JPS6362895B2 - - Google Patents

Info

Publication number
JPS6362895B2
JPS6362895B2 JP12500583A JP12500583A JPS6362895B2 JP S6362895 B2 JPS6362895 B2 JP S6362895B2 JP 12500583 A JP12500583 A JP 12500583A JP 12500583 A JP12500583 A JP 12500583A JP S6362895 B2 JPS6362895 B2 JP S6362895B2
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor device
manufacturing
heating
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12500583A
Other languages
Japanese (ja)
Other versions
JPS6016426A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12500583A priority Critical patent/JPS6016426A/en
Publication of JPS6016426A publication Critical patent/JPS6016426A/en
Publication of JPS6362895B2 publication Critical patent/JPS6362895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3046Mechanical treatment, e.g. grinding, polishing, cutting using blasting, e.g. sand-blasting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thyristors (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、シリコンまたはゲルマニウムを用い
た半導体素子の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor element using silicon or germanium.

従来例の構成とその問題点 従来、シリコンまたはゲルマニウムを用いた半
導体素子は単結晶を用いていた。電極面積に比
べ、接合面積の広い半導体素子は第1図のような
方法で作成されていた。すなわち、結晶の面方位
によつてエツチング速度が非常に異なる性質を利
用したものである。例えば(100)の単結晶シリ
コン1を酸化させて表面にSiO2層2を作る(a)。
適当にパターニングし(b)、パターニングした
SiO2をマスクとして例えばNaOH溶液中に入れ
ると(110)が選択的にエツチングされ、溝3が
できる(c)。マスクとして用いたSiO2をとり除き
(d)、単結晶シリコン基板1とは導電型の異なるシ
リコン4をエピタキシヤル成長させ、電極5,6
を形成させる(e)。このようにすると電極面積に比
べ、接合面積の大きなダイオードが作成される。
Conventional Structure and Problems Conventionally, semiconductor elements using silicon or germanium have used single crystals. A semiconductor device having a larger junction area than the electrode area has been manufactured by the method shown in FIG. That is, this method takes advantage of the fact that the etching rate varies greatly depending on the plane orientation of the crystal. For example, (100) single crystal silicon 1 is oxidized to form a SiO 2 layer 2 on its surface (a).
Appropriately patterned (b) and patterned
When SiO 2 is used as a mask and placed in a NaOH solution, for example, (110) is selectively etched, forming grooves 3 (c). Remove SiO 2 used as a mask
(d), silicon 4 having a different conductivity type from the single crystal silicon substrate 1 is epitaxially grown, and electrodes 5, 6 are formed.
(e). In this way, a diode with a larger junction area than the electrode area is created.

しかし、この場合、基板に単結晶のウエハーを
用いパターニングをしなければならないこと、ま
た、エピタキシヤル成長を行なうなど多くの工程
を実行しなければならない。
However, in this case, a single crystal wafer must be used as the substrate and patterning must be performed, and many steps such as epitaxial growth must be performed.

発明の目的 本発明は工程が少なく簡単に、電極面積より広
い接合面積を持つ半導体素子を作成する製造方法
を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a manufacturing method for easily manufacturing a semiconductor element having a bonding area larger than the electrode area using fewer steps.

発明の構成 本発明はバリスタ等の非直線性の半導体素子の
製造法にかかり、導電型の異なる板状の半導体を
重ね合わせて集合し、最終の半導体素子の構成に
整える工程、前記半導体の融点以下で加熱しなが
ら板状半導体集合体を重ね合わせた面に平行な力
を加えて伸ばす工程、前記伸ばした方向と交錯す
る方向に集合体を切断する工程を有するものであ
る。
Structure of the Invention The present invention relates to a method for manufacturing a non-linear semiconductor element such as a varistor, which includes a step of stacking and assembling plate-shaped semiconductors of different conductivity types to form a final semiconductor element configuration, and a process of stacking and assembling plate-shaped semiconductors of different conductivity types, and a process of adjusting the melting point of the semiconductor. The method includes a step of stretching the plate-shaped semiconductor aggregate by applying a force parallel to the stacked surfaces while heating, and a step of cutting the aggregate in a direction intersecting the stretched direction.

実施例の説明 本発明の製造法による半導体素子のいくつかの
構成例を第2図に示す。11はn型半導体、12
はp型半導体、13はi型半導体である。第2図
aの場合、面14とそれにほぼ平行な面15とに
電極を形成すると電極面積に比べ接合面積の広い
ダイオードが構成される。面16および面16と
ほぼ平行な面17とに電極を形成しても同様であ
る。断面を示した面18およびその反対側の面1
9とに電極を形成させる場合は、面18と面19
とには異なつた種類の電極を形成させる。例えば
シリコンを例にすると、一方の面にはn型シリコ
ンに対して抵抗性接触の特性を示し、p型シリコ
ンに対しては電位障壁を形成する物質、すなわ
ち、例えばAl―Au―P―、Au―Sb、Au―Sb―
Si、Au―Sn、Bi、Cd―Sb、Ga―Sn、Ge―Sb、
K、Li、Mg、Na、Pb―Sb―Sn、Sb、Te、n+
型Si等である。他方の面にはp型シリコンに対し
て抵抗性接触を示し、n型シリコンに対して電位
障壁を形成するAl―Pb、Au―B、Cd、Ga、
Ge、グラフアイト、In―Pb、Pb、Rh、p+型Si等
を用いる。このような構成にすると素子切断面か
らでも電極面積に比べ接合面積が非常に広いダイ
オードが形成される。
DESCRIPTION OF EMBODIMENTS FIG. 2 shows several configuration examples of semiconductor devices produced by the manufacturing method of the present invention. 11 is an n-type semiconductor, 12
is a p-type semiconductor, and 13 is an i-type semiconductor. In the case of FIG. 2a, if electrodes are formed on a surface 14 and a surface 15 substantially parallel thereto, a diode with a larger junction area than the electrode area is constructed. The same holds true when electrodes are formed on the surface 16 and the surface 17 substantially parallel to the surface 16. Surface 18 showing the cross section and surface 1 opposite thereto
When forming electrodes on surfaces 18 and 19,
Different types of electrodes are formed. For example, taking silicon as an example, on one side there is a material that exhibits resistive contact characteristics for n-type silicon and forms a potential barrier for p-type silicon, ie, for example, Al-Au-P-. Au―Sb, Au―Sb―
Si, Au-Sn, Bi, Cd-Sb, Ga-Sn, Ge-Sb,
K, Li, Mg, Na, Pb-Sb-Sn, Sb, Te, n +
Type Si etc. The other side has Al-Pb, Au-B, Cd, Ga, which exhibits a resistive contact to p-type silicon and forms a potential barrier to n-type silicon.
Ge, graphite, In-Pb, Pb, Rh, p + type Si, etc. are used. With such a configuration, a diode is formed whose junction area is much larger than the electrode area even when viewed from the element cross section.

第2図bの場合、面20および反対側の面21
に電極を形成すると、pnpnダイオードが形成さ
れる。第2図cの場合、面22および反対側の面
23に電極を形成すると、nipin構造の半導体素
子が構成される。
In the case of FIG. 2b, the surface 20 and the opposite surface 21
When an electrode is formed on the diode, a pnpn diode is formed. In the case of FIG. 2c, when electrodes are formed on the surface 22 and the opposite surface 23, a semiconductor element with a nipin structure is constructed.

第2図aの場合、いずれの電極形成の場合でも
電極面積よりも接合面積が広くとれるため、単位
体積あたり多くの電流を流すことができ、小さな
素子で大電力の動作が可能となる。半導体中の抵
抗によつて発熱する場合は、半導体の一部に金属
を埋め込んでおけば避けられる。
In the case of FIG. 2a, in any case of electrode formation, the junction area can be larger than the electrode area, so a large amount of current can flow per unit volume, and a small element can operate with high power. Heat generation due to resistance in the semiconductor can be avoided by embedding metal in part of the semiconductor.

第2図bの場合、電極20に正電位、電極21
に負電位を印加したときは、pnpnの1層目と2
層目および3層目と4層目は順方向にバイアスさ
れるが、2層目と3層目が逆方向になる。逆に電
極20に負電位、電極21に正電位を印加したと
きは、2層目と3層目が順方向にバイアスされる
が、1層目と2層目および3層目と4層目が逆方
向になる。このように、電極に印加する電圧の方
向を変えるといずれも逆方向バイアスされたダイ
オードになるが、その数が異なる動作をするた
め、降服電圧付近を使用する場合、または、降服
した後の電流を使用する場合、非対称の電気特性
が得られる半導体素子を得ることができる。ただ
し第2図bにおいて、pnpnpまたはnpnpnともう
一層p型層またはn型層を増やせば、ほぼ対称の
電気特性が得られることは言うまでもない。
In the case of FIG. 2b, the electrode 20 has a positive potential, and the electrode 21
When a negative potential is applied to the 1st and 2nd layers of pnpn,
The third and fourth layers are forward biased, while the second and third layers are biased in the opposite direction. Conversely, when a negative potential is applied to the electrode 20 and a positive potential is applied to the electrode 21, the second and third layers are biased in the forward direction, but the first and second layers and the third and fourth layers are biased in the forward direction. is in the opposite direction. In this way, changing the direction of the voltage applied to the electrode will result in a reverse biased diode, but the number of diodes will behave differently, so if you use near the breakdown voltage, or the current after the breakdown When using this, a semiconductor device with asymmetric electrical characteristics can be obtained. However, in FIG. 2b, it goes without saying that if the number of p-type layers or n-type layers is increased to pnpnp or npnpn, almost symmetrical electrical characteristics can be obtained.

