JPS6363726B2 - - Google Patents

Info

Publication number
JPS6363726B2
JPS6363726B2 JP55049449A JP4944980A JPS6363726B2 JP S6363726 B2 JPS6363726 B2 JP S6363726B2 JP 55049449 A JP55049449 A JP 55049449A JP 4944980 A JP4944980 A JP 4944980A JP S6363726 B2 JPS6363726 B2 JP S6363726B2
Authority
JP
Japan
Prior art keywords
intake passage
diameter
combustion chamber
diameter intake
swirling flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55049449A
Other languages
Japanese (ja)
Other versions
JPS56146015A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4944980A priority Critical patent/JPS56146015A/en
Publication of JPS56146015A publication Critical patent/JPS56146015A/en
Publication of JPS6363726B2 publication Critical patent/JPS6363726B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、1気筒あたり2個の吸気孔を有する
内燃機関の吸気装置に関し、更に詳しくは、燃焼
を改善するため燃焼室内に旋回流を形成する内燃
機関の吸気装置に係るものである。
The present invention relates to an intake system for an internal combustion engine having two intake holes per cylinder, and more particularly to an intake system for an internal combustion engine that forms a swirling flow within a combustion chamber to improve combustion.

【従来の技術】 排気ガス中の有害成分を低減する方法として、
希薄混合気を用いたり、或いは大量の排気ガスを
機関吸気系に再循環する方法が知られている。し
かし、これらの方法を用いた場合、混合気の燃焼
速度が遅くなるため、安定した燃焼を確保するこ
とは困難である。 特に低負荷運転時は、燃焼室内に既燃ガスの残
留分が多く、燃焼速度が遅くなりがちである。こ
のため、低負荷運転時には、燃焼速度を速めるこ
とが必要となる。また、最近では燃料消費率を向
上させるために混合気を高圧縮化する傾向がある
が、圧縮比を高めると特に低中速回転の高負荷運
転時にノツキングが発生しやすくなり、このノツ
キングの発生を阻止するためには燃焼速度を速め
ることが必要となる。 このように燃焼速度を速める方法の一つとし
て、燃焼室内に強力な旋回流或いは乱れを発生さ
せる方法がある。燃焼室内に旋回流を発生させる
方法として、ヘリカル型吸気ポートを使用する方
法(例えば、特開昭52−104612号公報参照)や、
細い通路からの方向性を有する噴流を利用する方
法(例えば、特開昭53−4109号公報、特開昭53−
97605号公報、特開昭53−127914号公報参照)が
知られている。 また、気化器下流の吸気通路に形成された合流
空間より各燃焼室に連通する吸気系が、低速用吸
気ポートと高速用吸気ポートとから構成され、低
速用吸気ポートを高速用吸気ポートより小径のヘ
リカル型吸気ポートとなし、かつ高速用吸気ポー
トを低速用吸気ポートと逆向きの大径のヘリカル
型吸気ポートとし、更に高速用吸気ポートに機関
高負荷時または高回転時に開く制御弁を設けるこ
とにより、高速用吸気ポートからの旋回流が低速
用吸気ポートからの旋回流に側方から邂ごうして
可燃混合気の乱れを促進し機関高負荷時の燃焼を
改善した内燃機関の吸気装置が知られている(例
えば、実開昭54−91513号公報)。
[Prior art] As a method of reducing harmful components in exhaust gas,
It is known to use lean mixtures or to recirculate large amounts of exhaust gas into the engine intake system. However, when these methods are used, it is difficult to ensure stable combustion because the combustion speed of the air-fuel mixture becomes slow. Particularly during low-load operation, there is a large amount of burned gas remaining in the combustion chamber, which tends to slow down the combustion rate. Therefore, during low load operation, it is necessary to increase the combustion rate. In addition, there is a recent trend to highly compress the air-fuel mixture in order to improve fuel consumption, but increasing the compression ratio makes it more likely that knocking will occur, especially during high-load operation at low and medium speeds. In order to prevent this, it is necessary to increase the combustion rate. One method of increasing the combustion rate is to generate strong swirling flow or turbulence within the combustion chamber. As a method of generating a swirling flow in the combustion chamber, there is a method of using a helical intake port (for example, see Japanese Patent Application Laid-open No. 104612/1983),
Methods that utilize directional jets from narrow passages (for example, Japanese Patent Laid-Open No. 53-4109;
97605 and Japanese Patent Application Laid-Open No. 127914/1983) are known. In addition, the intake system that communicates with each combustion chamber from the confluence space formed in the intake passage downstream of the carburetor is composed of a low-speed intake port and a high-speed intake port, and the low-speed intake port has a smaller diameter than the high-speed intake port. The high-speed intake port is a large-diameter helical-type intake port in the opposite direction to the low-speed intake port, and the high-speed intake port is equipped with a control valve that opens when the engine is under high load or at high speeds. As a result, the swirling flow from the high-speed intake port collides with the swirling flow from the low-speed intake port from the side, promoting turbulence in the combustible mixture and improving combustion during high engine loads. It is known (for example, Utility Model Application Publication No. 54-91513).

