples (10 to 11), which are chromate-treated specimens. In addition, in the case of the heat treatment alone, or in the sample subjected only to the bath, the corrosion resistance did not increase significantly, and the comparative examples (12 to 15) subjected to the post-treatment by the dry plating method did not have excellent corrosion resistance and adhesion.

[표 1]TABLE 1

상술한 바와 같이 본 발명은 알루미늄 도금강판을 후처리함에 있어서 기존의 크로메이트 방법보다 제조공정이 간단하고 공해유발요인이 없이 후처리를 실시할 수 있고, 이 방법으로 후처리된 알루미늄도금강판을 초기내식성 및 나내식성이 우수하여 옥외구조제 등의 용도로 사용이 가능하다.As described above, in the present invention, the post-treatment of the aluminum plated steel sheet is simpler than the conventional chromate method, and the post-treatment can be performed without causing pollution, and the post-treated aluminum plated steel sheet is subjected to initial corrosion resistance. And it has excellent corrosion resistance and can be used for outdoor structures.

Claims (1)

알루미늄증착 도금강판의 후처리 방법에 있어서, 450℃~550℃의 온도에서 2분 미만 열처리를 실시한 후, 80℃ 이상의 증류수에서 10분 이상 탕욕시키는 것을 특징으로 하는 알루미늄 증착도금강판의 후처리 방법.A post-treatment method for an aluminum deposition plated steel sheet, wherein the heat treatment is performed at a temperature of 450 ° C. to 550 ° C. for less than 2 minutes, followed by a hot bath for 10 minutes or more in distilled water of 80 ° C. or higher.
KR1019930022381A 1993-10-26 1993-10-26 After-treatment method for treating an aluminium deposition of KR960000879B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930022381A KR960000879B1 (en) 1993-10-26 1993-10-26 After-treatment method for treating an aluminium deposition of

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930022381A KR960000879B1 (en) 1993-10-26 1993-10-26 After-treatment method for treating an aluminium deposition of

Publications (2)

Publication Number Publication Date
KR950011645A KR950011645A (en) 1995-05-15
KR960000879B1 true KR960000879B1 (en) 1996-01-13

Family

ID=19366627

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930022381A KR960000879B1 (en) 1993-10-26 1993-10-26 After-treatment method for treating an aluminium deposition of

Country Status (1)

Country Link
KR (1) KR960000879B1 (en)

Also Published As

Publication number Publication date
KR950011645A (en) 1995-05-15

Similar Documents

Publication Publication Date Title
JP2608569B2 (en) Laminated vapor-deposited steel sheet
GB2091591A (en) Surface treated steel sheets for paint coating
JP3967519B2 (en) Zn-Mg electroplated metal plate and method for producing the same
JP2782451B2 (en) High corrosion resistance superimposed plated steel sheet
KR101898729B1 (en) Zinc coated steel sheet and a manufacturing method thereof
KR960000879B1 (en) After-treatment method for treating an aluminium deposition of
JPS58181855A (en) Production of steel plate hot-dipped in aluminum base composite
JP2816559B2 (en) Manufacturing method of black galvanized steel sheet
JP2912029B2 (en) Alloyed galvanized steel sheet
KR100276336B1 (en) The al-silico oxide composite sheet and the same method
JPS6157905B2 (en)
JPH0617232A (en) Si/zn two-layer galvanized steel sheet excellent in corrosion resistance and having beautiful appearance and its production
KR960009199B1 (en) Vacuum deposite mn/galvannealed steel sheets and the method therefor
KR940000875B1 (en) Surface treatment steel sheet with a black oxide finish and method for making the same
JP3149751B2 (en) Manufacturing method of steel plate with excellent white rust resistance and paintability
JPH04246193A (en) Galvanized metal material excellent in resistance to heat and corrosion
JP3367454B2 (en) Method for producing chromate-treated galvanized steel sheet with excellent organic resin film adhesion and edge creep resistance
JP2927511B2 (en) Multi-layer coated steel sheet and method for producing the same
JPH06322523A (en) Vapor phase ceramic coated plated steel sheet
KR0146874B1 (en) Method for manufacturing zn-cr/zn alloy coated steel sheet with 2-layers
KR920000533B1 (en) Method of producing a plating stainless steel sheet with an excellent paint adhesion
JPS63166964A (en) Zinc galvanized aluminum or aluminum alloyed plate
KR20050064066A (en) Depostion of amorphous silicon oxides onto galvanized and galvannealed sheet steels
JPH04236798A (en) Method for pretreating aluminum base metal before coating
JPH0328509B2 (en)

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 19961022

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee