JPS6363282B2 - - Google Patents
Info
- Publication number
- JPS6363282B2 JPS6363282B2 JP55048143A JP4814380A JPS6363282B2 JP S6363282 B2 JPS6363282 B2 JP S6363282B2 JP 55048143 A JP55048143 A JP 55048143A JP 4814380 A JP4814380 A JP 4814380A JP S6363282 B2 JPS6363282 B2 JP S6363282B2
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- tube
- metal tube
- metal
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005096 rolling process Methods 0.000 claims description 57
- 239000002184 metal Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 12
- 238000009785 tube rolling Methods 0.000 claims 4
- 238000005304 joining Methods 0.000 description 16
- 239000003638 chemical reducing agent Substances 0.000 description 14
- 229910000831 Steel Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000003303 reheating Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000008719 thickening Effects 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Description
本発明は絞り圧延法により、小径円管を製造す
るに際し製品の管先端および管後端の増肉現象を
防止する方法に関するものである。以下ストレツ
チレデユーサー圧延機に基づいて本発明の詳細な
説明を進める。
ストレツチレデユーサーは、例えば継目無鋼管
を圧延するに際し、プラグミル、マンドレルミ
ル、あるいはセミフローテイングマンドレルミル
などに続き、再熱炉を介して、最終の工程として
配置される。圧延設備としては2〜4個のロール
からなる剛性の高い圧延スタンドが数台ないし20
数台直列に連続的に配置された構造であり素管の
外径をロール圧下により、肉厚をスタンド間張力
により所定の寸法に圧延し成品が作られる。第1
図にストレツチレデユーサーの原理を示す。
即ち、その回転軸心相互の圧延方向に垂直な面
内においてなす角が180゜,120゜或は90゜である2〜
4箇のロール2,2′によつて管1外径を縮小す
るとともに、圧延機間で管に張力Tを付加してそ
の肉厚を減少せしめる圧延法である。
このようなストレツチレデユーサーで管を圧延
する場合次の様な問題点がある。つまり、成品の
管端付近の肉厚が中央部より厚くなる現象であ
る。このような現象が生じる理由は次の様に説明
できる。ストレツチレデユーサーにおいては肉厚
をスタンド間の張力で調整しているのに対し実際
の圧延の場合、素管の先端および後端が次スタン
ドにかからないと張力が発生しないことに起因し
ている。つまりこの張力は管が全スタンドで圧延
されている状態と管端がスタンドを通過する状態
とで異なるためであり、この管の変形の差として
増肉現象があらわれるものである。
このような管端付近の増肉部分は寸法仕様を満
足しないために切捨てられるため成品歩留上大き
な問題となつている。本発明は管端増肉という問
題点を解決し、歩留向上をはかるためになされた
ものである。すなわち本発明の目的は圧延中の張
力を常に管が全スタンドで圧延されている状態に
もつていき、増肉現象を防止するものである。本
発明の要旨は管圧延法において、圧延スタンドを
複数台直列に配設した管の絞り圧延機列で金属管
の絞り圧延を行うに際し、前記圧延機列の前段で
前記金属管を長さ方向に接続することである。
以下に、本発明を詳細に説明する。