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、機関運転中には、燃焼室内の燃焼室
内の燃焼中或いは燃焼直後の高温ガスから相対的
に低温のシリンダ内壁面への伝熱による冷却損失
が存在し、この冷却損失は旋回流が強い程大き
い。冷却損失は燃料消費率の増大を招くので、も
し旋回流があまり必要でない運転条件であるなら
ば旋回流は弱い方が有利である。この旋回流があ
まり必要ない運転条件としては、中負荷運転時が
あげられる。すなわち、中負荷運転時には、シリ
ンダ内混合気は低負荷運転時に比べ既燃ガスの残
留量が少なく、比較的燃焼しやすい条件である。
また、ノツキングも発生しにくい条件であり、強
力な旋回流は不要であつて逆に冷却損失が問題に
なる。 しかしながら、上述した従来の旋回流発生機構
においては、旋回流が必必要な低負荷運転時及び
高負荷運転時だけでなく中負荷運転時までも旋回
流を形成するため、冷却損失が増大し、熱効率が
低下し、その結果機関の燃料消費率が増大すると
いつた問題があつた。 従つて、本発明は上記の問題点に鑑みて提案さ
れたもので、その目的は、旋回流の必要な低負荷
運転時及び高負荷運転時では旋回流を形成し、旋
回流があまり必要ではなく、逆に冷却損失が問題
となる中負荷運転時では旋回流を低減し、細かい
混合気乱れを発生させることにより、燃焼を改善
すると共に燃料消費率の低減を図ることにある。
By the way, during engine operation, there is a cooling loss due to heat transfer from the high-temperature gas in the combustion chamber during combustion or immediately after combustion to the relatively low-temperature inner wall of the cylinder, and this cooling loss is caused by a strong swirling flow. It's reasonably big. Since cooling loss causes an increase in fuel consumption rate, if the operating conditions are such that swirling flow is not very necessary, it is advantageous to have a weak swirling flow. An example of an operating condition in which this swirling flow is not so necessary is during medium load operation. That is, during medium-load operation, the air-fuel mixture in the cylinder has a smaller amount of residual burnt gas than during low-load operation, and the condition is such that it is relatively easy to burn.
Furthermore, the conditions are such that knocking is unlikely to occur, and a strong swirling flow is unnecessary, and cooling loss becomes a problem. However, in the conventional swirling flow generation mechanism described above, the swirling flow is formed not only during low load operation and high load operation when swirling flow is necessary, but also during medium load operation, so cooling loss increases. The problem was that the thermal efficiency decreased, resulting in an increase in the fuel consumption rate of the engine. Therefore, the present invention was proposed in view of the above problems, and its purpose is to form a swirling flow during low-load operation and high-load operation when swirling flow is necessary, and to form a swirling flow when swirling flow is not so necessary. On the contrary, during medium load operation where cooling loss becomes a problem, the swirling flow is reduced and fine air-fuel mixture turbulence is generated to improve combustion and reduce fuel consumption.

【問題点を解決するための手段】[Means to solve the problem]

