JPS6363497B2 - - Google Patents

Info

Publication number
JPS6363497B2
JPS6363497B2 JP3955285A JP3955285A JPS6363497B2 JP S6363497 B2 JPS6363497 B2 JP S6363497B2 JP 3955285 A JP3955285 A JP 3955285A JP 3955285 A JP3955285 A JP 3955285A JP S6363497 B2 JPS6363497 B2 JP S6363497B2
Authority
JP
Japan
Prior art keywords
glass
molded product
crystals
heat treatment
cracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3955285A
Other languages
Japanese (ja)
Other versions
JPS61201631A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3955285A priority Critical patent/JPS61201631A/en
Publication of JPS61201631A publication Critical patent/JPS61201631A/en
Publication of JPS6363497B2 publication Critical patent/JPS6363497B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、建築用及び装飾用等の天然石様人造
石材に適する結晶化ガラス物品の製造方法に関す
る。 〔従来の技術〕 これまでに知られている天然石様結晶化ガラス
物品の製造方法は、大きく2つに分けられる。そ
の1つは、特公昭47−1639号、特公昭47−14839
号、特公昭49−36376号、特公昭51−23966号、特
公昭53−41693号、特公昭57−20254号、特開昭59
−92942号、特開昭59−97551号の各公報などによ
つて代表されるロールアウト法、プレス法、流し
込み法などで成形したガラスをそのまま結晶化す
る方法であり、もう1つは、特公昭55−29018号
公報で提案されている、複数の水砕ガラス粒を集
積した後、熱処理によつて該ガラス粒を相互に軟
化・融着・一体化させると共にガラス粒表面及び
融着界面から結晶を析出・成長させて結晶化ガラ
ス物品を得る、所謂焼結法と呼ばれる方法であ
る。 〔発明が解決しようとする問題点〕 ロールアウト法、プレス法、流し込み法などの
方法でガラスを成形した後、熱処理して結晶化さ
せる通常の製造方法では、結晶が成形品全体にほ
ぼ一様に析出・成長する為に、得られる結晶化ガ
ラス物品の外観は均一で単調なものになり易く天
然石様の外観が得られ難い欠点がある。一方、結
晶とガラスマトリツクス相の混在及びガラス粒1
つ1つの表面や融着界面からその内部に向かつて
成長する結晶の配向性とによつて、その美しい天
然石様の外観が増長される焼結法の方は、前記従
来の成形法に比べてはるかに好ましいのである
が、この焼結法にも次に述べるような欠点があ
る。 (イ) ガラス粒が十分に低い粘性を持ち、その表面
からの結晶の析出・成長が優勢になる以前にガ
ラス粒同志が完全に軟化・融着・一体化してい
なければならず、自ずと組成範囲が限定され
る。また、これにより、析出結晶の種類や結晶
化ガラス物品の物性も狭い範囲内に限定される
ことになる。 (ロ) 同組成かつ同熱処理条件であつても、粉末あ
るいは微粒ガラスを用いた場合と、比較的大き
目のガラス粒を用いた場合とでは、熱処理に伴
う軟化や結晶析出の進行度が異なり、結晶化ガ
ラス物品の表面状態や外観に再現性が得られな
い為、フルイを使用するなでして使用するガラ
ス粒の粒度をほぼ一定に揃える為の工程が必要
となる。 (ハ) 熱処理によつてガラス粒が十分に軟化.融着
しても、集積時にガラス粒間に存在する空気に
よる空隙の一部は、必ず気孔として結晶化ガラ
ス物品内部に取り込まれる。これは、切断や研
磨などの加工を行つた場合には気孔が表面に露
出することになり、平滑な表面状結晶化ガラス
物品が得られずまた機械的強度を低下させるこ
とになる。 〔発明の目的〕 本発明は、結晶とマトリツクスガラス相の混在
及びガラス中に析出・成長する結晶の配向性とに
起因する美しい天然石様外観を有し、かつ前記(イ)
〜(ハ)に示した焼結法における種々の欠点をことご
とく解決した人造石材用結晶化ガラス物品の製造
方法を提供することを目的とする。 〔問題点を解決するための手段〕 而して前記目的を達成するためになされた本発
明の要旨とするところは、熱処理すると表面から
内部に向かつて結晶が析出・成長する性質を有す
る結晶性ガラスを、所望の形状に成形する工程
と、該ガラス成形品の形状を保つたまま熱衝撃や
機械的衝撃によつて該ガラス成形品の一部又は全
体に細かいヒビを与える工程と、その後熱処理に
よつて該ガラス成形品表面及びヒビ境界面より内
部に向かつて結晶を析出・成長させる工程とから
なることを特徴とする、結晶とマトリツクスガラ
ス相の混在、及び結晶の配向性とに起因する美し
い天然石様の外観を有し、かつ気泡のない緻密な
結晶化ガラス物品の製造方法にある。 本発明において用いられる結晶性ガラスは、前
記公報に記載された既知の組成のものであつても
よいし、他のものでもよく、本発明方法はガラス
組成によつて制約されることはない。 本発明方法を以下詳細に説明する。まず、熱処
理により表面から内部に向かつて針状・樹枝状な
どの結晶が析出・成長する性質を有する結晶性ガ
ラスを溶融し、ロールアウト法、プレス法、流し
込み法などの従来の成形技術によつて板状あるい
はブロツク状に成形する。次に、こうして得られ
た板状あるいはブロツク状のガラス成形品の形状
を保つたまま、急激な熱衝撃や機械的衝撃を加え
て該ガラス成形品全体又は一部に細かいヒビを入
れる。具体例として次のような方法が考えられ
る。 (a) 成形されたガラス物品を徐冷炉内で割れない
程度の速度で300〜500℃の温度まで冷却した
後、該ガラス成形品を直接水中に浸漬してヒビ
を入れる方法。ガラス成形品が大きく厚い場合
には自重で形状がくずれ易い為、水中に浸漬す
る方法よりも、予め内面に離型剤粉末を塗布し
た結晶化熱処理用耐火性型枠に移し入れた後、
水をかけてヒビを入れる方法が好ましい。水分
は熱処理前に乾燥して除去する。ヒビの入り方
や細かさは、浸漬の仕方、水のかけ方及び急冷
温度差によつてコントロールされ得る。 (b) 成形されたガラス物品を、たとえば作花済
夫、境野照雄、高橋克明編集「ガラスハンドブ
ツク」、(昭50.9.30)、朝倉書店、P485〜490に
記述されているような方法で風冷強化した後ハ
ンマーでたたく、又はプレス圧を加えるなどの
方法によつて該ガラス成形品に大きな機械的衝
撃を加え細かいヒビを入れる方法。衝撃等を加
える際はガラス小片が飛散したり成形品の形状
がくずれたりしないように、予め該強化ガラス
成形品の表面及び裏面にガラス飛散防止用スプ
レーを重ね塗りし、さらに金属製の型枠内など
に固定しておくのが好ましい。ガラス成形品が
大きく厚い場合には、自重で形状がくずれ易い
為、ヒビを入れた後さらにヒビ入りガラス成形
