JPS6363481B2 - - Google Patents

Info

Publication number
JPS6363481B2
JPS6363481B2 JP55118872A JP11887280A JPS6363481B2 JP S6363481 B2 JPS6363481 B2 JP S6363481B2 JP 55118872 A JP55118872 A JP 55118872A JP 11887280 A JP11887280 A JP 11887280A JP S6363481 B2 JPS6363481 B2 JP S6363481B2
Authority
JP
Japan
Prior art keywords
soda
carbonate
hydrogen peroxide
percarbonate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55118872A
Other languages
Japanese (ja)
Other versions
JPS5742512A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11887280A priority Critical patent/JPS5742512A/en
Publication of JPS5742512A publication Critical patent/JPS5742512A/en
Publication of JPS6363481B2 publication Critical patent/JPS6363481B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、保存安定性がよく、活性酸素含有率
が均質な過炭酸ソーダを効率よく製造する方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for efficiently producing soda percarbonate having good storage stability and a homogeneous active oxygen content.

一般に、水性の反応母液中に炭酸ソーダと過酸
化水素水溶液とを連続的に供給して過炭酸ソーダ
を製造する場合、供給される固体の炭酸ソーダは
一旦母液中の水相に溶解し、次いで過酸化水素と
反応させ過炭酸ソーダを結晶として析出させるこ
とにより得られる。
Generally, when sodium percarbonate is produced by continuously supplying sodium carbonate and an aqueous hydrogen peroxide solution to an aqueous reaction mother liquor, the supplied solid sodium carbonate is once dissolved in the aqueous phase of the mother liquor, and then It is obtained by reacting with hydrogen peroxide to precipitate sodium percarbonate as crystals.

従来、この様な方法により過炭酸ソーダを製造
する場合、一般には原料炭酸ソーダの粒度には格
別の考慮は払われず、市販の炭酸ソーダがその
まゝ使用されている。しかし市販の炭酸ソーダに
は比較的粒度が大きいものから小さなものまで粒
度分布の幅が広く、また微粉も混入している。粒
度の比較的大きな炭酸ソーダは母液中の水相への
溶解が不十分であるため、過酸化水素との反応が
十分に行なわれず未反応の炭酸ソーダが過炭酸ソ
ーダの結晶に付随した状態で製品として得られる
過炭酸ソーダ中に混入して来たりして、製品とし
て得られる過炭酸ソーダの品質を低下させる。ま
た、この様な未反応の炭酸ソーダが混入した場合
は過炭酸ソーダの保存安定性をも悪くする。
Conventionally, when producing soda percarbonate by such a method, no special consideration is generally given to the particle size of the raw material soda carbonate, and commercially available soda carbonate is used as is. However, commercially available soda carbonate has a wide particle size distribution ranging from relatively large particles to small particles, and also contains fine powder. Since the relatively large particle size of soda carbonate is insufficiently dissolved in the aqueous phase of the mother liquor, the reaction with hydrogen peroxide does not take place sufficiently, and unreacted soda carbonate remains attached to the sodium percarbonate crystals. They may get mixed into the soda percarbonate product, reducing the quality of the soda percarbonate product. Further, if such unreacted soda carbonate is mixed, the storage stability of the sodium percarbonate will be deteriorated.

未反応の炭酸ソーダの付随を防ぐ一つの方法と
しては、母液中の水相に炭酸ソーダを完全に溶解
させればよいが、このためには反応時間(反応系
における滞留時間)を長くする必要がある。しか
し、反応時間を長くすると反応液中の過酸化水素
の分解が著しくなり工業的には全く好ましくな
い。
One way to prevent the accompanying unreacted soda carbonate is to completely dissolve the sodium carbonate in the aqueous phase of the mother liquor, but this requires increasing the reaction time (residence time in the reaction system). There is. However, if the reaction time is prolonged, the hydrogen peroxide in the reaction solution will be significantly decomposed, which is not desirable at all from an industrial perspective.