そこで本発明は、上述の問題点を解決するため
の手段として、次のような構成を採用したもので
ある。 すなわち、本発明は、上述した1気筒あたり2
本に分岐した大径吸気通路及び小径吸気通路を有
する内燃機関の吸気装置において、大径吸気通路
をヘリカル型吸気ポートとする一方、小径吸気通
路を上記大径吸気通路の断面積の1/5〜1/7の断面
積を有し、かつ上記大径吸気通路による旋回流と
は逆まわりの旋回流を燃焼室内に形成する偏流ポ
ートとし、更に上記大径吸気通路内に気化器のベ
ンチユリ負圧の増大に従つて全閉状態から徐々に
開度を増大するよう制御される制御弁を設け、中
負荷運転時において上記小径吸気通路及び大径吸
気通路によつて形成される旋回流が衝突し、低減
されることを特徴とする。 具体的には、第1図及び第2図を例にとつて説
明すると、内燃機関の吸気装置は、気化器15下
流の吸気通路に合流空間14を有すると共に、そ
の合流空間14より1気筒あたり2本に分岐した
大径吸気通路7a,7b及び小径吸気通路8a,
8bの各々の通路に独立して設けられた吸気弁
4,5を介して燃焼室25に連結している。 大径吸気通路7a,7bは燃焼室25近傍でヘ
リカル形状に構成され、その吸気通路7a,7b
により燃焼室25内に旋回流を形成するようにな
つている。 小径吸気通路8a,8bは上記大径吸気通路7
a,7bの断面積の1/5〜1/7の断面積を有して燃
焼室外周近傍に接線状に開口するほぼまつすぐな
形状とされ、上記大径吸気通路7a,7bによる
旋回流とは逆まわりの旋回流を燃焼室25内に形
成するべく接続される。 更に、上記大径吸気通路内7a,7bには気化
器15のベンチユリ負圧の増大に従つて全閉状態
から徐々に開度を増大するよう制御される制御弁
10が設けられる。
Therefore, the present invention adopts the following configuration as a means for solving the above-mentioned problems. That is, the present invention provides the above-mentioned 2 cylinders per cylinder.
In an intake system for an internal combustion engine that has a large-diameter intake passage and a small-diameter intake passage that are bifurcated, the large-diameter intake passage is a helical intake port, and the small-diameter intake passage is 1/5 of the cross-sectional area of the large-diameter intake passage. It has a cross-sectional area of ~1/7 and forms a swirling flow in the combustion chamber in the opposite direction to the swirling flow caused by the large-diameter intake passage. A control valve is provided that is controlled to gradually increase the opening degree from the fully closed state as the pressure increases, and the swirling flow formed by the small diameter intake passage and the large diameter intake passage collides during medium load operation. and is characterized by being reduced. Specifically, to explain this using FIGS. 1 and 2 as examples, an intake system for an internal combustion engine has a merging space 14 in the intake passage downstream of the carburetor 15, and from the merging space 14 per cylinder. Large diameter intake passages 7a, 7b and small diameter intake passage 8a branched into two,
The combustion chamber 8b is connected to the combustion chamber 25 via intake valves 4 and 5 provided independently in each passage. The large diameter intake passages 7a, 7b are configured in a helical shape near the combustion chamber 25, and the intake passages 7a, 7b are configured in a helical shape near the combustion chamber 25.
As a result, a swirling flow is formed within the combustion chamber 25. The small diameter intake passages 8a and 8b are the same as the large diameter intake passage 7.
It has a cross-sectional area of 1/5 to 1/7 of the cross-sectional area of the intake passages a and 7b, and has an almost straight shape that opens tangentially near the outer periphery of the combustion chamber, and the swirling flow due to the large diameter intake passages 7a and 7b is It is connected to form a swirling flow in the combustion chamber 25 in the opposite direction. Further, a control valve 10 is provided in the large-diameter intake passages 7a, 7b, and the control valve 10 is controlled to gradually increase its opening degree from a fully closed state as the vent valve negative pressure of the carburetor 15 increases.

【作用】[Effect]

上述の手段によれば、低負荷運転時では、気化
器15のベンチユリ負圧が発生しないので制御弁
10は閉じられている。それ故、全混合気は小径
吸気通路8a,8bを通つて燃焼室25内に供給
され、燃焼室25内に強力な旋回流が形成されて
燃焼速度が速められる。〔第3図〕。 中負荷運転時になると、吸入空気量が増大する
のに伴つて気化器15のベンチユリ負圧も増大
し、そのベンチユリ負圧に応じた量だけ制御弁1
0が開放される。それ故、混合気は小径吸気通路
8a,8b及び大径吸気通路7a,7bの両方か
ら燃焼室25内に供給される。そして、小径吸気
通路8a,8b及び大径吸気通路7a,7bによ
つて形成される旋回流は互いに逆向きであるた
め、流れが出会う位置で衝突する。この結果、旋
回流は低減すると共に、細かい乱れが形成され、
冷却損失が低減される〔第4図〕。 更に、高負荷運転時では、大きなベンチユリ負
圧が発生し、制御弁10はほぼ全開となる。それ
故、大部分の混合気は断面積が大きく設定された
流路抵抗の小さい大径吸気通路7a,7bを通つ
て燃焼室25内に供給される。この結果、ヘリカ
ル形状をなす大径吸気通路7a,7bにより、燃
焼室25内には強力な旋回流が形成され、燃焼速
度が速められてノツキングの発生が抑制される
〔第5図〕。
According to the above-mentioned means, during low-load operation, the control valve 10 is closed because no vent negative pressure is generated in the carburetor 15. Therefore, the entire air-fuel mixture is supplied into the combustion chamber 25 through the small-diameter intake passages 8a and 8b, and a strong swirling flow is formed within the combustion chamber 25, increasing the combustion speed. [Figure 3]. During medium load operation, as the amount of intake air increases, the vent lily negative pressure of the carburetor 15 also increases, and the control valve 1 is closed by an amount corresponding to the vent lily negative pressure.
0 is released. Therefore, the air-fuel mixture is supplied into the combustion chamber 25 from both the small-diameter intake passages 8a, 8b and the large-diameter intake passages 7a, 7b. Since the swirling flows formed by the small-diameter intake passages 8a, 8b and the large-diameter intake passages 7a, 7b are in opposite directions, they collide at the position where the flows meet. As a result, the swirling flow is reduced and fine turbulence is formed.
Cooling loss is reduced (Figure 4). Furthermore, during high-load operation, a large negative pressure is generated in the vent lily, and the control valve 10 is almost fully opened. Therefore, most of the air-fuel mixture is supplied into the combustion chamber 25 through the large-diameter intake passages 7a and 7b having a large cross-sectional area and low flow resistance. As a result, a strong swirling flow is formed in the combustion chamber 25 by the helical-shaped large-diameter intake passages 7a and 7b, increasing the combustion speed and suppressing the occurrence of knocking (FIG. 5).