管に張力を付加した状態下で絞り圧延を行なう
に際して、管に付加される張力値の変動即ち管の
先端および後端の同時に2台以上の圧延機の圧延
ロールに噛込まれていないことに起因して張力が
付加されていない状態下で圧延されることによる
管の肉厚不適(厚過ぎ)を生ぜしめないために
は、ストレツチレデユーサに被圧延管を供給する
に際し、これを長さ方向に順次接合して張力付加
に関する非定常部をなくすことが必要である。
管を連続的に圧延するための管の接合手段とし
ては、溶接法、圧接法、鍛接法、線爆接法等が考
えられるが、ストレツチレデユーサにおいては管
に張力がかかることから接合部の強度は圧延過程
で付加される張力に充分耐えうるものでなければ
ならない。さらに、連続的に圧延を遂行するため
には管の接合時間が圧延速度を変動せしめる因子
とならないようにしなければならない。
発明者等は、上に充べた課題を解決するため
に、管の尾頭端部の接合に関して研究を進めた結
果本発明を完成するに到つた。
第1に、溶接或は圧接により管を長さ方向に接
続するに際し、予め管端部の肉厚を長さ方向中央
部のそれよりも厚く加工しておき、断面積を大き
くすることによつて、接合部における軸方向拡大
張力を大ならしめ接合部での破断を防止すように
した点によつて特徴づけられる。
第2に、管を長さ方向に接合した後、接合部を
冷却して接合部の温度を素管温度より50〜200℃
低下せしめて接合部の抗張力を増大せしめるよう
にしたものである。ここで接合部の温度を素管温
度よりも低下せしめるに際しその温度差を50〜
200℃の範囲に限定したのは50℃未満では抗張力
の増大に殆んど効かないからである。一方、200
℃を超える温度差とすると、接合部の変形抵抗が
高くなり過ぎロール寿命の点で問題となる。従つ
て、接合部の温度を降下せしめるに際しては素管
温度よりも50〜200℃の低い温度域に止めるよう
にする。
接合部の温度を降下せしめるには水或は不活性
ガスを接合部に噴射して冷却するとともに工具の
接触により冷却する。
第3に、管を接合した後、その部分の外径を、
たとえば管の半径方向に工具が変位するプレスに
よつて第1スタンドの孔型径以下に縮小して管の
肉厚を増大せしめるとともに接合部を素管温度よ
りも50〜200℃低い水準に降下せしめる。
第4に先行管尾端部と後行管頭端部を嵌合せし
めた後プレス等で管直径方向に圧着することによ
つて接合するものである。この発明は、上に述べ
た第1〜第3の技術的事項を単独或は適宜組合せ
て実施することができる。
以下に、好ましい実施例に基づいてさらに詳細
に説明する。
第3図に、本発明を実施するときの装置の1つ
を示す。
第3図において、6はストレツチレデユーサに
よつて圧延中の管であり、7は、次に圧延される
素管である。8は、接合装置であり、たとえば溶
接機或は第5図に示す圧着装置である。接合装置
8は、管6,7の軸方向移動速度に同期して移動
自在でありかつ水、不活性ガスを接合部に噴射す
るための供給手段およびノズルを有している。9
は、ストレツチレデユーサであり、たとえばその
回転軸心相互が圧延方向に垂直な面内でなす角が
120゜である3箇の圧延ロールを有する20数台の圧
延機によつて構成される。
10は再熱炉であり、それまでの圧延過程で温
度の降下した管を再加熱する。
上に述べたように構成された装置の作用を説明
すると、再熱炉10で再加熱された管は、ストレ
ツチレデユーサ9に供給されストレツチレデユー
サにおける圧延機間で張力を付加されて肉厚の減
少と外径の縮小加工を受ける。
先行管6の後端と後行管の先端は、接合装置8
において軸方向に当接せしめられ接合され、次い
で接合部は水、不活性ガスを噴射され、定常部よ
りも50〜200℃低い温度になるように冷却される。
管の接合、冷却は、接合装置8が管の移動速度に
同期して移動する中で遂行される。
このようにして、充分な強度を与えられた接合
部はストレツチレデユーサ9に送り込まれる。
管を接合した後、その部分の外径を縮少し肉厚
を増大するには第4図に示す装置で行なうことが
できる。
第4図において、11は、接合された部分の管
を示しており、12はプレスである。
プレス12は管の半径方向に進退するように構
成されており、第4図に示す矢印の方向に変位す
るときに管のその部分の外径が縮小せしめられ
る。このプレス12は先に述べた接合装置8の後
段に配置され接合装置8と同様に管の移動と同期
して移動可能に構成される。さらに他の方法とし