品の表面にポリビニルアルコール水溶液などの
粘結剤を塗布し乾燥固化させ、ガラス成形品の
形状を保つたまま離型剤粉末を塗布した耐火性
型枠内に移し入れる。また、ポリビニルアルコ
ール水溶液などの粘結剤の他に、粘着テープな
どを用いるなどしてもよい。 もちろん、上記(a)、(b)の方法は、強化ガラス
品、未強化ガラス品のどちらにも適用できるもの
である。 前記の処理によつてヒビの入つたガラス成形品
は、耐火性型枠ごと熱処理炉に移し加熱すると、
ガラス成形品内部のヒビがガラスの軟化によつて
融着を開始すると共に、針状、樹枝状などの結晶
が該ガラス成形品表面及びそれ全体に及ぶヒビ
(境界面)よりそれぞれの内部に向かつて析出・
成長し始め、さらに熱処理を続けると全体が粗大
な結晶の集合体となる。ヒビをガラス成形品の一
部に入れた場合には、結晶は偏在する傾向となつ
て特異な意匠的効果を奏するものとできる。 〔発明の実施例〕 以下本発明の実施例について説明する。図面第
1図は本発明方法において、結晶化熱処理のため
に、耐火性型枠1内に離型剤粉末の塗布層2を介
して、ヒビ入りガラス成形品3を充填した状態を
示している。4はヒビである。 これに対して第2図は焼結法によつてガラス粒
5を充填した場合のものを示している。6はガラ
ス粒間の空隙である。 実施例 1 珪石粉、水酸化アルミニウム、炭酸カルシウ
ム、硝酸カリウム、亜鉛華、亜砒酸を原料として
下記ガラス組成を満足するようにガラスバツチを
調合し、これを坩堝に入れ電気炉で1400℃の温度
で約5時間溶融する。SiO239.5wt%、
Al2O320.0wt%、CaO33.5wt%、K2O0.5wt%、
ZnO6.0wt%、As2O30.5wt%。得られた溶融ガラ
スを金属製型枠内に流し込み、300×300×20mm程
度の板状に成形する。 この板状ガラスを徐冷炉内で、650〜680℃に30
分間保持した後、1℃/minの速度で300℃まで
降温し、この板状ガラスを、内面に離型剤粉末を
塗布した耐火性型枠内に即座に移し入れ(第1図
参照)、該板状ガラス成形品全体に水をかけて熱
衝撃を与え、ヒビを入れる。 その後、耐火性型枠ごとにヒビ入りガラス成形
品を乾燥し熱処理炉に移して、1050℃の温度まで
200℃/hourの速度で昇温し、1050℃で3時間保
持して熱処理を行なつた。 温度の上昇に伴つてガラス成形品内部のヒビが
ガラスの軟化によつて融着を開始するが、温度が
900℃を越えた付近から、同時にヒビ入り板状ガ
ラス表面や成形品内部に存在するヒビ境界面か
ら、樹枝状の結晶がそれぞれの内部に向かつて成
長し始め、さらに熱処理を続けると、気泡のない
緻密な、粗大な樹枝状結晶の集合体となつた。も
ちろん、熱処理条件を変えることによつて、ある
範囲内で結晶化率を変えることができる。 X線回折測定の結果析出した結晶相の主結晶
は、ゲーレナイトであることが判明した。 この天然石様模様は、焼結法による場合と同じ
く、結晶とマトリツクスガラス相の混在及び結晶
の配向性とに起因するものであるが、結晶化ガラ
ス物品の上表面を研磨すると、美しい天然石様模
様が現出し、表面に露出する気孔はなかつた。比
較として、実施例1と同様のガラス組成のものを
用いて、2〜6mm程度のガラス粒を第2図で示し
た焼結法により結晶化ガラス物品を製造した。熱
処理等の条件は実施例1と同様とした。 以上の実施例1と比較例および天然石との比較
試験結果を下記第1表に示した。
[Industrial Application Field] The present invention relates to a method for producing a crystallized glass article suitable for natural stone-like artificial stone for architectural and decorative purposes. [Prior Art] So far known methods for manufacturing natural stone-like crystallized glass articles can be broadly divided into two types. One of them is Special Publication No. 47-1639 and Special Publication No. 47-14839.
No., Special Publication No. 49-36376, Special Publication No. 51-23966, Special Publication No. 53-41693, Special Publication No. 57-20254, Japanese Patent Publication No. 1972
There is a method of directly crystallizing glass formed by a roll-out method, a press method, a pouring method, etc., as typified by publications such as No.-92942 and JP-A No. 59-97551. As proposed in Publication No. 55-29018, after a plurality of granulated glass particles are accumulated, the glass particles are softened, fused, and integrated with each other by heat treatment, and the glass particles are removed from the surface of the glass particles and the fused interface. This is a method called a sintering method in which a crystallized glass article is obtained by precipitating and growing crystals. [Problems to be solved by the invention] In the usual manufacturing method in which glass is formed by a method such as a roll-out method, a press method, or a pouring method, and then heat-treated to crystallize it, the crystals are almost uniform throughout the molded product. Because of this, the resulting crystallized glass products tend to have a uniform and monotonous appearance, making it difficult to obtain a natural stone-like appearance. On the other hand, the coexistence of crystals and glass matrix phases and glass grains 1