【実施例】【Example】

以下、本発明の実施例を図面に基づいて詳細に
説明する。 第1図及び第2図は、本発明の一実施例に係る
内燃機関の吸気装置を示す一部断面平面図及び縦
断面図であり、4気筒の火花点火機関である。 シリンダブロツク2は4個のシリンダ23を有
し、各シリンダ内にはピストン3が上下動可能に
挿設されている。シリンダブロツク2の上方には
ガスケツト24を介してシリンダヘツド1が固定
されている。シリンダヘツド1は、各シリンダ2
3ごとに大径吸気弁4、小径吸気弁5、排気弁
6、点火栓22とを有する。 一方、気化器15は2バレル式であり、1次ベ
ンチユリ16及び2次ベンチユリ17を有し、か
つそれぞれに絞り弁116及び117を備える。
気化器15の下流に合流空間14が設けられてい
る。合流空間14からは1気筒あたり2本の吸気
管、すなわち、大径吸気管7a及び小径吸気管8
aが分岐し、それぞれ大径吸気ポート7b及び小
径吸気ポート8bに接続され、更に大径吸気弁4
及び小径吸気弁5を介して燃焼室25に連結され
ている。また、排気ポート9は排気弁6を介して
燃焼室25に連結され、他端は一般の排気系と同
様最終的には大気に開放されている。 大径吸気管7aには、シリンダヘツド1に近接
した位置にそれぞれ制御弁10が設けられてい
る。制御弁10には、リンク機構13を介してダ
イヤフラム装置11の中の空間をA室20、B室
21に分割しているダイヤフラム12の動きが伝
えられる。B室21は大気に開放しており、A室
20はパイプ19を介して気化器15における2
次ベンチユリ17の絞り部に設けた負圧ポート1
8に接続されている。また、ダイヤフラム12は
バネ26によつてB室21側に位置する時に制御
弁10を閉じ、A室20に負圧が導入されダイヤ
フラム12がA室20の方向に移動する時に制御
弁10を開くように働く。 大径吸気ポート7bは直管部と渦巻き部とから
なる所謂ヘリカル型吸気ポートに構成されてお
り、混合気を大径吸気弁4の笠部上方を巻くよう
にして燃焼室25内に導き、旋回流を形成する。
なお、大径吸気管7aと大径吸気ポート7bは、
高負荷運転時において充填効率の悪化を起こさな
いように、その断面積が大きく、渦巻き部の曲率
半径が大きな形状が好ましい。 小径吸気管8aと小径吸気ポート8bは、ほぼ
まつすぐな通路をなすように配され、燃焼室外周
近傍にて(接線状に)燃焼室25に連結した所謂
偏流ポートとして構成されている。小径吸気ポー
ト8bの方向はヘリカリ型大径吸気ポート7bに
よる旋回流と逆まわりの旋回流を形成する方向に
向けて配置される。 更に、小径吸気管8aと小径吸気ポート8bの
断面積は、大径吸気管7a、大径吸気ポート7b
の断面積の1/5〜1/7に設定される。これは、中負
荷運転時において、偏流ポートである小径吸気ポ
ート8bとヘリカル型大径吸気ポート7bとによ
つて形成された両旋回流が互いに衝突し、旋回流
が減少して燃焼室25内に細かい乱れを生じると
共に、高負荷運転時には主にヘリカル型大径吸気
ポート7bによる強力な旋回流を燃焼室25内に
形成することができる値を、実験的に求めたもの
である。 次に、上記構成からなる内燃機関の吸気装置の
作動を説明する。 低負荷運転時では、吸入される空気量が少な
い。従つて、2次ベンチユリ17を通過する空気
はないか、又はごくわずかでありベンチユリ負圧
は発生しない。ダイヤフラム装置11のダイヤフ
ラム12はバネ26によつてB室21側に付勢さ
れたまま動かず、制御弁10は閉じられている。
従つて、低負荷運転時では全混合気が小径吸気管
8a、小径吸気ポート8bを通つて燃焼室25内
に供給され、第3図矢印イに示すように燃焼室2
5内に強力な旋回流が形成される。それ故、既燃
残留ガスを多量に含んだような難燃性混合気であ
つても燃焼速度を高め、安定した燃焼を得ること
ができる。 中負荷運転時になると、吸入空気量が増大する
のに伴つてベンチユリ負圧も増大する。この負圧
はパイプ19を介してダイヤフラム装置11のA
室20に導入され、ダイヤフラム12はバネ26
の付勢力に打ち勝つてA室20側に向かつたバネ
26の付勢力と釣り合つた位置まで動き、このダ
イヤフラム12の変位はリンク機構13を介して
制御弁10に伝えられ、制御弁10をベンチユリ
負圧に応じた量だけ開放する。このため、第4図
に示すように一部の混合気は小径吸気管8a、小
径吸気ポート8bを通つて燃焼室25内に流入
し、矢印イのような旋回流を形成する。また、残
りの混合気は大径吸気管7aを通りヘリカル型大
径吸気ポート7bにより矢印ロのような旋回流を
形成する。この際、両旋回流はその回転方向が逆
向きであるため、流れが出会う位置で衝突する。
この結果、旋回流は低減され、細かい乱れを生じ
る。このように旋回流を低減し、かつ細かい乱れ
を形成することにより、冷却損失を低減し、燃料
消費率を減らすと共に燃焼をより安定化すること
が可能である。 更に、高負荷運転時では、大量の空気が2次ベ
ンチユリ17を通り大きなベンチユリ負圧が発生
し、制御弁10はほぼ全開となる。この場合、大
部分の混合気は断面積が大きく設定された流路抵
抗の小さい大径吸気管7a、ヘリカル型大径吸気
ポート7bを通つて燃焼室25内に供給され、ヘ
リカル型大径吸気ポート7bによつて強力な旋回
流を形成する。なお、一部の混合気は小径吸気管
8a及び小径吸気ポート8bを通るが、その量は
少ないのでほとんど旋回流に影響しない。第5図
矢印ロはこの様子を示したものである。強力な旋
回流を形成することにより、燃焼速度を速めノツ
キングの発生を抑制することが可能である。 以上、本発明を特定の実施例について説明した
が、本発明は、上記実施例に限定されるものでは
なく、特許請求の範囲に記載の範囲で種々の実施
態様が包含されるものであり、例えば、上記実施
例では気化器は2バレル型で負圧ポートが2次ベ
ンチユリに設けたが、この実施例に限らず負圧ポ
ートを2次ベンチユリと1次ベンチユリの双方に
設けても良く、気化器についてはシングルバレル
型でも良いことは言うまでもない。また、ガソリ
ン噴射式内燃機関の場合にも採用され得る。
Embodiments of the present invention will be described in detail below with reference to the drawings. 1 and 2 are a partially sectional plan view and a vertical sectional view showing an intake system of an internal combustion engine according to an embodiment of the present invention, which is a four-cylinder spark ignition engine. The cylinder block 2 has four cylinders 23, and a piston 3 is inserted into each cylinder so as to be movable up and down. A cylinder head 1 is fixed above the cylinder block 2 via a gasket 24. The cylinder head 1 is connected to each cylinder 2.
Each valve 3 has a large-diameter intake valve 4, a small-diameter intake valve 5, an exhaust valve 6, and a spark plug 22. On the other hand, the carburetor 15 is of a two-barrel type, and has a primary vent lily 16 and a secondary vent lily 17, and is equipped with throttle valves 116 and 117, respectively.