また、原料炭酸ソーダ中の微粉が反応母液中に
供給された場合には、反応系の溶液は実質的には
スラリー状であるため、供給された微粉の一部は
水相に溶解することなく、スラリーの上層部に浮
いた形で存在し、これは吸収して結晶水を保有し
た炭酸ソーダ(たとえばNa2CO3・10H2O)を形
成し大きな凝集塊となる。この様な凝集塊は水へ
の溶解性が極めて遅く、過炭酸ソーダ結晶に付随
し易く、製品過炭酸ソーダにおける活性酸素含有
率の分布が不均質となる要因ともなる。
In addition, when the fine powder in the raw material soda carbonate is supplied to the reaction mother liquor, the solution in the reaction system is substantially in the form of a slurry, so some of the supplied fine powder does not dissolve in the aqueous phase. , which exists in a floating form in the upper layer of the slurry, is absorbed to form soda carbonate (for example, Na 2 CO 3 .10H 2 O) containing water of crystallization, and becomes a large agglomerate. Such agglomerates have extremely low solubility in water and are likely to be attached to the sodium percarbonate crystals, which also causes the distribution of active oxygen content in the sodium percarbonate product to be non-uniform.

本発明者らは、上記の緒点に鑑み、原料炭酸ソ
ーダについて種々検討を行なつた結果本発明を見
出した。
In view of the above points, the present inventors conducted various studies on the raw material soda carbonate, and as a result, discovered the present invention.

すなわち、本発明は固体の炭酸ソーダと過酸化
水素水溶液とを同時に連続的に水性の反応母液中
に供給し、過炭酸ソーダを結晶として析出させて
製造するに際して、30メツシユ篩通過が70%以
上、200メツシユ篩通過が2%以下で、かつ粒径
が200〜300μである大きさの粒子からなり、さら
に水分含量が5%以下の炭酸ソーダを使用するこ
とを特徴とする過炭酸ソーダの製造法に係る。
That is, in the present invention, solid soda carbonate and hydrogen peroxide aqueous solution are simultaneously and continuously fed into an aqueous reaction mother liquor, and when producing sodium percarbonate by precipitating it as crystals, the passage through a 30-mesh sieve is 70% or more. , the production of soda percarbonate characterized by using carbonated soda that passes through a 200-mesh sieve by 2% or less, has a particle size of 200 to 300μ, and has a water content of 5% or less. Pertaining to law.

ところで、炭酸ソーダと過酸化水素水溶液とを
反応系に供給してスラリー状の過炭酸ソーダ結晶
を連続的に抜き出し過炭酸ソーダを製造するに際
しては、一般的には3〜5時間程度の反応時間を
必要とするのが常識であつた。
By the way, when producing soda percarbonate by supplying soda carbonate and an aqueous hydrogen peroxide solution to a reaction system and continuously extracting slurry-like sodium percarbonate crystals, the reaction time is generally about 3 to 5 hours. It was common sense that this was necessary.

しかるに、本発明によれば、従来は全く予測さ
えもしなかつた30〜60分という極く短かい反応時
間で目的物の過炭酸ソーダを、しかも品質の高い
過炭酸ソーダを収率よく得ることができるもので
ある。
However, according to the present invention, it is possible to obtain the target sodium percarbonate with a high yield and high quality in an extremely short reaction time of 30 to 60 minutes, which was previously unanticipated. It is possible.

このように、粒度分布及び粒径が特定範囲内に
ある炭酸ソーダを原料として使用することによ
り、極めて短時間に高品質の過炭酸ソーダを収率
よく得ることができることは全く驚くべきことで
ある。
It is truly surprising that high-quality soda percarbonate can be obtained in a very short time and with a high yield by using soda carbonate with a particle size distribution and particle size within a specific range as a raw material. .