て、管を接合後、接合部をロールあるいはプレス
等にて、第1スタンドカリバー径以下に絞り破断
を防止する方法である。
これによつて、第1に、工具と材料の接触によ
つて材料温度を低下せしめ、接合部の張力に対す
る強度を高める効果を有すると共に、第2に接合
部が第1スタンドを通過する際に、ロールによる
圧延変形が行なわれることがなく、通常の圧延に
おいては、ロールによる圧下力を前方張力によつ
て、変形することにより、外径と肉厚が絞られ、
断面減少が行なわれるが、かかる部分においては
張力のみが付加されるため、断面積減少は最少で
すみ、従つて結果としてかかる部分のみ断面積が
他の部分より大きく、同一張力下においては破断
強度が増し、その後最終スタンドにおけるまで破
断を防止することができる。
次に、管の接合に先立つて、接合すべき管端部
分の肉厚を増大せしめる手段について説明する。
第2図にその装置を示す。
第2図において3は管端部4,5は工具であ
る。工具4は円筒状を呈しており、これは周方向
に分割されたものであつてもよい。工具5を軸方
向に工具4の方に向けて変位させることによつて
管端部3の肉厚を増大せしめる。
第5図に、先行管尾端部と後行管頭端部を嵌合
せしめた後プレス等でこの嵌合部を管直径方向に
圧着することによつて接合する過程を示す。
第5図において、6は先行管であり7は後行管
である。13はプレスであり先行管と後行管の嵌
合部を直径方向に圧着する。
先行管6の尾端部は、たとえば第4図に示すプ
レスで外径を縮小される。後行管7頭端部は、そ
の内径が、先行管6尾端部外径に嵌合し得る寸法
にやはり第4図に示すようなプレスで径を縮小さ
れる。
然る後先行管6の尾端部と後行管7の頭端部は
嵌合せしめられ、さらにプレス13によつて、第
5図に示す実施例では上下方向から圧着せしめら
れる。
次に本発明の実施例を説明する。
この実施例は第5図に示す、上に述べた接合手
段によつて鋼管を長さ方向に接続する場合に関す
るものである。
第1表に、そのときの鋼管の諸元を示す。
The present invention relates to a method for preventing thickening of the tube tip and rear end of the product when manufacturing small diameter circular tubes using a reduction rolling method. The detailed description of the present invention will be given below based on a stretch reducer rolling mill. For example, when rolling a seamless steel pipe, a stretch reducer is installed as the final step after a plug mill, mandrel mill, or semi-floating mandrel mill, and then through a reheating furnace. The rolling equipment consists of several to 20 highly rigid rolling stands each consisting of 2 to 4 rolls.
It has a structure in which several units are arranged in series, and the outer diameter of the raw tube is rolled down by rolls, and the wall thickness is rolled to a predetermined dimension by tension between stands to produce finished products. 1st
The figure shows the principle of the stretch reducer. That is, the angle between the rotational axes and the plane perpendicular to the rolling direction is 180°, 120°, or 90°.
