JPS6363647B2 - - Google Patents
Info
- Publication number
- JPS6363647B2 JPS6363647B2 JP54122621A JP12262179A JPS6363647B2 JP S6363647 B2 JPS6363647 B2 JP S6363647B2 JP 54122621 A JP54122621 A JP 54122621A JP 12262179 A JP12262179 A JP 12262179A JP S6363647 B2 JPS6363647 B2 JP S6363647B2
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- cal
- fiber
- spinning
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000000034 method Methods 0.000 claims description 20
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 18
- 239000004917 carbon fiber Substances 0.000 claims description 18
- 238000009987 spinning Methods 0.000 claims description 10
- 239000000463 material Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- 238000002074 melt spinning Methods 0.000 claims description 2
- 238000010000 carbonizing Methods 0.000 claims 1
- 239000011295 pitch Substances 0.000 description 33
- 239000000835 fiber Substances 0.000 description 29
- 238000003763 carbonization Methods 0.000 description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 229920000915 polyvinyl chloride Polymers 0.000 description 6
- 239000004800 polyvinyl chloride Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003245 coal Substances 0.000 description 3
- 239000011300 coal pitch Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Inorganic Fibers (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
本発明はピツチ状物質から容易に優れた特性の
炭素繊維を製造する方法に関し、更に詳しくは安
価に入手出来るコールタールピツチ、石油ピツ
チ、天然アスフアルト、高分子化合物の熱解重合
ピツチ等のピツチ状物質、あるいは該ピツチの再
熱処理物より炭素繊維を製造するに際し、発熱量
(ΔH)が10〜150cal/gの範囲から選ばれたピ
ツチ状物質を溶融紡糸し、得られたピツチ繊維を
酸素存在下に熱処理不融化を行ない、次いで不活
性雰囲気下に熱処理して炭素繊維を製造する方法
に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for easily producing carbon fibers with excellent properties from pitch-like materials, and more specifically, the present invention relates to a method for easily producing carbon fibers with excellent properties from pitch-like materials, and more specifically, the present invention relates to a method for easily producing carbon fibers with excellent properties from pitch-like materials. When producing carbon fiber from a pitch-like material such as depolymerized pitch or a reheated product of the pitch, the pitch-like material selected from the range of calorific value (ΔH) of 10 to 150 cal/g is melt-spun. The present invention relates to a method for producing carbon fibers by heat-treating the pitch fibers in the presence of oxygen to make them infusible, and then heat-treating them in an inert atmosphere.
従来ピツチ状物質より炭素繊維を製造する方法
において、出発原料たるピツト状物質(以下ピツ
チと略す)を、例えばピツチ中の炭素含有率を91
〜95%に調整したり、分子量の大きなピツチ(分
子量400以上)とする方法、更には軟化点(℃)
やメゾ相含有量を限定する様な方法が提案されて
いる。 In the conventional method for producing carbon fiber from a pitch-like material, the starting material, a pit-like material (hereinafter abbreviated as "pitch"), is used, for example, when the carbon content in the pitch is reduced to 91%.
~95%, methods to make the molecular weight large (molecular weight 400 or more), and softening point (℃)
Methods have been proposed to limit the mesophase content.
これらの方法は、成る程ピツチから炭素繊維を
製造するための一工程である不融化工程での融着
をある程度避ける一つの手段として有効である。
しかしながらピツチは化学的に非常に複雑な構造
を持つているため紡糸、不融化、炭素化というす
べての工程を通して有効な方法を見出す事は非常
に困難であつた。 These methods are certainly effective as a means of avoiding fusion to some extent during the infusibility process, which is one process for producing carbon fiber from pitch.
However, since Pitch has a chemically very complex structure, it has been extremely difficult to find an effective method through all the steps of spinning, infusibility, and carbonization.
その原因として、
(1) ピツチの曳糸性すなわち紡糸性と不融化性と
は相反する特性を有する、すなわち紡糸が容易
であればある程不融化時溶融して不融化が困難
であり、また容易に不融化するものは全く紡糸
出来ないという関係にある。 The reasons for this are: (1) The spinnability, that is, the spinnability, and the infusibility of Pitch have contradictory properties; in other words, the easier it is to spin, the more difficult it is to melt and make it infusible; The relationship is that those that easily become infusible cannot be spun at all.