Compared to the conventional molding method, the sintering method enhances the beautiful natural stone-like appearance due to the orientation of crystals that grow from each surface or fused interface toward the inside. Although much more preferred, this sintering method also has drawbacks, as discussed below. (a) The glass grains must have a sufficiently low viscosity, and the glass grains must be completely softened, fused, and integrated together before the precipitation and growth of crystals from their surfaces becomes predominant, and the composition range naturally increases. is limited. Moreover, this also limits the types of precipitated crystals and the physical properties of the crystallized glass article within a narrow range. (b) Even if the composition and heat treatment conditions are the same, the progress of softening and crystal precipitation due to heat treatment is different between when powder or fine glass particles are used and when relatively large glass particles are used. Since reproducibility in the surface condition and appearance of crystallized glass articles cannot be obtained, a step is required to smooth the glass particles using a sieve so that the particle size of the glass particles used is almost constant. (c) Glass grains are sufficiently softened by heat treatment. Even when the glass particles are fused, some of the air gaps that exist between the glass particles during accumulation are inevitably incorporated into the crystallized glass article as pores. This means that when processing such as cutting or polishing is performed, the pores are exposed on the surface, making it impossible to obtain a crystallized glass article with a smooth surface, and also reducing mechanical strength. [Objective of the Invention] The present invention has a beautiful natural stone-like appearance due to the coexistence of crystals and matrix glass phases and the orientation of crystals precipitated and grown in the glass, and has the above-mentioned (a).
It is an object of the present invention to provide a method for manufacturing a crystallized glass article for artificial stone, which solves all of the various drawbacks of the sintering method shown in (c). [Means for Solving the Problems] The gist of the present invention, which has been made to achieve the above-mentioned object, is to provide a crystalline material having a property that crystals precipitate and grow from the surface toward the inside when heat treated. A process of forming glass into a desired shape, a process of causing fine cracks in part or the whole of the glass molded product by thermal shock or mechanical shock while maintaining the shape of the glass molded product, and then heat treatment. Due to the coexistence of crystals and matrix glass phases and the orientation of crystals, The present invention provides a method for producing a dense crystallized glass article that has a beautiful natural stone-like appearance and is free of bubbles. The crystalline glass used in the present invention may be of the known composition described in the above-mentioned publication, or may be of other types, and the method of the present invention is not limited by the glass composition. The method of the present invention will be explained in detail