さらにpnpnダイオードにおいて、p型層n型
層いずれにも抵抗接触をもち、シリコンの融点付
近での拡散定数が極端に大きくない金属、たとえ
ばAl、Mo、Sn等を2層目と3層目の間に入れて
おけば、断面に電極を形成する場合、すなわち面
18および面19に電極を形成する場合以外は、
pnダイオードを2個直列に接続したのと同様な
構成となる。この場合の動作について説明する。
1個のシリコンpnダイオードでは順方向にバイ
アスしても0.5V程度までは電流はほとんど流れ
ない。非線形な電流―電圧特性を示す。ダイオー
ドをn個直列に接続すると、0.5×n(V)程度ま
で順方向にバイアスしても電流が流れないダイオ
ードを作ることができる。よつて第2図bの場
合、金属を間に入れた構成では順方向電流は、約
1を越えないと流れない素子になる。
Furthermore, in a pnpn diode, the second and third layers are made of a metal that has resistance contact with both the p-type layer and the n-type layer, and does not have an extremely large diffusion constant near the melting point of silicon, such as Al, Mo, or Sn. If you put it in between, except when forming electrodes on the cross section, that is, when forming electrodes on surfaces 18 and 19,
The configuration is similar to that of two pn diodes connected in series. The operation in this case will be explained.
Even if a single silicon pn diode is forward biased, almost no current will flow up to about 0.5V. Shows nonlinear current-voltage characteristics. By connecting n diodes in series, it is possible to create a diode in which no current flows even when forward biased to about 0.5×n (V). Therefore, in the case of FIG. 2b, in the structure in which a metal is inserted, the forward current does not flow unless it exceeds about 1.

第2図cの場合、nipinの構成となつているが、
面22および面23のいずれの電極にも正または
負のバイアス電圧を加えても逆方向特性を示す。
この場合も降服電圧付近または、降服した後の電
流を利用する素子となるが、i型層の厚みを変化
させることによつて降服電圧を変えることができ
る。
In the case of Figure 2c, the configuration is nipin, but
Even if a positive or negative bias voltage is applied to either electrode on the surface 22 or the surface 23, the reverse direction characteristic is exhibited.
In this case as well, the element utilizes current near the breakdown voltage or after the breakdown, but the breakdown voltage can be changed by changing the thickness of the i-type layer.

次に第2図のような半導体素子を製造する本発
明の製造法の実施例について説明する。第3図は
本発明の半導体素子の製造法についてその工程を
順に示したものである。
Next, an embodiment of the manufacturing method of the present invention for manufacturing a semiconductor device as shown in FIG. 2 will be described. FIG. 3 sequentially shows the steps of the method for manufacturing a semiconductor device of the present invention.

以下の半導体材料としてシリコンを用いたもの
について説明する。
A case using silicon as the semiconductor material will be described below.

板状のシリコンを用意し、最終的に得られる半
導体素子と同一の比率を持つように組む(a)。30
はp型Siであり、31はn型Siである。金属を間
に入れる場合は組み合わせ方が多少複雑になる
が、第3図a′に示すように金属板32を入れる。
Prepare silicon plates and assemble them so that they have the same ratio as the final semiconductor device (a). 30
is p-type Si, and 31 is n-type Si. If metal is inserted between the two, the combination becomes somewhat complicated, but a metal plate 32 is inserted as shown in FIG. 3a'.