(2) 曳糸性の良いピツチを仮に不融化出来ても、
次の炭素化工程で繊維同志が融着し、繊維とし
ての性能を発揮出来ない。(2) Even if Pituchi, which has good stringability, could be made infusible,
In the next carbonization process, the fibers fuse together, making it impossible to demonstrate the performance of the fiber.
(3) また、前記ピツチ特性を規定しても、例えば
炭素分を91〜95%としてもピツチが化学的に非
常に複雑な構造を採るため極端な例を考えれば
その構造が鎖状になつているか、環状となつて
いるかにより、その曳糸性、不融化性、更には
炭素化品の性能まで大きな影響を及ぼすところ
となる。また、ピツチの軟化点または分子量を
規定しても上記と同様のことが言える。(3) In addition, even if the above-mentioned pitch properties are specified, for example, even if the carbon content is 91 to 95%, the pitch will have a chemically very complex structure, and in an extreme case, the structure will become chain-like. Depending on whether it is circular or ring-shaped, it has a great influence on its stringability, infusibility, and even the performance of the carbonized product. The same thing can be said even if the softening point or molecular weight of pitch is specified.
(4) さらにまた、繊維径が小さく(10μm以下)
ないと、高強度の炭素繊維が得られないが、そ
のためには直径0.3〜0.4mmの孔径のノズルから
高速の紡糸速度(300m/分前後)でドラフト
をかけて紡糸することが必要である。この高速
紡糸に適したピツチの選定は非常にむずかし
い。(4) Furthermore, the fiber diameter is small (10 μm or less)
Otherwise, high-strength carbon fibers cannot be obtained, but for this purpose, it is necessary to spin the fibers by applying a draft from a nozzle with a hole diameter of 0.3 to 0.4 mm at a high spinning speed (approximately 300 m/min). It is extremely difficult to select a pitch suitable for this high-speed spinning.
本発明の目的は、これら化学的に複雑な構造を
採り未解明な点の多いピツチから容易に得られ、
かつ安価で、しかも優れた特性を備えた炭素繊維
の製法を提供することにある。 The purpose of the present invention is to obtain easily from these pithus, which have a chemically complex structure and have many unknown points.
It is an object of the present invention to provide a method for manufacturing carbon fiber that is inexpensive and has excellent properties.
物質に外部から単位時間当り一定の熱量を供給
する時、又は該物質から取り去る時に、物質の温
度上昇または下降の速度に変化が起る。この原理
に基づき試料を一定速度で加熱または冷却しなが
らその試料の温度を連続的に測定し、相変化や転
移温度の存在および化学反応の有無などを検出す
るいわゆる示差熱分析法がよく知られている。最
近の動向としては原理的には同一であるが、示差
熱(内部起電力)より差動熱量天秤(熱量)へ移
行している。 When a constant amount of heat per unit time is externally supplied to or removed from a substance, a change occurs in the rate of temperature rise or fall of the substance. Based on this principle, the so-called differential thermal analysis method is a well-known method that continuously measures the temperature of a sample while heating or cooling the sample at a constant rate to detect phase changes, the presence of transition temperatures, and the presence or absence of chemical reactions. ing. Recent trends include a shift from differential heat (internal electromotive force) to differential heat balance (calorific value), although the principle is the same.
本発明者等は、上記原理によるピツチの解析研
究に鋭意努力した結果、酸素雰囲気下に上記原理
を応用し、ピツチの発熱量(ΔH)を測定して一
定範囲の発熱量(ΔH)のピツチを選別使用する
ことで前記問題点を解決し、高速紡糸にる炭素繊
維の製造法を確立したものである。ピツチの発熱
量(ΔH)が10〜150cal/g、好ましくは15〜
80cal/gの範囲のものを使用すると、前記高速
紡糸が良好に行なえる。ピツチの発熱量(ΔH)
が10cal/g未満では、洩糸性はあるものの、不
融化時にフイラメント相互が融着してしまい、ま
た、ピツチの発熱量(ΔH)が150cal/gを越え
ると洩糸性が悪く、紡糸ノズルから吐出ができな
くなるため紡糸が実質上困難となり、それぞれ好
ましくない。またピツチ以外の炭素質原料例えば
ポリ塩化ビニル等も熱処理法等で上記範囲に調整
することにより、曳糸性が良好で不融化性能にも
優れ、かつ優れた特性を有する炭素繊維の製造法
を見出したのである。なお、ここにおいて前記発
熱量(ΔH)は差動熱量天秤装置に7〜13mgの試
料ピツチを入れ、大気中5〜15℃/分の昇温速度
で加熱することにより求められる。 The inventors of the present invention have worked hard to analyze pitches based on the above principle, and as a result, applied the above principles in an oxygen atmosphere, measured the calorific value (ΔH) of pitches, and determined pitches within a certain range of calorific values (ΔH). The above-mentioned problems were solved by selectively using carbon fibers, and a method for producing carbon fibers using high-speed spinning was established. The calorific value (ΔH) of the pitcher is 10 to 150 cal/g, preferably 15 to 150 cal/g.