below. First, crystalline glass, which has the property of precipitating and growing needle-like or dendritic crystals from the surface to the inside, is melted by heat treatment, and then formed using conventional forming techniques such as roll-out, pressing, and pouring. It is then shaped into a plate or block. Next, while maintaining the shape of the plate-like or block-like glass molded product obtained in this way, a sudden thermal shock or mechanical shock is applied to create fine cracks in the whole or a part of the glass molded product. As a specific example, the following method can be considered. (a) A method in which a molded glass article is cooled in an annealing furnace to a temperature of 300 to 500°C at a rate that does not crack, and then the glass molded article is directly immersed in water to create cracks. If the glass molded product is large and thick, it will easily lose its shape under its own weight, so rather than immersing it in water, it is better to transfer it to a fire-resistant formwork for crystallization heat treatment whose inner surface has been coated with mold release agent powder.
It is preferable to apply water to crack the surface. Moisture is removed by drying before heat treatment. The appearance and fineness of cracks can be controlled by the immersion method, water application method, and quenching temperature difference. (b) The formed glass article is air-blown by the method described, for example, in "Glass Handbook" edited by Masao Sakuhana, Teruo Sakaino, and Katsuaki Takahashi, (September 30, 1980), Asakura Shoten, pp. 485-490. A method of applying a large mechanical impact to the glass molded product by hitting it with a hammer or applying press pressure after cold strengthening to create small cracks. When applying impact, etc., in order to prevent glass particles from scattering or the shape of the molded product to collapse, the front and back surfaces of the tempered glass molded product should be coated with glass shatter prevention spray beforehand, and then the metal formwork should be applied. It is preferable to fix it inside. If the glass molded product is large and thick, it will easily lose its shape under its own weight, so after making the cracks, a binder such as a polyvinyl alcohol aqueous solution is applied to the surface of the cracked glass molded product and dried and solidified. While maintaining its shape, transfer it into a fireproof mold coated with mold release agent powder. Further, in addition to a binder such as a polyvinyl alcohol aqueous solution, an adhesive tape or the like may be used. Of course, the above methods (a) and (b) can be applied to both tempered and untempered glass products. Glass molded products with cracks caused by the above treatment are transferred to a heat treatment furnace together with the refractory mold and heated.
As the cracks inside the glass molded product begin to fuse as the glass softens, needle-shaped, dendritic, etc. crystals move toward the inside of the glass molded product from the surface and the cracks (boundary surfaces) that cover the entire surface of the glass molded product. Once precipitated