This is a rolling method in which the outer diameter of the tube 1 is reduced by four rolls 2, 2', and the wall thickness is reduced by applying tension T to the tube between rolling mills. When rolling a tube using such a stretch reducer, there are the following problems. In other words, this is a phenomenon in which the wall thickness near the end of the tube becomes thicker than the center. The reason why such a phenomenon occurs can be explained as follows. In a stretch reducer, the wall thickness is adjusted by the tension between the stands, but in actual rolling, tension is not generated until the tip and rear end of the raw tube are placed on the next stand. . In other words, this tension is different between the state in which the tube is rolled by all the stands and the state in which the end of the tube passes through the stand, and the phenomenon of thickening appears as a difference in the deformation of the tube. This increased thickness near the end of the tube does not meet the dimensional specifications and is therefore discarded, which poses a major problem in terms of product yield. The present invention was made in order to solve the problem of thickening the tube end and to improve the yield. That is, an object of the present invention is to maintain the tension during rolling so that the tube is always rolled at all stands, thereby preventing the phenomenon of thickening. The gist of the present invention is that in a pipe rolling method, when a metal tube is subjected to reduction rolling in a tube reduction rolling mill row in which a plurality of rolling stands are arranged in series, the metal tube is rolled in the longitudinal direction at the front stage of the rolling mill row. is to connect to. The present invention will be explained in detail below. When performing reduction rolling with tension applied to the tube, fluctuations in the tension value applied to the tube, i.e., the fact that the tip and rear ends of the tube are not bitten by the rolling rolls of two or more rolling mills at the same time. In order to prevent the tube from becoming unsuitable (too thick) due to being rolled under no tension, it is necessary to lengthen the tube when feeding it to the stretch reducer. It is necessary to sequentially join them in the horizontal direction to eliminate unsteady parts related to tension application. Welding, pressure welding, forge welding, wire explosion welding, etc. can be considered as methods for joining pipes to continuously roll them, but in a stretch reducer, tension is applied to the pipes, so the joints are The strength must be sufficient to withstand the tension applied during the rolling process. Furthermore, in order to carry out rolling continuously, it is necessary to prevent the joining time of the tubes from becoming a factor that changes the rolling speed. In order to solve the above-mentioned problems, the inventors completed the present invention as a result of conducting research on joining the caudal end of a tube. First, when connecting pipes longitudinally by welding or pressure welding, the wall thickness at the end of the pipe is made thicker than that at the center of the length in advance to increase the cross-sectional area. Therefore, it is characterized by increasing the axial expansion tension at the joint to prevent breakage at the joint. Second, after joining the pipes in the length direction, the joint is cooled down to a temperature of 50 to 200°C below the original pipe temperature.
The tensile strength of the joint is increased by decreasing the tensile strength of the joint. Here, when lowering the temperature of the joint than the base pipe temperature, the temperature difference is 50~
The reason why the temperature was limited to 200°C is that below 50°C, there is almost no effect on increasing the tensile strength. On the other hand, 200
If the temperature difference exceeds .degree. C., the deformation resistance of the joint becomes too high, causing problems in terms of roll life. Therefore, when lowering the temperature of the joint, the temperature should be kept within a range of 50 to 200°C lower than the temperature of the raw pipe. To lower the temperature of the joint, water or an inert gas is injected into the joint to cool it, and the joint is cooled by contact with the tool. Third, after joining the tubes, the outer diameter of that part is
For example, by using a press that displaces the tool in the radial direction of the pipe, the pipe is reduced to the hole diameter of the first stand or less, increasing the wall thickness of the pipe, and lowering the temperature of the joint to a level 50 to 200°C lower than the original pipe temperature. urge Fourthly, after the tail end of the leading pipe and the head end of the trailing pipe are fitted together, they are joined by pressing in the pipe diameter direction using a press or the like. This invention can be implemented by using the first to third technical matters described above alone or in appropriate combinations. A more detailed explanation will be given below based on preferred embodiments. FIG. 3 shows one of the apparatuses for carrying out the invention. In FIG. 3, 6 is a tube being rolled by a stretch reducer, and 7 is a blank tube to be rolled next. 8 is a joining device, such as a welding machine or a crimping device shown in FIG. The joining device 8 is movable in synchronization with the axial movement speed of the tubes 6 and 7, and has a supply means and a nozzle for injecting water and inert gas to the joining portion. 9
is a stretch reducer, and for example, the angle between its rotation axes in a plane perpendicular to the rolling direction is
It consists of more than 20 rolling mills with three rolling rolls of 120°. A reheating furnace 10 reheats the tube whose temperature has dropped during the rolling process. To explain the operation of the apparatus configured as described above, the tube reheated in the reheating furnace 10 is supplied to the stretch reducer 9, and tension is applied between the rolling mills in the stretch reducer. Processed to reduce wall thickness and outer diameter. The rear end of the leading pipe 6 and the tip of the trailing pipe are connected to a joining device 8
The joints are brought into axial contact and joined, and then water and inert gas are injected into the joints, and the joints are cooled to a temperature 50 to 200°C lower than that of the stationary part.