組み合わさつた板状シリコンの組み合わせを不
活性気体、水素ガスまたは10-4Torr以下の真空
中で例えば高周波加熱用ヒータ33でシリコンの
融点付近である1400℃程度またはそれ以下に加熱
し、矢印34の方向にひつぱつて半導体を得る
(b)。なお、引つぱつた後、半導体中に入つている
ストレスを除去するため、不活性気体、水素ガス
または10-4Torr以下の真空中で、前述の加熱温
度以下の温度でアニールした方が望ましい。加熱
および引つぱる条件は、不純物または金属の拡散
が無視できるように選ばなければならないのは言
うまでもない。
The combined plate-shaped silicon combination is heated in an inert gas, hydrogen gas, or a vacuum of 10 -4 Torr or less using, for example, a high-frequency heater 33 to about 1400°C, which is around the melting point of silicon, or lower, and then heated as shown by the arrow 34. Obtain a semiconductor by pressing in the direction
(b). In addition, in order to remove the stress in the semiconductor after pulling it, it is preferable to anneal it in an inert gas, hydrogen gas, or a vacuum of 10 -4 Torr or less at a temperature below the heating temperature mentioned above. . It goes without saying that the heating and pulling conditions must be chosen such that diffusion of impurities or metals is negligible.

電極を形成する場合、第3図a′の場合は、その
必要がないが、第3図aの場合は、細く引つぱつ
た後に金属を蒸着させるかメツキさせれば良い。
When forming an electrode, it is not necessary in the case of FIG. 3a', but in the case of FIG. 3a, it is sufficient to vapor-deposit or plate a metal after drawing it thinly.

細長くなつた半導体を素子にするために適当な
長さで切断する(第3図c)。断面に電極を形成
する場合は切断した後、金属を蒸着するかメツキ
させる。この場合、断面が小さいので長さ方向と
垂直に切るよりも斜めに切る方が断面積が広くな
つて加工しやすい。35は切断するカツタであ
り、36は細く伸ばした半導体をまいたかたまり
である。
The elongated semiconductor is cut into appropriate lengths to form devices (FIG. 3c). When forming electrodes on the cross section, metal is vapor-deposited or plated after cutting. In this case, since the cross section is small, it is easier to process by cutting diagonally than by cutting perpendicularly to the length direction because the cross-sectional area becomes wider. 35 is a cutter for cutting, and 36 is a lump of thinly stretched semiconductor.

具体的な製造装置の概要を第4図に示す。引つ
張り炉100の中に上部吊り下げ支持台101を
移動可能に設け、これにモリブデンワイヤ102
を取りつけ、半導体原料棒103に切り込みを入
れて吊り下げる。これを予備加熱ヒータ104で
600〜1000℃に、まず加熱する。次に同軸ケーブ
ル105から高周波を加え、半導体原料棒103
をとり巻くように配置されたワークコイル106
によつてSiの融点近傍温度まで加熱する。その様
子は観察窓107から確認できる。半導体原料棒
103をその途中からワークコイル106で加熱
すると、Si融点近傍と思われる温度から図に示し
たように急に引つ張られる状態となり、引つ張ら
れた半導体棒108ができあがる。図の状態以上
にワークコイル106で加熱すると切れてしまう
ので、途中で加熱は停止する。その後、上部吊り
下げ支持台101をゆつくり下げてやり、アニー
ルヒータ109で600〜1000℃の温度でアニール
処理する。
Figure 4 shows an outline of the specific manufacturing equipment. An upper hanging support stand 101 is movably provided in the tension furnace 100, and a molybdenum wire 102 is attached to the upper hanging support stand 101.
is attached, a notch is made in the semiconductor raw material rod 103, and the semiconductor raw material rod 103 is hung. This is heated by the preheating heater 104.
First heat to 600-1000℃. Next, high frequency is applied from the coaxial cable 105, and the semiconductor raw material rod 103
A work coil 106 arranged to surround the
is heated to a temperature near the melting point of Si. The situation can be confirmed through the observation window 107. When the semiconductor raw material rod 103 is heated by the work coil 106 from the middle, it suddenly becomes stretched as shown in the figure from a temperature thought to be near the melting point of Si, and a stretched semiconductor rod 108 is completed. If the work coil 106 is heated beyond the state shown in the figure, it will break, so the heating will stop midway. Thereafter, the upper suspension support 101 is slowly lowered, and annealing is performed using an annealing heater 109 at a temperature of 600 to 1000°C.

このようにしてワイヤ状の半導体ができあが
る。
In this way, a wire-shaped semiconductor is completed.