When it begins to grow and continues to undergo heat treatment, it becomes an aggregate of coarse crystals. When a crack is placed in a part of a glass molded product, the crystals tend to be unevenly distributed, producing a unique design effect. [Embodiments of the Invention] Examples of the present invention will be described below. FIG. 1 shows a state in which a cracked glass molded product 3 is filled into a refractory mold 1 through a coating layer 2 of mold release agent powder for crystallization heat treatment in the method of the present invention. . 4 is a crack. On the other hand, FIG. 2 shows a case in which glass particles 5 are filled by a sintering method. 6 is a void between glass particles. Example 1 A glass batch was prepared using silica powder, aluminum hydroxide, calcium carbonate, potassium nitrate, zinc white, and arsenic acid as raw materials so as to satisfy the following glass composition, and this was placed in a crucible and heated at a temperature of 1400°C in an electric furnace for about 50 minutes. Time to melt. SiO2 39.5wt%,
Al 2 O 3 20.0wt%, CaO3 3.5wt%, K 2 O 0.5wt%,
ZnO6.0wt%, As2O30.5wt % . The obtained molten glass is poured into a metal mold and formed into a plate shape of approximately 300 x 300 x 20 mm. This sheet glass is heated to 650 to 680℃ for 30 minutes in a slow cooling furnace.
After holding for a minute, the temperature was lowered to 300°C at a rate of 1°C/min, and the sheet glass was immediately transferred into a fire-resistant mold whose inner surface was coated with mold release agent powder (see Figure 1). The entire sheet glass molded product is subjected to thermal shock by pouring water on it to create cracks. After that, the cracked glass molded products are dried for each fireproof formwork and transferred to a heat treatment furnace to a temperature of 1050℃.
Heat treatment was carried out by increasing the temperature at a rate of 200°C/hour and holding it at 1050°C for 3 hours. As the temperature rises, cracks inside the glass molded product begin to fuse as the glass softens, but as the temperature rises,
When the temperature exceeds 900℃, dendrite-like crystals begin to grow inward from the surface of the cracked sheet glass and from the crack interface inside the molded product, and as the heat treatment continues, bubbles begin to grow. It became an aggregate of dense, coarse dendrites. Of course, by changing the heat treatment conditions, the crystallization rate can be changed within a certain range. As a result of X-ray diffraction measurement, it was found that the main crystal of the precipitated crystal phase was gehlenite. This natural stone-like pattern is caused by the mixture of crystals and matrix glass phases and the orientation of the crystals, as is the case with the sintering method, but when the upper surface of the crystallized glass product is polished, it creates a beautiful natural stone-like pattern. A pattern appeared and no pores were exposed on the surface. For comparison, a crystallized glass article was manufactured by using a glass composition similar to that of Example 1 and glass grains of about 2 to 6 mm by the sintering method shown in FIG. Conditions such as heat treatment were the same as in Example 1. The results of comparative tests between the above Example 1, Comparative Examples, and natural stones are shown in Table 1 below.