If a fiber having a content in the range of 80 cal/g is used, the above-mentioned high-speed spinning can be carried out well. Pitch calorific value (ΔH)
If the pitch is less than 10 cal/g, the filaments will fuse to each other during infusibility, although there will be leakage properties, and if the pitch calorific value (ΔH) exceeds 150 cal/g, the leakage properties will be poor and the spinning nozzle will Since it becomes impossible to discharge the fiber, spinning becomes substantially difficult, which is not preferable. In addition, by adjusting carbonaceous raw materials other than pitch, such as polyvinyl chloride, to the above range by heat treatment, etc., we have developed a method for producing carbon fibers that have good spinnability, excellent infusibility, and excellent properties. I found it. Here, the calorific value (ΔH) is determined by placing a sample pitch of 7 to 13 mg in a differential calorimeter and heating it in the atmosphere at a temperature increase rate of 5 to 15° C./min.
本発明でいう発熱量(ΔH)は次のようにして
求められる。 The calorific value (ΔH) referred to in the present invention is determined as follows.
すなわち、ピツチ状物質の昇温過程において、
第1図のような酸化発熱ピークがみられ、その面
積Aから式()によつて発熱量(ΔH)を計算
する。 In other words, in the process of increasing the temperature of the pitch-like substance,
An oxidative exothermic peak as shown in Figure 1 is observed, and the calorific value (ΔH) is calculated from the area A using the formula ().
M・ΔH=K・A……()
M:試料の質量〔mg〕
ΔH:試料の単位質量当りのエネルギー変化量
〔cal/g〕
K:装置定数〔mcal/mcal〕
A:ピーク面積〔mcal〕
すなわち、ピツチ状物質を酸化性雰囲気中で加
熱すると、第1図のような酸化による発熱量が差
動熱量天秤装置より温度の変化となつて検出でき
る。このピツチの酸化による発熱量の総和をピー
ク面積Aとし、このピーク面積AによりΔHを求
める。このピーク面積Aが大であることはピツチ
が酸化を受けやすいことを示すものと考えること
ができるが、本発明ではピーク面積Aを検出し、
これからΔHを求めてその範囲によりピツチを選
別して高速紡糸を可能としたものである。 M・ΔH=K・A……() M: Mass of sample [mg] ΔH: Energy change per unit mass of sample [cal/g] K: Instrument constant [mcal/mcal] A: Peak area [mcal] ] That is, when a pitch-like substance is heated in an oxidizing atmosphere, the amount of heat generated by oxidation as shown in FIG. 1 can be detected as a change in temperature by a differential calorimeter. The total amount of heat generated by the oxidation of this pitch is defined as the peak area A, and ΔH is determined from this peak area A. A large peak area A can be considered to indicate that the pitch is susceptible to oxidation, but in the present invention, the peak area A is detected,
From this, ΔH is calculated and pitches are selected according to the range, making high-speed spinning possible.
以下、実施例により本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.
実施例 1
軟化点200℃、ΔH10.6cal/gの石油系ピツチ
を290℃で溶融し、直径0.3mm孔数72のノズルから
約300m/minの巻取速度で溶融紡糸して繊維化
した。得られたピツチ繊維を空気中30℃/hrの昇
温速度で260℃まで昇温し、この温度に1時間保
持して不融化し、次いで窒素気流中100℃/hrの
昇温速度で1000℃まで熱処理して炭素繊維とし
た。Example 1 Petroleum pitch having a softening point of 200°C and a ΔH of 10.6 cal/g was melted at 290°C and melt-spun into fibers from a nozzle with a diameter of 0.3 mm and 72 holes at a winding speed of about 300 m/min. The resulting pitch fiber was heated to 260°C in air at a heating rate of 30°C/hr, held at this temperature for 1 hour to make it infusible, and then heated to 260°C in a nitrogen stream at a heating rate of 100°C/hr. It was heat-treated to ℃ to obtain carbon fiber.