The joining and cooling of the tubes is performed while the joining device 8 moves in synchronization with the moving speed of the tubes. In this way, the joint, which has been given sufficient strength, is fed into the stretch reducer 9. After the tubes are joined, the outside diameter of the part can be reduced and the wall thickness increased using the apparatus shown in FIG. In FIG. 4, reference numeral 11 indicates a pipe that is a joined portion, and reference numeral 12 indicates a press. The press 12 is configured to move forward and backward in the radial direction of the tube, and when displaced in the direction of the arrow shown in FIG. 4, the outer diameter of that portion of the tube is reduced. This press 12 is arranged after the above-mentioned joining device 8, and is configured to be movable in synchronization with the movement of the tubes like the joining device 8. Still another method is to, after joining the pipes, roll or press the joined portion to a diameter smaller than the first stand caliber to prevent breakage. This has the effect of firstly lowering the material temperature through contact between the tool and the material and increasing the strength of the joint against tension, and secondly, when the joint passes through the first stand. , rolling deformation by rolls is not performed, and in normal rolling, the rolling force by the rolls is deformed by the forward tension, and the outer diameter and wall thickness are reduced.
Although the cross-sectional area is reduced, since only tension is applied to this part, the reduction in cross-sectional area is minimal.As a result, only this part has a larger cross-sectional area than other parts, and the breaking strength is lower under the same tension. is increased, and subsequent breakage can be prevented until the final stand. Next, a description will be given of means for increasing the wall thickness of the end portions of the tubes to be joined prior to joining the pipes.
Figure 2 shows the device. In FIG. 2, reference numeral 3 indicates tube end portions 4 and 5, which are tools. The tool 4 has a cylindrical shape, which may be divided in the circumferential direction. By displacing the tool 5 axially towards the tool 4, the wall thickness of the tube end 3 is increased. FIG. 5 shows a process in which the tail end of the leading tube and the head end of the trailing tube are fitted together and then joined by pressing the fitting portion in the tube diameter direction using a press or the like. In FIG. 5, 6 is a leading pipe and 7 is a trailing pipe. Reference numeral 13 denotes a press which crimps the fitting portions of the leading pipe and trailing pipe in the diametrical direction. The outer diameter of the tail end of the leading pipe 6 is reduced by, for example, a press shown in FIG. The inner diameter of the head end of the trailing tube 7 is reduced to a size that allows it to fit into the outer diameter of the tail end of the leading tube 6 using a press as shown in FIG. The tail end of the trailing leading pipe 6 and the head end of the trailing pipe 7 are fitted together and further pressed together from above and below by a press 13 in the embodiment shown in FIG. Next, embodiments of the present invention will be described. This embodiment relates to the case shown in FIG. 5, in which steel pipes are connected longitudinally by the above-mentioned joining means. Table 1 shows the specifications of the steel pipe at that time.