〔発明の効果〕〔Effect of the invention〕

本発明方法によれば、ガラス組成が十分に低い
粘性を持たなくとも、ヒビによつて隔離されたガ
ラス領域が互いに完全に密着しており融着あるい
は焼結し易い状態にある為、熱処理することによ
り容易に元の形状に一体化・復元し得る。従つ
て、ガラス組成が十分に低い粘性を持つ必要がな
く広いガラス組成範囲が対応できる。焼結法で
は、使用するガラス粒の粒度をほぼ一定に揃える
為の工程が必要になり、また特に工程中に生じる
粉末あるいは微粒ガラスの取り扱いが面倒になる
が、本発明による製造方法によれば、ガラス成形
品にヒビを入れる為の工程が必要になるものの、
ヒビの入つたガラス成形品をそのまま取り扱うこ
とができる為、粉末ガラスや微粒ガラスを取り扱
う必要がなくなり、また前述したように急冷温度
差や風冷強化の程度によつてヒビの入り方や細か
さを簡単にコントロールできる。ヒビによつて隔
離されたガラス領域が互いに完全に密着している
為、焼結法の場合に比べるとガラス領域間に存在
する空隙はほとんどないと言つて良い。従つて、
熱処理によつて得られる結晶化ガラス物品は、気
孔のない緻密な組織を有する。このことは切断や
研磨などの加工によつて、結晶化ガラス物品の表
面に気孔が露出する難をなくし、かつ機械的強度
の増強にもつながる。等々の種々の優れた効果を
奏するものであり、その有用性は極めて大であ
る。
According to the method of the present invention, even if the glass composition does not have a sufficiently low viscosity, the glass regions separated by cracks are in complete contact with each other and are easily fused or sintered, so that heat treatment is not required. As a result, it can be easily integrated and restored to its original shape. Therefore, it is not necessary for the glass composition to have a sufficiently low viscosity, and a wide range of glass compositions can be accommodated. The sintering method requires a step to make the particle size of the glass particles almost constant, and it is especially troublesome to handle the powder or fine glass particles produced during the process, but the manufacturing method of the present invention Although it requires a process to crack the glass molded product,
Since a glass molded product with cracks can be handled as is, there is no need to handle powdered glass or fine glass, and as mentioned above, the type and size of cracks may vary depending on the quenching temperature difference and the degree of air-cooling strengthening. can be easily controlled. Since the glass regions separated by the cracks are in complete contact with each other, it can be said that there are almost no voids between the glass regions compared to the case of the sintering method. Therefore,
The crystallized glass article obtained by heat treatment has a dense structure without pores. This eliminates the difficulty of exposing pores on the surface of the crystallized glass article during processing such as cutting or polishing, and also leads to an increase in mechanical strength. It has various excellent effects such as, and its usefulness is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法による結晶化熱処理前のガ
ラス成形品の状態を示す図、第2図は従来のガラ
ス粒焼結法による場合の説明図である。
FIG. 1 is a diagram showing the state of a glass molded article before crystallization heat treatment according to the method of the present invention, and FIG. 2 is an explanatory diagram of a case using a conventional glass grain sintering method.