A merging space 14 is provided downstream of the vaporizer 15. From the confluence space 14, there are two intake pipes per cylinder, namely a large diameter intake pipe 7a and a small diameter intake pipe 8.
a is branched and connected to a large diameter intake port 7b and a small diameter intake port 8b, respectively, and is further connected to a large diameter intake valve 4.
and a combustion chamber 25 via a small-diameter intake valve 5. Further, the exhaust port 9 is connected to the combustion chamber 25 via the exhaust valve 6, and the other end is ultimately opened to the atmosphere as in a general exhaust system. Each large-diameter intake pipe 7a is provided with a control valve 10 at a position close to the cylinder head 1. The movement of the diaphragm 12 that divides the space inside the diaphragm device 11 into an A chamber 20 and a B chamber 21 is transmitted to the control valve 10 via a link mechanism 13 . The B chamber 21 is open to the atmosphere, and the A chamber 20 is connected to the two in the vaporizer 15 via the pipe 19.
Negative pressure port 1 provided in the constriction part of the next bench lily 17
8 is connected. Further, the diaphragm 12 closes the control valve 10 when the diaphragm 12 is located on the B chamber 21 side by the spring 26, and opens the control valve 10 when negative pressure is introduced into the A chamber 20 and the diaphragm 12 moves toward the A chamber 20. work like that. The large-diameter intake port 7b is configured as a so-called helical-type intake port consisting of a straight pipe part and a spiral part, and guides the air-fuel mixture into the combustion chamber 25 so as to wrap around the upper part of the cap of the large-diameter intake valve 4. Forms a swirling flow.
Note that the large diameter intake pipe 7a and the large diameter intake port 7b are
In order to prevent deterioration of filling efficiency during high-load operation, a shape with a large cross-sectional area and a large radius of curvature of the spiral portion is preferable. The small-diameter intake pipe 8a and the small-diameter intake port 8b are arranged to form a substantially straight passage, and are configured as a so-called biased flow port connected (tangentially) to the combustion chamber 25 near the outer periphery of the combustion chamber. The direction of the small-diameter intake port 8b is arranged to form a swirling flow in the opposite direction to the swirling flow caused by the helical-type large-diameter intake port 7b. Furthermore, the cross-sectional area of the small-diameter intake pipe 8a and the small-diameter intake port 8b is the same as that of the large-diameter intake pipe 7a and the large-diameter intake port 7b.
is set to 1/5 to 1/7 of the cross-sectional area of This is because during medium load operation, both swirling flows formed by the small-diameter intake port 8b, which is a biased flow port, and the helical-type large-diameter intake port 7b collide with each other, and the swirling flow is reduced and the inside of the combustion chamber 25 is reduced. This value was experimentally determined to generate fine turbulence in the combustion chamber 25 and to form a strong swirling flow in the combustion chamber 25 mainly due to the helical large-diameter intake port 7b during high-load operation. Next, the operation of the intake system for an internal combustion engine having the above configuration will be explained. During low load operation, the amount of air taken in is small. Therefore, there is no or only a small amount of air passing through the secondary bench lily 17, and no vent lily negative pressure is generated. The diaphragm 12 of the diaphragm device 11 remains biased toward the B chamber 21 by the spring 26 and does not move, and the control valve 10 is closed.