本発明の方法における炭酸ソーダと過酸化水素
水溶液とを同時に連続的に反応器に供給し、晶出
する過炭酸ソーダをスラリー状で反応系から連続
的に抜き出し過炭酸ソーダを製造する方法を具体
的に説明すると、反応容器内に、予め所定濃度の
炭酸ソーダ、過酸化水素及び水からなる反応母液
を調製し、反応温度15〜20℃で撹拌下に、該母液
中に炭酸ソーダ及び過酸化水素水溶液を所定割合
で連続的に供給し、晶出する過炭酸ソーダをスラ
リー状で該反応容器の抜き出し口から連続的に抜
き出し、抜き出されたスラリーを過して液と
結晶とに分離し、液は循環して反応容器に戻
し、反応容器中のスラリー濃度を一定にして反応
が続けられる。一方結晶は造粒機に移送され、造
粒、乾燥し製品とされる。過炭酸ソーダスラリー
の反応容器中における滞留時間は炭酸ソーダ及び
過酸化水素水溶液の供給速度及び結晶の抜き出し
速度とによつて決められ、通常、0.5〜1.0時間で
ある。
The method of the present invention in which sodium carbonate and hydrogen peroxide aqueous solution are simultaneously and continuously supplied to a reactor, and the crystallized sodium percarbonate is continuously extracted from the reaction system in the form of a slurry to produce sodium percarbonate. Specifically, a reaction mother liquor consisting of sodium carbonate, hydrogen peroxide and water at a predetermined concentration is prepared in advance in a reaction vessel, and while stirring at a reaction temperature of 15 to 20°C, sodium carbonate and peroxide are added to the mother liquor. A hydrogen aqueous solution is continuously supplied at a predetermined ratio, and the crystallized sodium percarbonate is continuously extracted in the form of a slurry from the extraction port of the reaction vessel, and the extracted slurry is passed through and separated into liquid and crystals. The liquid is circulated back to the reaction vessel, and the reaction is continued while keeping the slurry concentration in the reaction vessel constant. Meanwhile, the crystals are transferred to a granulator, granulated and dried to form a product. The residence time of the soda percarbonate slurry in the reaction vessel is determined by the supply rate of the sodium carbonate and hydrogen peroxide aqueous solutions and the withdrawal rate of the crystals, and is usually 0.5 to 1.0 hours.

過炭酸ソーダは化学式Na2CO3・1 1/2H2O2
で示され、純粋な過炭酸ソーダ中に含有される炭
酸ソーダ濃度は67.52%(重量)、過酸化水素濃度
は32.48%(重量)であり、過炭酸ソーダの純度
を過炭酸ソーダ中の過酸化水素と炭酸ソーダの組
成比、すなわち、過酸化水素濃度/炭酸ソーダ濃
度で表わすと、化学量論的に反応した純粋の過炭
酸ソーダ結晶中の過酸化水素と炭酸ソーダとの組
成比の理論値は上記の式より0.4810となる。
Soda percarbonate has the chemical formula Na 2 CO 3・1 1/2H 2 O 2
The concentration of sodium carbonate contained in pure soda percarbonate is 67.52% (by weight), and the concentration of hydrogen peroxide is 32.48% (by weight). The composition ratio of hydrogen and soda carbonate, that is, the theoretical value of the composition ratio of hydrogen peroxide and soda carbonate in pure sodium percarbonate crystals reacted stoichiometrically, expressed as hydrogen peroxide concentration/sodium carbonate concentration. is 0.4810 from the above formula.

したがつて、得られた過炭酸ソーダ結晶中の過
酸化水素と炭酸ソーダとの組成比が理論値の
0.4810に近い程純度の高い高品質な製品というこ
とができる。
Therefore, the composition ratio of hydrogen peroxide and soda carbonate in the obtained sodium percarbonate crystals is equal to the theoretical value.
The closer it is to 0.4810, the higher the purity and high quality of the product.

本発明によれば、上記式によつて求められる組
成比は0.47以上と理論値に近く、極めて純度の高
い高品質な製品が得られる。しかも単位時間当り
の晶出収率(過酸化水素基準)も80%以上と工業
的に有利なものである。
According to the present invention, the composition ratio determined by the above formula is 0.47 or more, which is close to the theoretical value, and a high-quality product with extremely high purity can be obtained. Moreover, the crystallization yield per unit time (based on hydrogen peroxide) is 80% or more, which is industrially advantageous.