【表】
鋼管は再熱炉で950℃に加熱され、第4図に示
すプレスで先行管尾端と後行管頭端を嵌合し得る
ように、かつストレツチレデユーサのロールによ
つて延伸作用を受けないように外径に縮小され
た。
先行管の尾端部と後行管の頭端部は嵌合せしめ
られた後第5図に示すプレスで接合部を圧着され
た。
鋼管は、このようにして順次接合されたエンド
レス圧延された。
第6図、第7図に管サイズ水準別の管端部の肉
厚を、従来技術による場合と本発明を実施した上
に述べた実施例の結果について示す。
第6図、第7図から明らかなように管端部増肉
許容範囲を12.5%としたときの切捨量を比較して
みると、本発明によれば従来技術におけるそれよ
りも大幅に減少している。
歩留落は管サイズ25A,40A何れの場合も半減
した。
この発明は、以上述べたように構成しかつ作用
せしめるようにしたから管の肉厚に起因する歩留
落ちを大幅に減少せしめ得る。[Table] The steel pipe was heated to 950°C in a reheating furnace, and then pressed using the press shown in Figure 4 so that the tail end of the leading pipe and the head end of the trailing pipe could be fitted together, and by the rolls of the stretching reducer. The outer diameter was reduced so as not to be subjected to stretching action. After the tail end of the leading tube and the head end of the trailing tube were fitted together, the joint was crimped using a press as shown in FIG. The steel pipes were thus endlessly rolled and joined one after the other. FIG. 6 and FIG. 7 show the wall thickness of the tube end according to the tube size level, with respect to the results of the prior art and the above-described embodiment in which the present invention was implemented. As is clear from Fig. 6 and Fig. 7, when comparing the amount of truncation when the allowable range of wall thickness increase at the pipe end is set to 12.5%, according to the present invention, it is significantly reduced compared to that in the conventional technology. are doing. Yield loss was halved for both tube sizes 25A and 40A. Since the present invention is constructed and operated as described above, it is possible to significantly reduce the yield loss caused by the wall thickness of the tube.
第1図はストレツチレデユーサの原理を説明す
るための縦断面図、第2図は管端を厚くする方法
を示す例を示す図、第3図は本発明のうち溶接に
よる接合し、冷却する場合の設備概図例、第4図
は接合部を絞る場合のプレス例を示す図、第5図
はあらかじめ管端を加工し、両端を挿入後圧着接
合する場合の処理状況経過図、第6図、第7図は
従来法と本発明による肉厚分布の比較を示す図で
ある。
1…素管、2,2′…ロール、3…管端部、4,
4′,5…工具、6…圧延中の素管、7…後続の
素管、8…冷却装置を有する溶接機、9…圧延ス
タンド、10…再熱炉、11…素管の接合部、1
2,13…プレス。
Figure 1 is a longitudinal sectional view for explaining the principle of the stretch reducer, Figure 2 is a diagram showing an example of how to thicken the tube end, and Figure 3 is a diagram showing an example of how to thicken the tube end. Fig. 4 is a diagram showing an example of a press when squeezing the joint, Fig. 5 is a progress diagram of the processing situation when the pipe end is processed in advance, and both ends are inserted and then crimped and joined. 6 and 7 are diagrams showing a comparison of wall thickness distribution according to the conventional method and the present invention. 1...Main pipe, 2,2'...Roll, 3...Pipe end, 4,
4', 5...Tool, 6...Main pipe being rolled, 7...Following stock pipe, 8...Welding machine with a cooling device, 9...Rolling stand, 10...Reheating furnace, 11...Joint part of the stock pipe, 1
2,13...Press.
Claims (1)
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、予め金属管の長さ方向端部の肉厚を厚くし
た上で溶接あるいは圧接によつて前記金属管を長
さ方向に接続せしめて絞り圧延を行うようにした
ことを特徴とする管圧延法。 2 圧延スタンドを複数台直列に配設した、管の
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、予め金属管の長さ方向端部の肉厚を厚くし
た上で溶接あるいは圧接によつて前記金属管を長
さ方向に接続せしめさらに、該接続部の温度を他
の部分の温度よりも50〜200℃降下せしめた後絞
り圧延を行うようにしたことを特徴とする管圧延
法。 3 圧延スタンドを複数台直列に配設した、管の
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、予め金属管の長さ方向端部の肉厚を厚くし
た上で溶接あるいは圧接によつて前記金属管を長
さ方向に接続せしめるとともに、該接続部の外径
を絞り圧延機列の第一スタンドにおけるカリバー
径よりも小ならしめる絞り加工を行つた後絞り圧
延を行うようにしたことを特徴とする管圧延法。 4 圧延スタンドを複数台直列に配設した、管の
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、金属管長さ方向端部の外径を、長さ方向中
央部のそれよりも小かつ先行金属管後端部と後行
金属管先端部を嵌合可能に加工し、先行金属管後
端部と後行金属管を嵌合した後管直径方向に圧着
して金属管を長さ方向に接続せしめて絞り圧延を
行うようにしたことを特徴とする管圧延法。 5 圧延スタンドを複数台直列に配設した、管の
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、金属管長さ方向端部の外径を、長さ方向中
央部のそれよりも小かつ先行金属管後端部と後行
金属管先端部を嵌合可能に加工し、先行金属管後
端部と後行金属管を嵌合した後管直径方向に圧着
して金属管を長さ方向に接続せしめさらに、該接
続部の温度を他部分の温度よりも50〜200℃降下
せしめた後絞り圧延を行うようにしたことを特徴