得られた繊維束はやや融着気味ながら一応繊維
形状を保つており、その引張り強さは42Kg/mm2
で、炭化収率は66.1%であつた。 The obtained fiber bundle maintains its fiber shape, although it is slightly fused, and its tensile strength is 42Kg/mm 2
The carbonization yield was 66.1%.
実施例 2
軟化点198℃、ΔH10.2cal/gの石炭系ピツチ
を300℃に溶融し、以下実施例1と同一条件で炭
素繊維とした。Example 2 Coal-based pitch with a softening point of 198°C and ΔH of 10.2 cal/g was melted at 300°C and made into carbon fiber under the same conditions as in Example 1.
得られた繊維束は実施例1の繊維束と同様に、
やや融着気味ながら一応繊維形状を保つており、
その引張り強さは66Kg/mm2で、炭化収率は66.3%
であつた。 The obtained fiber bundle was similar to the fiber bundle of Example 1,
Although it is slightly fused, it maintains its fiber shape,
Its tensile strength is 66Kg/ mm2 and carbonization yield is 66.3%
It was hot.
実施例 3
軟化点182℃ΔH21.1cal/gの塩ビピツチ
(PVCを不活性雰囲気下400℃で1時間熱分解し
て得られる)を280℃に溶融し、以下実施例1と
同一条件で炭素繊維とした。Example 3 PVC pitch (obtained by thermally decomposing PVC at 400°C for 1 hour in an inert atmosphere) with a softening point of 182°CΔH21.1cal/g was melted at 280°C, and then carbonated under the same conditions as in Example 1. It was made into fiber.
得られた繊維束はしなやかで融着はなかつた、
その引張り強さは79.5Kg/mm2で、炭化収率は66.5
%であつた。 The obtained fiber bundle was flexible and had no fusion.
Its tensile strength is 79.5Kg/ mm2 and carbonization yield is 66.5
It was %.
実施例 4
軟化点210℃、ΔH14.5cal/gの塩ビピツチ
(PVCを不活性雰囲気下400℃1時間熱分解して
得られる)を290℃で溶融し、以下実施例1と同
一条件で炭素繊維とした。Example 4 PVC pitch (obtained by thermally decomposing PVC at 400°C for 1 hour in an inert atmosphere) with a softening point of 210°C and ΔH of 14.5 cal/g was melted at 290°C, and then carbon was melted under the same conditions as in Example 1. It was made into fiber.
得られた繊維束はしなやかで融着はなかつた、
その引張り強度は82.5Kg/mm2で、炭化収率は66.9
%であつた。 The obtained fiber bundle was flexible and had no fusion.
Its tensile strength is 82.5Kg/ mm2 and carbonization yield is 66.9
It was %.
実施例 5
軟化点246℃、ΔH53.2cal/gの石炭系ピツチ
を300℃に溶融し、以下実施例1と同一条件で炭
素繊維とした。Example 5 Coal-based pitch with a softening point of 246°C and a ΔH of 53.2 cal/g was melted at 300°C and made into carbon fiber under the same conditions as in Example 1.
得られた繊維束はしなやかで融着はなかつた、
その引張り強度は81.8Kg/mm2で、炭化収率は69.7
%であつた。 The obtained fiber bundle was flexible and had no fusion.
Its tensile strength is 81.8Kg/ mm2 and carbonization yield is 69.7
It was %.
実施例 6
軟化点280℃、ΔH150cal/gの石油系ピツチ
を370〜385℃で溶融し、直径0.4mm孔数19のノズ
ルから約250m/minの巻取速度で溶融紡糸して
繊維化した。得られたピツチ繊維を空気中30℃/
hrの昇温速度で330℃まで昇温し、この温度に1
時間保持して不融化し、次いで窒素気流中100
℃/hrの昇温速度で1000℃まで熱処理して炭素繊
維とした。Example 6 Petroleum-based pitch with a softening point of 280°C and a ΔH of 150 cal/g was melted at 370-385°C and melt-spun into fibers from a nozzle with a diameter of 0.4 mm and 19 holes at a winding speed of about 250 m/min. The resulting pitch fiber was heated in air at 30℃/
Raise the temperature to 330℃ at a rate of hr.