さらに、本発明の方法によつて得られた過炭酸
ソーダは保存安定性にもすぐれており、たとえ
ば、35℃、80%RHという過酷な雰囲気下で30日
放置しても過酸化水素の分解率は僅かに10数パー
セント乃至20パーセント程度である。
Furthermore, the sodium percarbonate obtained by the method of the present invention has excellent storage stability; for example, hydrogen peroxide decomposes even after being left in a harsh atmosphere of 35°C and 80% RH for 30 days. The rate is only around 10-20%.

本発明においては原料としての炭酸ソーダの粒
度分布及び粒径が、前記したように、30メツシユ
篩通過が70%以上(すなわち、30メツシユ篩上の
もの30%以下)、200メツシユ篩通過が2%以下
で、かつ粒径が200〜300μの範囲にあることが重
要である。この粒度分布と粒径との両者が上記範
囲を満足することにより、短時間の反応時間(滞
留時間)で、品質の高い過炭酸ソーダを収率よく
得ることができ、しかも保存安定性にもすぐれた
製品を得ることができるものである。
In the present invention, the particle size distribution and particle size of soda carbonate as a raw material are such that, as described above, 70% or more passes through a 30 mesh sieve (that is, 30% or less passes through a 30 mesh sieve), and 2% passes through a 200 mesh sieve. % or less and the particle size is in the range of 200 to 300μ. By ensuring that both the particle size distribution and the particle size satisfy the above ranges, high-quality sodium percarbonate can be obtained in a short reaction time (residence time) with a good yield, and it also has good storage stability. It is possible to obtain excellent products.

上記したように、原料炭酸ソーダとして、粒度
分布及び粒径がある特定範囲内にあるものを使用
することが重要であるが、その他に、原料炭酸ソ
ーダ中の水分含有率がある量以下であることが好
ましい。炭酸ソーダ中の水分含有量は、特に長時
間の連続運転を行なつた場合に収率に顕著な影響
を及ぼす。この種の反応においては通常、無水乃
至含水量の極めて低い炭酸ソーダが使用される
が、炭酸ソーダは空気中に放置された場合には、
空気中の水分を吸収して徐々に吸湿し、結晶水を
保有した様な形、たとえば、Na2CO3・H2Oある
いはNa2CO3・10H2Oを形成する。この様な炭酸
ソーダを原料として使用し長時間の連続運転を行
なつた場合、反応系内における水の割合が増加
し、過炭酸ソーダの単位時間当りの結晶収率の低
下をもたらし、経済的な不利を招く要因となり工
業的には好ましくない。たとえば水分含有率が約
10%の炭酸ソーダを原料として使用し、48時間連
続運転した場合の結晶収率は約70%であり、水分
含有率が5%の炭酸ソーダを使用した場合に比
べ、約10%の低下がみられた。本発明において、
原料として炭酸ソーダ中の水分含有率は5%以下
の炭酸ソーダを使用することがさらに好ましい。
As mentioned above, it is important to use a raw material soda that has a particle size distribution and particle size within a certain range, but it is also important that the water content in the raw material soda is below a certain amount. It is preferable. The water content in soda carbonate has a significant effect on the yield, especially when continuous operation is performed for a long time. In this type of reaction, anhydrous or extremely low water content soda is usually used; however, when soda is left in the air,
It gradually absorbs moisture from the air and forms a form that retains water of crystallization, for example, Na 2 CO 3 .H 2 O or Na 2 CO 3 .10H 2 O. When such sodium carbonate is used as a raw material and continuous operation is performed for a long time, the proportion of water in the reaction system increases, resulting in a decrease in the crystal yield of sodium percarbonate per unit time, resulting in economical problems. This is not desirable from an industrial perspective because it causes disadvantages. For example, if the moisture content is approx.
When using 10% soda carbonate as a raw material and operating continuously for 48 hours, the crystal yield is about 70%, which is about a 10% decrease compared to when using soda carbonate with a water content of 5%. It was seen. In the present invention,
It is more preferable to use soda carbonate having a water content of 5% or less as a raw material.