この半導体原料棒103は引つ張り炉100に
入れる以前にバラバラでは加熱し難いので、金属
がAlの場合は、400〜600℃水素雰囲気中で熱処
理し、接着する等の工夫を行なわなければならな
い。引つ張り強度はワークコイル106で原料棒
103のどの部分を加熱するかで決定される。す
なわち原料棒のままで残る部分110が長いと引
つ張り力は増加する。これによつて、引つ張られ
た半導体棒108の長さも変化し、引つ張つて小
径にする比率も変化する。また、引つ張られた半
導体棒108の太さは上下で差が生じていた。
Since it is difficult to heat the semiconductor raw material rod 103 in pieces before putting it into the tension furnace 100, if the metal is Al, it is necessary to take measures such as heat treatment in a hydrogen atmosphere at 400 to 600 degrees Celsius and bonding. . The tensile strength is determined by which part of the raw material rod 103 is heated by the work coil 106. That is, the longer the portion 110 remaining as the raw material rod is, the greater the tensile force will be. As a result, the length of the stretched semiconductor rod 108 also changes, and the ratio of stretching the semiconductor rod 108 to a smaller diameter also changes. Further, the thickness of the stretched semiconductor rod 108 was different between the upper and lower sides.

半導体原料棒のサイズは多結晶シリコン板が厚
さ約0.5mmで金属は約0.1mm、全体で厚さは2〜3
mmとした。又その長さは長い方が熱の均一性等の
面から有利であるが、加工精度等の制約条件を考
慮して100mmとした。
The size of the semiconductor raw material rod is that the polycrystalline silicon plate is approximately 0.5 mm thick, the metal is approximately 0.1 mm, and the total thickness is 2 to 3 mm.
mm. Although the longer the length is, the more advantageous it is in terms of heat uniformity, etc., it was set to 100 mm in consideration of constraints such as processing accuracy.

これによつて作成したダイオードの特性は電力
制御がなしうることを確認し、ON/OFF比は1.1
〜1.5程度であつた。
The characteristics of the diode created by this method confirmed that power control was possible, and the ON/OFF ratio was 1.1.
It was about 1.5.

発明の効果 本発明の製造法による半導体は3次元的な構造
を持ち、電極面積よりも広い接合面積を有するの
で、小さな体積で大電力を制御することができ
る。また、バリスタの特性を持つ素子を簡単な工
程で製造できる、つまり、本発明においてはパタ
ーニング工程が不要になる。さらに出発する材料
形態は単結晶より安価な多結晶、非晶質材料であ
つても十分使用できる。
Effects of the Invention Since the semiconductor manufactured by the manufacturing method of the present invention has a three-dimensional structure and a junction area larger than the electrode area, a large amount of power can be controlled with a small volume. Further, an element having varistor characteristics can be manufactured through a simple process, that is, a patterning process is not required in the present invention. Furthermore, polycrystalline or amorphous materials, which are cheaper than single crystals, can be used satisfactorily as starting materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の製造工程を示す図、第2図は
本発明に関する半導体素子のいくつかの構成例の
斜断面略図、第3図は本発明の一実施例の半導体
素子の製造方法の工程図、第4図は本発明で使用
した製造装置の概要図である。 1……シリコン単結晶基板、2……シリコン酸
化膜、3……選択的にエツチングされた穴、4…
…シリコンエピタキシヤル層、5,6……電極、
11,30……p型シリコン、12,31……n
型シリコン、13……i型シリコン、14〜23
……半導体素子の面、32……金属板、33……
高周波加熱ヒータ、34……引つぱる方向、35
……切断機、36……細く引き伸ばされた半導体
を巻き取つたもの。
FIG. 1 is a diagram showing a manufacturing process of a conventional example, FIG. 2 is a schematic oblique cross-sectional view of several structural examples of a semiconductor device according to the present invention, and FIG. 3 is a diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention. The process diagram, FIG. 4, is a schematic diagram of the manufacturing apparatus used in the present invention. 1...Silicon single crystal substrate, 2...Silicon oxide film, 3...Selectively etched hole, 4...
...Silicon epitaxial layer, 5,6...electrode,
11,30...p-type silicon, 12,31...n
Type silicon, 13...I type silicon, 14-23
...Semiconductor element surface, 32...Metal plate, 33...
High frequency heater, 34... pull direction, 35
...Cutting machine, 36...A device that winds up thinly stretched semiconductors.