Therefore, during low-load operation, the entire air-fuel mixture is supplied into the combustion chamber 25 through the small-diameter intake pipe 8a and the small-diameter intake port 8b, and the air-fuel mixture is supplied into the combustion chamber 25 as shown by arrow A in FIG.
A strong swirling flow is formed within 5. Therefore, even with a flame-retardant mixture containing a large amount of burnt residual gas, the combustion rate can be increased and stable combustion can be obtained. During medium load operation, as the intake air amount increases, the bench lily negative pressure also increases. This negative pressure is transferred to A of the diaphragm device 11 via the pipe 19.
The diaphragm 12 is introduced into the chamber 20 and the diaphragm 12 is connected to the spring 26.
The displacement of the diaphragm 12 is transmitted to the control valve 10 via the link mechanism 13, and the displacement of the diaphragm 12 is transmitted to the control valve 10 via the link mechanism 13. Open the amount according to the bench lily negative pressure. Therefore, as shown in FIG. 4, a part of the air-fuel mixture flows into the combustion chamber 25 through the small-diameter intake pipe 8a and the small-diameter intake port 8b, forming a swirling flow as shown by arrow A. Further, the remaining air-fuel mixture passes through the large-diameter intake pipe 7a and forms a swirling flow as shown by arrow B at the helical-type large-diameter intake port 7b. At this time, since the rotation directions of both swirling flows are opposite, they collide at the position where the flows meet.
As a result, swirling flow is reduced and fine turbulence occurs. By reducing the swirl flow and forming fine turbulence in this way, it is possible to reduce cooling loss, reduce fuel consumption rate, and further stabilize combustion. Furthermore, during high-load operation, a large amount of air passes through the secondary vent lily 17, generating a large vent lily negative pressure, and the control valve 10 becomes almost fully open. In this case, most of the air-fuel mixture is supplied into the combustion chamber 25 through the large-diameter intake pipe 7a with a large cross-sectional area and low flow resistance, and the helical-type large-diameter intake port 7b. A strong swirling flow is formed by port 7b. Note that although some of the air-fuel mixture passes through the small-diameter intake pipe 8a and the small-diameter intake port 8b, the amount thereof is so small that it hardly affects the swirling flow. Arrow B in FIG. 5 shows this situation. By forming a strong swirling flow, it is possible to increase the combustion rate and suppress the occurrence of knocking. Although the present invention has been described above with reference to specific embodiments, the present invention is not limited to the above embodiments, and includes various embodiments within the scope of the claims. For example, in the above embodiment, the carburetor is a two-barrel type, and the negative pressure port is provided in the secondary bench lily, but the negative pressure port is not limited to this embodiment, and the negative pressure port may be provided in both the secondary bench lily and the primary bench lily. It goes without saying that a single barrel type carburetor is fine. It can also be adopted in the case of a gasoline-injected internal combustion engine.