次に本発明の実施例を記す。 Next, examples of the present invention will be described.

実施例 1 内容積500mlの反応容器に、予め過酸化水素2.5
%、炭酸ソーダ12%よりなる水溶液を調整し、こ
れに安定剤としてEDTAを2000ppm添加した母
液500mlを仕込み、これに60%H2O2水溶液及び、
30メツシユ篩上のもの16%、30〜200メツシユ通
過のもの83%、200メツシユ篩通過のもの1%、
及び粒径270μで、含水率0.5%の炭酸ソーダを使
用し、60%過酸化水素水溶液75.0g/時及び炭酸
ソーダ94g/時の割合で連続的に供給し、スラリ
ー濃度20%、反応温度15℃、スラリー滞留時間30
分、撹拌速度50r.p.mの条件下で反応させた。ス
ラリー(晶出した過炭酸ソーダ結晶液)を反応容
器より連続的に抜き出し結晶を別し結晶は乾燥
し、液は循環系に戻した。
Example 1 In a reaction vessel with an internal volume of 500 ml, 2.5 ml of hydrogen peroxide was added in advance.
%, an aqueous solution consisting of 12% soda carbonate was prepared, and 500 ml of mother liquor containing 2000 ppm of EDTA as a stabilizer was added to this, and a 60% H 2 O 2 aqueous solution and
16% of those passing 30 mesh sieves, 83% of those passing 30 to 200 meshes, 1% of those passing 200 mesh sieves,
Sodium carbonate with a particle size of 270μ and a moisture content of 0.5% was used, and was continuously supplied at a rate of 75.0g/hour of 60% hydrogen peroxide aqueous solution and 94g/hour of soda carbonate, slurry concentration 20%, and reaction temperature 15%. °C, slurry residence time 30
The reaction was carried out at a stirring speed of 50 rpm. The slurry (crystallized sodium percarbonate crystal liquid) was continuously extracted from the reaction vessel, the crystals were separated, the crystals were dried, and the liquid was returned to the circulation system.

乾燥した結晶の重量、結晶組成を分析し、単位
時間当りの晶出収率(H2O2基準)を求め、収率
80%であつた。結晶中の過酸化水素と炭酸ソーダ
との組成比は0.475であり、理論値に近く品質の
高いものである。
Analyze the weight and crystal composition of the dried crystals, determine the crystallization yield per unit time (H 2 O 2 standard), and calculate the yield.
It was 80%. The composition ratio of hydrogen peroxide and soda carbonate in the crystal is 0.475, which is close to the theoretical value and of high quality.

また、結晶の一部を、35℃、80%RHの雰囲気
下に開放状態で30日間放置し、含有過酸化水素の
分解率を調べた結果、分解率は18%であつた。
In addition, a part of the crystal was left open in an atmosphere of 35° C. and 80% RH for 30 days, and the decomposition rate of the hydrogen peroxide contained therein was examined. As a result, the decomposition rate was 18%.

実施例 2 原料炭酸ソーダとして、30メツシユ篩上のもの
7%、30〜200メツシユ通過のもの93%、200メツ
シユ篩通過のもの0%、及び粒径260μのものを
使用した以外は実施例1と同様に行なつた。
Example 2 Example 1 except that as raw material soda carbonate, 7% of what passed through a 30 mesh sieve, 93% of what passed through a 30 to 200 mesh sieve, 0% of what passed through a 200 mesh sieve, and particles with a particle size of 260μ were used. I did the same thing.

結晶中の過酸化水素と炭酸ソーダとの組成比は
0.474であつた。また結晶中の含有過酸化水素の
分解率は20%であつた。
The composition ratio of hydrogen peroxide and soda carbonate in the crystal is
It was 0.474. Furthermore, the decomposition rate of hydrogen peroxide contained in the crystals was 20%.