Hold for an hour to make it infusible, then 100 hours in a nitrogen stream.
The carbon fiber was heat-treated to 1000°C at a heating rate of °C/hr.
得られた繊維の引張り強さは45Kg/mm2で、炭化
収率は68.4%であつた。 The tensile strength of the obtained fiber was 45 Kg/mm 2 and the carbonization yield was 68.4%.
比較例 1
軟化点185℃、ΔH3.7cal/gの石油系ピツチを
280℃に溶融し、以下実施例1と同一条件で熱処
理を行つたが、不融化の工程で若干融着し、さら
に炭素化工程で繊維同志がくつついてしまつた。
なお、その炭化収率は62.2%であつた。Comparative example 1 Petroleum-based pitcher with a softening point of 185℃ and ΔH3.7cal/g
The fibers were melted at 280° C. and heat treated under the same conditions as in Example 1, but some fusion occurred during the infusibility process and the fibers stuck together during the carbonization process.
The carbonization yield was 62.2%.
比較例 2
軟化点158℃、ΔH1.8cal/gの石炭系ピツチを
260℃に溶融し、以下実施例1と同一条件で熱処
理を行つたが、不融化の工程で融着してしまい、
また炭素化工程では繊維形状を保てなかつた。な
お、その炭化収率は61.5%であつた。Comparative example 2 Coal-based pitcher with a softening point of 158°C and a ΔH of 1.8 cal/g
It was melted at 260°C and heat treated under the same conditions as in Example 1, but it fused during the infusibility process.
Furthermore, the fiber shape could not be maintained during the carbonization process. The carbonization yield was 61.5%.
比較例 3
軟化点310℃、ΔH174.0calの石炭系および軟化
点325℃、ΔH270.0cal/gの塩ビピツチについて
400〜430℃で溶融紡糸を行つた。しかしピツチの
溶解は不均一で連続してピツチ繊維を得ることは
出来なかつた。Comparative Example 3 Regarding coal-based coal with a softening point of 310℃ and ΔH of 174.0cal and PVC pitch with a softening point of 325℃ and ΔH of 270.0cal/g.
Melt spinning was performed at 400-430°C. However, the dissolution of the pitch was uneven and it was not possible to obtain pitch fiber continuously.
比較例 4
軟化点295℃、ΔH153cal/gの石炭系ピツチ
を390℃で溶融し、直径0.4mm、孔数19のノズルか
ら100m/minの巻取速度で溶融紡糸した。Comparative Example 4 Coal-based pitch with a softening point of 295°C and ΔH of 153 cal/g was melted at 390°C and melt-spun at a winding speed of 100 m/min from a nozzle with a diameter of 0.4 mm and 19 holes.
しかし、溶融状態での流動性が不均一で断糸が
多発したため、連続繊維を得ることができなかつ
た。 However, continuous fibers could not be obtained because the fluidity in the molten state was uneven and yarn breakage occurred frequently.
以上の実施例および比較例の比較から明らかな
ように、本発明において発熱量10〜150cal/gの
ピツチを調整することにより、繊維径10μm以下
の繊維を得るのに必要な孔径0.3〜0.4mmのノズル
から300m/min前後の紡糸速度で糸切れも無く
紡糸でき、さらに不融化条件も空気中30℃/hrの
温度で260〜330℃に1時間保持という過酷な条件
が採用でき生産性を上げることができるのであ
る。 As is clear from the comparison of the above examples and comparative examples, in the present invention, by adjusting the pitch of the calorific value of 10 to 150 cal/g, the pore diameter required to obtain fibers with a fiber diameter of 10 μm or less is 0.3 to 0.4 mm. It can be spun from a nozzle at a spinning speed of around 300 m/min without yarn breakage, and the harsh conditions for infusibility are 30°C/hr in air and held at 260 to 330°C for 1 hour, increasing productivity. It can be raised.