Claims (1)

【特許請求の範囲】 1 導電型の異なつた板状の半導体を重ね合わせ
て集合し、最終の半導体素子の構成に整えた後、
上記半導体集合物をその融点以下の温度まで加熱
しながら、上記板状半導体の重ね合わせた面に平
行な力を加えて伸ばし、前記重ね合わせた板状半
導体集合物よりも断面積を小さくし、前記力を加
えて伸ばした方向と交錯する方向に切断して、複
数個の半導体素子を得ることを特徴とする半導体
素子の製造法。 2 不活性気体、水素ガス中または10-4Torr以
下の真空中で加熱しながら力を加えて重ね合わせ
た半導体集合物を伸ばすことを特徴とする特許請
求の範囲第1項記載の半導体素子の製造法。 3 加熱しながら力を加えて伸ばした後、半導体
集合物を不活性気体、水素ガス中または
10-4Torr以下の真空中で、前記加熱した温度よ
りは低温で再び加熱し、徐冷することを特徴とす
る特許請求の範囲第2項記載の半導体素子の製造
法。
[Claims] 1. After stacking and assembling plate-shaped semiconductors of different conductivity types and arranging them into the final semiconductor device configuration,
While heating the semiconductor aggregate to a temperature below its melting point, applying a force parallel to the stacked surfaces of the plate-shaped semiconductors to stretch them, so as to make the cross-sectional area smaller than that of the stacked plate-shaped semiconductor aggregates, A method for manufacturing a semiconductor device, characterized in that a plurality of semiconductor devices are obtained by cutting in a direction intersecting the direction in which the force is applied and stretched. 2. The semiconductor device according to claim 1, characterized in that the stacked semiconductor assembly is stretched by applying force while heating in an inert gas, hydrogen gas, or in a vacuum of 10 -4 Torr or less. Manufacturing method. 3 After applying force and stretching while heating, the semiconductor assembly is placed in an inert gas, hydrogen gas or
3. The method of manufacturing a semiconductor device according to claim 2, wherein the semiconductor device is heated again at a lower temperature than the heating temperature in a vacuum of 10 −4 Torr or less, and then slowly cooled.
JP12500583A 1983-07-08 1983-07-08 Manufacture of semiconductor element Granted JPS6016426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12500583A JPS6016426A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12500583A JPS6016426A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor element

Publications (2)

Publication Number Publication Date
JPS6016426A JPS6016426A (en) 1985-01-28
JPS6362895B2 true JPS6362895B2 (en) 1988-12-05

Family

ID=14899513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12500583A Granted JPS6016426A (en) 1983-07-08 1983-07-08 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPS6016426A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041221A2 (en) 1999-01-04 2000-07-13 Infineon Technologies Ag Method and device for shaping surfaces of semiconductors

Also Published As

Publication number Publication date
JPS6016426A (en) 1985-01-28

Similar Documents

Publication Publication Date Title
US4897710A (en) Semiconductor device
US7915683B2 (en) Nanowire electronic devices and method for producing the same
JP2008518456A (en) Semiconductor device having adjustable energy band gap
SE527205C2 (en) Process for manufacturing semiconductor device with channel in silicon carbide semiconductor substrate
JP3502724B2 (en) Thermoelectric material
JP3032826B2 (en) Thermoelectric conversion material and method for producing the same
JP2012533185A (en) Thermal-electrical conversion device using the Savebeck / Pelty effect using processed layers made of semiconductor material without the need for nanostructures
JPH11317548A (en) Thermoelectric conversion material and manufacture thereof
US3988762A (en) Minority carrier isolation barriers for semiconductor devices
US3301716A (en) Semiconductor device fabrication
JPS609351B2 (en) Method for manufacturing semiconductor heterojunction structure
JP4920596B2 (en) Rapid metal-insulator transition element and method of manufacturing the same
JP6014322B2 (en) Method for manufacturing silicon carbide semiconductor device
JPS6362895B2 (en)
JPH11330569A (en) Thermoelectric transducer and its manufacture
JP2002252233A (en) Semiconductor device and method of manufacturing the same
JP2000299504A (en) Semiconductor material and manufacture thereof
JP6686581B2 (en) Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
TW201906016A (en) Method for controlling schottky barrier height in semiconductor device
JP5056673B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2008305982A (en) Field effect transistor and its manufacturing method
JPS6248390B2 (en)
KR100469503B1 (en) How to crystallize amorphous film
KR100769201B1 (en) metal-induced crystallization method of amorphous material, and a device using the crystalline material produced by the method
KR101789220B1 (en) Method of preparing thermoelectric material, thermoelectric material prepared by the method, and thermoelectric module including the thermoelectric material