比較例 1 原料炭酸ソーダとして、30メツシユ篩上のもの
40%、30〜200メツシユ通過のもの57%、200メツ
シユ篩通過のもの3%及び粒径410μのものを使
用した以外は実施例1と同様に行なつた。
Comparative example 1 As raw material soda carbonate, 30 mesh sieve
The same procedure as in Example 1 was carried out except that 40% of the particles were used, 57% of the particles passed through a 30 to 200 mesh sieve, 3% of particles that passed a 200 mesh sieve, and particles with a particle size of 410 μm were used.

分析の結果、結晶中の過酸化水素と炭酸ソーダ
の組成比は0.455と純度が低く、実施例1と同様
の条件下における結晶中の含有過酸化水素分解率
は50%に達し、また、単位時間当りの晶出収率は
75%であつた。
As a result of the analysis, the composition ratio of hydrogen peroxide and soda carbonate in the crystal was 0.455, which was low purity, and the decomposition rate of hydrogen peroxide contained in the crystal reached 50% under the same conditions as in Example 1. The crystallization yield per hour is
It was 75%.

比較例 2 反応温度を20℃としスラリー滞留時間を60分と
した以外は、比較例1におけると同様の炭酸ソー
ダを使用し、実施例1と同様に行なつた。
Comparative Example 2 The same procedure as in Example 1 was carried out using the same sodium carbonate as in Comparative Example 1, except that the reaction temperature was 20° C. and the slurry residence time was 60 minutes.

分析の結果、結晶中の過酸化水素と炭酸ソーダ
の組成比は0.454と純度が低く、含有過酸化水素
の分解率はほゞ50%に達した。
As a result of the analysis, the composition ratio of hydrogen peroxide and soda carbonate in the crystals was 0.454, indicating a low purity, and the decomposition rate of the hydrogen peroxide contained reached almost 50%.

比較例 3 原料炭酸ソーダとして、30メツシユ篩上のもの
0%、30〜200メツシユ通過のもの70%、200メツ
シユ篩通過のもの30%および粒径90μのものを使
用した以外は実施例1と同様に行なつた。
Comparative Example 3 Same as Example 1 except that as the raw material soda carbonate, 0% of what passed through a 30 mesh sieve, 70% of what passed through a 30 to 200 mesh sieve, 30% of what passed through a 200 mesh sieve, and particles with a particle size of 90μ were used. I did the same thing.

分析の結果、結晶中の過酸化水素と炭酸ソーダ
の組成比は0.465と純度が低く、含有過酸化水素
の分解率はほゞ50%に達した。
As a result of the analysis, the composition ratio of hydrogen peroxide and soda carbonate in the crystals was 0.465, indicating a low purity, and the decomposition rate of the hydrogen peroxide contained reached almost 50%.

実施例 3 含水率が3%である以外は実施例1におけると
同様の炭酸ソーダを使用し、実施例1と同様に行
なつた。
Example 3 The same procedure as in Example 1 was carried out using the same soda carbonate as in Example 1 except that the water content was 3%.

分析の結果、結晶中の過酸化水素と炭酸ソーダ
の組成比は0.475であり、含有過酸化水素の分解
率は約20%であつた。なお単位時間当りの晶出収
率は80%であつた。
As a result of the analysis, the composition ratio of hydrogen peroxide and soda carbonate in the crystal was 0.475, and the decomposition rate of the contained hydrogen peroxide was about 20%. The crystallization yield per unit time was 80%.