【発明の効果】【Effect of the invention】

以上のように本発明によれば、低負荷運転時及
び高負荷運転時は強力な旋回流によつて、また中
負荷運転時は細かい乱れによつてそれぞれ燃焼速
度を速め、安定した燃焼を得ると共に、中負荷運
転時は旋回流を低減してシリンダ内壁面への冷却
損失を減少させ、燃料消費率の低下を図り得ると
いう実用上優れた効果を奏する。
As described above, according to the present invention, stable combustion is achieved by accelerating the combustion rate by strong swirling flow during low-load operation and high-load operation, and by fine turbulence during medium-load operation. At the same time, during medium load operation, the swirling flow is reduced to reduce the cooling loss to the cylinder inner wall surface, and the fuel consumption rate can be lowered, which is an excellent practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明の一実施例に係る内
燃機関の吸気装置を示すものであり、第1図は内
燃機関のシリンダヘツド及び吸気系の一部を断面
にて示した平面図、第2図は内燃機関の吸気通路
に沿つて切断した縦断面図(第1図の―線に
沿つた断面図)、第3図、第4図及び第5図はそ
れぞれ本発明の一実施例に係る内燃機関の燃焼室
内の吸入混合気流れを示すものであり、第3図は
低負荷運転時の概略説明図、第4図は中負荷運転
時の概略説明図、第5図は高負荷運転時の概略説
明図である。 符号の説明、1……シリンダヘツド、4……大
径吸気弁、5……小径吸気弁、7a……大径吸気
管(大径吸気通路)7b……大径吸気ポート(大
径吸気通路)、8a……小径吸気管(小径吸気通
路)、8b……小径吸気ポート(小径吸気通路)、
10……制御弁、11……ダイヤフラム装置、1
4……合流空間、15……気化器、17……2次
ベンチユリ、25……燃焼室。
1 and 2 show an intake system for an internal combustion engine according to an embodiment of the present invention, and FIG. 1 is a plan view showing a cylinder head and a part of the intake system of the internal combustion engine in cross section. , FIG. 2 is a longitudinal cross-sectional view taken along the intake passage of the internal combustion engine (a cross-sectional view taken along the line - in FIG. 1), and FIGS. 3, 4, and 5 each show one embodiment of the present invention. This figure shows the intake air-fuel mixture flow in the combustion chamber of the internal combustion engine according to the example. Fig. 3 is a schematic explanatory diagram during low load operation, Fig. 4 is a schematic explanatory diagram during medium load operation, and Fig. 5 is a schematic explanatory diagram during high load operation. It is a schematic explanatory diagram at the time of load operation. Explanation of symbols: 1...Cylinder head, 4...Large diameter intake valve, 5...Small diameter intake valve, 7a...Large diameter intake pipe (large diameter intake passage) 7b...Large diameter intake port (large diameter intake passage) ), 8a...Small diameter intake pipe (small diameter intake passage), 8b...Small diameter intake port (small diameter intake passage),
10...Control valve, 11...Diaphragm device, 1
4...merging space, 15...carburizer, 17...secondary bench lily, 25...combustion chamber.