また、本発明は曳糸性の良好なピツチ、不融化
性の優れたピツチ、または特性の優れた炭素繊維
等をおのおの単一に提供するものでなく、上記三
項をすべて包含し、更には高炭化収率をも提供す
るものである。 Furthermore, the present invention does not provide pitches with good spinnability, pitches with excellent infusibility, or carbon fibers with excellent properties, but includes all of the above three items, and furthermore, It also provides high carbonization yield.
第1図は、ピツチ状物質の昇温過程における酸
化発熱ピークを示すグラフである。
FIG. 1 is a graph showing the oxidation exothermic peak during the temperature rising process of a pitch-like substance.
Claims (1)
〜15℃/分の昇温速度で加熱して得た酸化発熱ピ
ークの面積:A〔m cal〕から次式によつて計算
した単位質量当りのエネルギー変化量:ΔH
〔cal/g〕が10〜150cal/gのピツチ状物質を選
別する工程と、 ΔH=K・A/M ただし、K:装置定数〔m cal/m cal〕 M:試料の質量〔mg〕 該選別したピツチ状物質を孔径0.3〜0.4mmのノ
ズルから250〜300m/分の紡糸速度で溶融紡糸
し、不融化し、さらに炭素化する工程からなるこ
とを特徴とする炭素繊維の製造法。[Claims] 1. A pitch-like substance is blown into the atmosphere using a differential calorimeter.
Area of oxidation exothermic peak obtained by heating at a temperature increase rate of ~15°C/min: Amount of energy change per unit mass calculated from the following formula from A [m cal]: ΔH
[cal/g] is a process of sorting out pitch-like substances with a value of 10 to 150 cal/g, and ΔH=K・A/M where K: device constant [m cal/m cal] M: mass of sample [mg] A method for producing carbon fibers, which comprises the steps of melt-spinning the selected pitch-like material through a nozzle with a hole diameter of 0.3 to 0.4 mm at a spinning speed of 250 to 300 m/min, making it infusible, and further carbonizing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12262179A JPS5649021A (en) | 1979-09-26 | 1979-09-26 | Production of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12262179A JPS5649021A (en) | 1979-09-26 | 1979-09-26 | Production of carbon fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5649021A JPS5649021A (en) | 1981-05-02 |
JPS6363647B2 true JPS6363647B2 (en) | 1988-12-08 |
Family
ID=14840487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12262179A Granted JPS5649021A (en) | 1979-09-26 | 1979-09-26 | Production of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5649021A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS588124A (en) * | 1981-07-04 | 1983-01-18 | Nippon Carbon Co Ltd | Production of carbon fiber |
-
1979
- 1979-09-26 JP JP12262179A patent/JPS5649021A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5649021A (en) | 1981-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3595946A (en) | Process for the production of carbon filaments from coal tar pitch | |
US4014725A (en) | Method of making carbon cloth from pitch based fiber | |
US3716607A (en) | Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes | |
US3919387A (en) | Process for producing high mesophase content pitch fibers | |
US4138525A (en) | Highly-handleable pitch-based fibers | |
US3718493A (en) | Process for the production of carbon filaments from coal tar pitch | |
US4356158A (en) | Process for producing carbon fibers | |
US4574077A (en) | Process for producing pitch based graphite fibers | |
CA1055664A (en) | Rapid thermosetting of carbonaceous fibers produced from mesophase pitch | |
JPS6363647B2 (en) | ||
JPS59223315A (en) | Production of pitch based carbon fiber | |
JPH01314734A (en) | Production of pitch-based carbon fiber | |
JP2849156B2 (en) | Method for producing hollow carbon fiber | |
JPS6278220A (en) | Production of ribbon-like carbon fiber | |
JPS60181313A (en) | Manufacture of pitch fiber | |
JPH06146120A (en) | Pitch-based carbon fiber having high strength and high elastic modulus and its production | |
KR100305372B1 (en) | Isotropic pitch for producing carbon fiber and its manufacturing method | |
JPH01314733A (en) | Production of pitch-based carbon fiber | |
USRE27794E (en) | Heat treatment of molten carbonaceous material prior to its conversion to carbon fibers and other shapes | |
JPH0413450B2 (en) | ||
JPS6183321A (en) | Production of hollow carbon fiber | |
JPS60155714A (en) | Production of pitch based carbon fiber | |
JPS63175122A (en) | Production of carbon fiber tow | |
JPH04209830A (en) | Production of carbon fiber | |
JPH02175921A (en) | Production of mesophase pitch-based carbon fiber |