Claims (1)

【特許請求の範囲】[Claims] 1 固体の炭酸ソーダと過酸化水素水溶液とを同
時に連続的に水性の反応母液中に供給し、過炭酸
ソーダを結晶として析出させて製造するに際し
て、30メツシユ篩通過が70%以上、200メツシユ
篩通過が2%以下で、かつ粒径が200〜300μであ
る大きさの粒子からなり、さらに水分含量が5%
以下の炭酸ソーダを使用することを特徴とする過
炭酸ソーダの製造法。
1. When manufacturing by simultaneously and continuously feeding solid soda carbonate and hydrogen peroxide aqueous solution into an aqueous reaction mother liquor and precipitating sodium percarbonate as crystals, 70% or more passes through a 30-mesh sieve, and 70% or more passes through a 200-mesh sieve. It consists of particles with a passage of 2% or less and a particle size of 200 to 300 μ, and a water content of 5%.
A method for producing soda percarbonate, characterized by using the following soda carbonate.
JP11887280A 1980-08-28 1980-08-28 Production of sodium percarbonate Granted JPS5742512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11887280A JPS5742512A (en) 1980-08-28 1980-08-28 Production of sodium percarbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11887280A JPS5742512A (en) 1980-08-28 1980-08-28 Production of sodium percarbonate

Publications (2)

Publication Number Publication Date
JPS5742512A JPS5742512A (en) 1982-03-10
JPS6363481B2 true JPS6363481B2 (en) 1988-12-07

Family

ID=14747199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11887280A Granted JPS5742512A (en) 1980-08-28 1980-08-28 Production of sodium percarbonate

Country Status (1)

Country Link
JP (1) JPS5742512A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6311824U (en) * 1986-07-09 1988-01-26
DE10048514A1 (en) * 2000-09-29 2002-04-11 Degussa Sodium percarbonate fluidized bed granulate and process for its production

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969581A (en) * 1972-08-31 1974-07-05
JPS5113760A (en) * 1974-07-24 1976-02-03 Kao Corp 2*44exoo etanobishikuro * 3*3*1 * nonanno seizoho
JPS5315475A (en) * 1976-07-23 1978-02-13 Kikuchi Seisakushiyo Kk Molding apparatus for boiled fish paste with bamboo leaf shape
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4969581A (en) * 1972-08-31 1974-07-05
JPS5113760A (en) * 1974-07-24 1976-02-03 Kao Corp 2*44exoo etanobishikuro * 3*3*1 * nonanno seizoho
JPS5315475A (en) * 1976-07-23 1978-02-13 Kikuchi Seisakushiyo Kk Molding apparatus for boiled fish paste with bamboo leaf shape
JPS5717409A (en) * 1980-07-04 1982-01-29 Kao Corp Hollow granular percarbonate and its manufacture

Also Published As

Publication number Publication date
JPS5742512A (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US4146571A (en) Preparation of sodium percarbonate
US4780303A (en) Continuous process for the preparation of high strength sodium hypochlorite solutions
EP3699144A1 (en) Copper oxychloride particulate matter and preparation method therefor
JP2002518281A (en) Production method of potassium sulfate
US2541733A (en) Production of alkali metal carbonate perhydrates
US2726139A (en) Production of anhydrous sodium cyanide
CA1106136A (en) Process for producing sodium percarbonate from a soda solution of suspension
US2901319A (en) Preparation of potassium monopersulfate
JPS6363481B2 (en)
US4127734A (en) Preparation of butynediol using bismuth modified spheroidal malachite
US4117097A (en) Continuous process for the production of a compact, coarse sodium percarbonate
WO2004002885A1 (en) A process for making sodium percarbonate
JP2000226214A (en) Production of high-purity alkali stannate compound
US4126716A (en) Process for preparing stable anhydrous sodium dithionite
US4110249A (en) Preparation of bismuth modified spheroidal malachite
JPH01261224A (en) Production of alkali iodide
JPH05339005A (en) Production of sodium bicarbonate
US3801706A (en) Preparation of sodium percarbonate
US3197289A (en) Modification of zinc hydrosulfite crystals by use of high molecular weight colloidal materials
US2380779A (en) Method of preparing sodium perborate of low bulk density
JPH0360763B2 (en)
US2540648A (en) Process for recovering sodium bicarbonate and sodium borate from a complex brine
JPS596802B2 (en) Method for producing soda percarbonate
CN115215355B (en) Method for reducing fine sodium chloride in potassium chloride product and application thereof
US3985862A (en) Process for the production of sodium perborate