Claims (1)

【特許請求の範囲】 1 気化器下流の吸気通路に合流空間を有すると
共に、該合流空間より1気筒あたり2本に分岐し
た大径吸気通路及び小径吸気通路の各々の通路に
独立して設けられた吸気弁を介して燃焼室に連結
している内燃機関の吸気装置において、 前記大径吸気通路は前記燃焼室近傍でヘリカル
形状に構成され、該吸気通路により前記燃焼室内
に旋回流を形成するようになつており、前記小径
吸気通路は前記大径吸気通路の断面積の1/5〜1/7
の断面積を有して前記燃焼室外周近傍に接線状に
開口するほぼまつすぐな形状とされ、前記大径吸
気通路による旋回流とは逆まわりの旋回流を前記
燃焼室内に形成するべく接続されると共に、前記
大径吸気通路内には前記気化器のベンチユリ負圧
の増大に従つて全閉状態から徐々に開度を増大す
るよう制御される制御弁が設けられ、中負荷運転
時において前記小径吸気通路及び大径吸気通路に
よつて形成される旋回流が衝突し、低減されるこ
とを特徴とする内燃機関の吸気装置。
[Scope of Claims] 1. A merging space is provided in the intake passage downstream of the carburetor, and a large-diameter intake passage and a small-diameter intake passage that branch out from the merging space into two per cylinder are provided independently. In an intake system for an internal combustion engine that is connected to a combustion chamber via an intake valve, the large-diameter intake passage is configured in a helical shape near the combustion chamber, and the intake passage forms a swirling flow within the combustion chamber. The small-diameter intake passage has a cross-sectional area of 1/5 to 1/7 of the large-diameter intake passage.
It has a cross-sectional area of , and has a substantially straight shape that opens tangentially near the outer periphery of the combustion chamber, and is connected to form a swirling flow in the combustion chamber in a direction opposite to the swirling flow caused by the large-diameter intake passage. At the same time, a control valve is provided in the large-diameter intake passage, and the control valve is controlled to gradually increase the opening degree from the fully closed state as the vent valve negative pressure of the carburetor increases. An intake system for an internal combustion engine, wherein swirling flows formed by the small-diameter intake passage and the large-diameter intake passage collide and are reduced.
JP4944980A 1980-04-14 1980-04-14 Suction device of internal combustion engine Granted JPS56146015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4944980A JPS56146015A (en) 1980-04-14 1980-04-14 Suction device of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4944980A JPS56146015A (en) 1980-04-14 1980-04-14 Suction device of internal combustion engine

Publications (2)

Publication Number Publication Date
JPS56146015A JPS56146015A (en) 1981-11-13
JPS6363726B2 true JPS6363726B2 (en) 1988-12-08

Family

ID=12831441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4944980A Granted JPS56146015A (en) 1980-04-14 1980-04-14 Suction device of internal combustion engine

Country Status (1)

Country Link
JP (1) JPS56146015A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186128U (en) * 1982-06-07 1983-12-10 トヨタ自動車株式会社 Flow path control device for helical intake port
JPS59108823A (en) * 1982-12-14 1984-06-23 Daihatsu Motor Co Ltd Internal-combustion engine
JPS60152027U (en) * 1984-03-21 1985-10-09 いすゞ自動車株式会社 direct injection diesel engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827055Y2 (en) * 1977-12-13 1983-06-11 トヨタ自動車株式会社 Intake system of multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
JPS56146015A (en) 1981-11-13

Similar Documents

Publication Publication Date Title
US4317438A (en) High power output engine
US3817227A (en) Two-cycle internal combustion engine
CA1104893A (en) Internal combustion engine with dual induction system
JPS6060010B2 (en) Intake system for multi-cylinder internal combustion engine
JPS59122725A (en) Suction device of engine
KR940008265B1 (en) Two-stroke internal combustion engine and cylinder head therefor
JPS5949407B2 (en) Combustion chamber of internal combustion engine
JPS5947128B2 (en) Internal combustion engine intake system
CA1181301A (en) Exhaust gas recirculation type internal combustion engines and method of operating same
JPS6363726B2 (en)
US4459804A (en) Multiple spark ignition internal combustion engine with exhaust gas recirculation
US4132197A (en) Jet-stream control combustion engine
JPS5838612B2 (en) internal combustion engine
JPS5821090B2 (en) air injection gasoline engine
JPS5827055Y2 (en) Intake system of multi-cylinder internal combustion engine
JPS62332B2 (en)
JPS5827058Y2 (en) Internal combustion engine intake system
US4178889A (en) Internal combustion engine
JPS5833372B2 (en) internal combustion engine
JPS5821089B2 (en) Automotive jet-controlled combustion engine
JPS5843565B2 (en) Ninen Kikanno Nenshiyou Shitsusouchi
JPS5833204Y2 (en) Internal combustion engine sub-intake valve structure
CN117231381A (en) Engine and vehicle
JPS6218729B2 (en)
KR0149371B1 (en) Torch ignition system