Claims (1)

【特許請求の範囲】[Claims] 1 熱処理すると表面から内部に向かつて結晶が
析出・成長する性質を有する結晶性ガラスを、所
望の形状に成形する工程と、該ガラス成形品の形
状を保つたまま熱衝撃や機械的衝撃によつて該ガ
ラス成形品の一部又は全体に細かいヒビを与える
工程と、その後熱処理によつて該ガラス成形品表
面及びヒビ境界面より内部に向かつて結晶を析
出・成長させる工程とからなることを特徴とす
る、結晶とマトリツクスガラス相の混在、及び結
晶の配向性とに起因する美しい天然石様の外観を
有し、かつ気泡のない緻密な結晶化ガラス物品の
製造方法。
1 A process of forming crystalline glass, which has the property of crystallization and growth from the surface toward the inside when heat-treated, into a desired shape, and a process of applying thermal shock or mechanical shock while maintaining the shape of the glass molded product. The method is characterized by comprising a step of creating fine cracks in part or the whole of the glass molded product, and a step of precipitating and growing crystals from the surface of the glass molded product and the interface of the cracks toward the inside through heat treatment. A method for producing a dense crystallized glass article having a beautiful natural stone-like appearance due to the mixture of crystals and matrix glass phases and the orientation of the crystals, and having no air bubbles.
JP3955285A 1985-02-28 1985-02-28 Production of crystallized glass article Granted JPS61201631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3955285A JPS61201631A (en) 1985-02-28 1985-02-28 Production of crystallized glass article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3955285A JPS61201631A (en) 1985-02-28 1985-02-28 Production of crystallized glass article

Publications (2)

Publication Number Publication Date
JPS61201631A JPS61201631A (en) 1986-09-06
JPS6363497B2 true JPS6363497B2 (en) 1988-12-07

Family

ID=12556227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3955285A Granted JPS61201631A (en) 1985-02-28 1985-02-28 Production of crystallized glass article

Country Status (1)

Country Link
JP (1) JPS61201631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034531U (en) * 1996-08-08 1997-02-25 明 寺田 Cutter knife with ballpoint pen

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2611546B2 (en) * 1991-12-12 1997-05-21 日本電気硝子株式会社 Patterned crystallized glass
CN102583971B (en) * 2012-02-28 2014-04-09 徐日宏 Hot-melting glass with bowlder effect and manufacturing method of hot-melting glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3034531U (en) * 1996-08-08 1997-02-25 明 寺田 Cutter knife with ballpoint pen

Also Published As

Publication number Publication date
JPS61201631A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
KR100364229B1 (en) Nickel Aluminosilicate Glass-ceramics
US3557575A (en) Process for forming a basaltic glass-ceramic product
US3428513A (en) Strengthened crystalline article and method of making the same
JP2905529B2 (en) Method for producing diopside-based natural marble-like crystallized glass
US3955989A (en) Crystallized glass article having a surface pattern
US3279931A (en) Glass-ceramic body and method of making it
US3467534A (en) Barium silicate glass-ceramic body and method of making it
US3761235A (en) Marble like glass material and method of producing the same
US3801295A (en) Mica glass-ceramics
JPS6363497B2 (en)
US3148994A (en) Glass-ceramic bodies and method of making
US3825468A (en) Sintered ceramic
US3989496A (en) Spontaneously-formed glass-ceramics containing barium and/or strontium iron silicate crystals
JP3127256B2 (en) Method for producing crystallized glass
US2932922A (en) Devitrification of cast stones
US4028121A (en) Lead feldspar glass-ceramic bodies
JPH02116639A (en) Production of crystallized glass product
CN111439932B (en) Jade-like microcrystalline glass and preparation method thereof
JPS6230630A (en) Production of crystallized glass article
US3197279A (en) Method of making synthetic mica and ceramoplastic materials
JPH02149440A (en) Production of crystallized glass article having pattern
JPH0776110B2 (en) Natural stone-like crystallized glass article
US3197278A (en) Method of making synthetic mica and ceramoplastic material
JPS6238309B2 (en)
JPH08175846A (en) Crystallized glass material containing mica type crystal as main crystalline phase and its production