とする管圧延法。 6 圧延スタンドを複数台直列に配設した、管の
絞り圧延機列によつて金属管の絞り圧延を行うに
際し、金属管長さ方向端部の外径を、長さ方向中
央部のそれよりも小かつ先行金属管後端部と後行
金属管先端部を嵌合可能に加工し、先行金属管後
端部と後行金属管を嵌合した後管直径方向に圧着
して金属管を長さ方向に接続せしめるとともに、
該接続部の外径を絞り圧延機列の第一スタンドに
おけるカリバー径よりも小ならしめる絞り加工を
行つた後絞り圧延を行うようにしたことを特徴と
する管圧延法。[Scope of Claims] 1. When a metal tube is subjected to reduction rolling by a tube reduction rolling mill row in which a plurality of rolling stands are arranged in series, the wall thickness of the longitudinal end of the metal tube is thickened in advance. A tube rolling method characterized in that the metal tubes are then connected in the length direction by welding or pressure welding to perform reduction rolling. 2. When reducing and rolling a metal tube using a pipe reduction rolling mill line with multiple rolling stands arranged in series, the wall thickness of the lengthwise end of the metal tube is increased in advance, and then welding or pressure welding is performed. A tube rolling method characterized in that the metal tubes are connected in the length direction by a method, and the temperature of the connected portion is lowered by 50 to 200 degrees Celsius than that of other portions, and then reduction rolling is performed. Law. 3. When reducing and rolling metal tubes using a tube reducing mill row with multiple rolling stands arranged in series, the walls of the longitudinal ends of the metal tubes are made thicker in advance and then welded or pressure welded. to connect the metal tubes in the length direction, and perform a drawing process to make the outer diameter of the connection part smaller than the caliber diameter in the first stand of the reduction rolling mill row, and then perform reduction rolling. A pipe rolling method characterized by the following. 4. When reducing and rolling a metal tube using a line of tube reducing mills in which a plurality of rolling stands are arranged in series, the outer diameter of the longitudinal end of the metal tube is set to be smaller than that of the longitudinal center. The rear end of the small leading metal tube and the tip of the trailing metal tube are machined so that they fit together, and the rear end of the leading metal tube and the trailing metal tube are crimped in the diameter direction of the fitted rear tube to lengthen the metal tube. A tube rolling method characterized in that the tubes are connected in the horizontal direction and the reduction rolling is performed. 5. When reducing and rolling a metal tube using a tube reduction rolling mill row with a plurality of rolling stands arranged in series, the outer diameter of the longitudinal end of the metal tube should be made smaller than that of the longitudinal center. The rear end of the small leading metal tube and the tip of the trailing metal tube are machined so that they fit together, and the rear end of the leading metal tube and the trailing metal tube are crimped in the diameter direction of the fitted rear tube to lengthen the metal tube. 1. A method of rolling tubes, characterized in that the tubes are connected in the transverse direction, and the temperature of the connecting portion is lowered by 50 to 200° C. than that of other portions, and then reduction rolling is performed. 6. When reducing and rolling a metal tube using a tube reduction rolling mill row with a plurality of rolling stands arranged in series, the outer diameter of the lengthwise end of the metal tube should be made smaller than that of the lengthwise center. The rear end of the small leading metal tube and the tip of the trailing metal tube are machined so that they fit together, and the rear end of the leading metal tube and the trailing metal tube are crimped in the diameter direction of the fitted rear tube to lengthen the metal tube. In addition to connecting in the horizontal direction,
A tube rolling method characterized in that after performing a drawing process to make the outer diameter of the connection part smaller than the caliber diameter in a first stand of a row of reduction rolling mills, reduction rolling is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4814380A JPS56144809A (en) | 1980-04-14 | 1980-04-14 | Rolling method for pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4814380A JPS56144809A (en) | 1980-04-14 | 1980-04-14 | Rolling method for pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56144809A JPS56144809A (en) | 1981-11-11 |
JPS6363282B2 true JPS6363282B2 (en) | 1988-12-07 |
Family
ID=12795121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4814380A Granted JPS56144809A (en) | 1980-04-14 | 1980-04-14 | Rolling method for pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56144809A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58184005A (en) * | 1982-04-23 | 1983-10-27 | Nippon Steel Corp | Endless rolling method in stretch reducer |
JPS5919008A (en) * | 1982-07-23 | 1984-01-31 | Nippon Steel Corp | Rolling method of seamless pipe |
JPS6044108A (en) * | 1983-08-23 | 1985-03-09 | Hitachi Ltd | Method and device for continuously rolling seamless steel pipe |
JPS6046802A (en) * | 1983-08-26 | 1985-03-13 | Nippon Steel Corp | Rolling method of pipe |
DE3823135C3 (en) * | 1988-07-05 | 1995-05-04 | Mannesmann Ag | Method and arrangement to reduce the outer diameter and the wall thickness of a mainly cylindrical hollow tube blank by rolling |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50131650A (en) * | 1974-04-06 | 1975-10-17 |
-
1980
- 1980-04-14 JP JP4814380A patent/JPS56144809A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50131650A (en) * | 1974-04-06 | 1975-10-17 |
Also Published As
Publication number | Publication date |
---|---|
JPS56144809A (en) | 1981-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8166792B2 (en) | Method of making a seamless hot-finished steel pipe, and device for carrying out the method | |
ZA200703246B (en) | Method for production of a seamless hot-finished steel tube and device for carrying out said method | |
JPS6363282B2 (en) | ||
US10894278B2 (en) | Method for producing seamless metal tube | |
RU2036031C1 (en) | Method for producing seamless hot rolled tubes with outer diameter less than 170 mm | |
US4487049A (en) | Working mandrel and method of rolling elongate hollow pieces in a multi-stand continuous mill on same working mandrel | |
EP2521626B1 (en) | Tube rolling plant and method for rolling seamless tubes | |
WO2021220653A1 (en) | Inclined rolling equipment, method for producing seamless tube blank, and method for producing seamless steel tube | |
JP3297999B2 (en) | Mandrel mill rolling equipment and rolling method used therefor | |
JPH09300007A (en) | Method for manufacturing seamless tube | |
GB2089702A (en) | Method of manufacturing stainless steel pipes | |
JPS5844906A (en) | Endless rolling method for stretch reducer | |
JP3082678B2 (en) | Manufacturing method of small diameter seamless metal pipe | |
US2216718A (en) | Manufacturing metallic tubular articles | |
JP6274449B2 (en) | Seamless steel pipe manufacturing method | |
JPS5861903A (en) | Device for endless rolling in stretch reducer | |
US2215933A (en) | Method of making tubing | |
JPS6035206B2 (en) | Seamless steel pipe manufacturing method | |
JP6950858B1 (en) | Inclined rolling equipment, seamless pipe manufacturing method and seamless steel pipe manufacturing method | |
JPH105820A (en) | Manufacture of seamless metallic tube | |
JP4117955B2 (en) | Billet drilling method | |
JP2024118342A (en) | Plug mill rolling method and plug mill | |
US2025147A (en) | Apparatus for expanding and elongating tubular work pieces | |
JPS5856649B2 (en) | Continuous rolling method and equipment for pipes | |
JPS58184005A (en) | Endless rolling method in stretch reducer |