JPS6362545B2 - - Google Patents

Info

Publication number
JPS6362545B2
JPS6362545B2 JP1660883A JP1660883A JPS6362545B2 JP S6362545 B2 JPS6362545 B2 JP S6362545B2 JP 1660883 A JP1660883 A JP 1660883A JP 1660883 A JP1660883 A JP 1660883A JP S6362545 B2 JPS6362545 B2 JP S6362545B2
Authority
JP
Japan
Prior art keywords
weight
parts
phenyl group
inorganic filler
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1660883A
Other languages
Japanese (ja)
Other versions
JPS59142237A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1660883A priority Critical patent/JPS59142237A/en
Publication of JPS59142237A publication Critical patent/JPS59142237A/en
Publication of JPS6362545B2 publication Critical patent/JPS6362545B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐放射線性に優れたポリオレフイン系
樹脂組成物に関するものである。 原子炉、増殖炉あるいはイオン化放射線発生機
器などの周辺に設置される機器類は、かなりの放
射線を受けることになる。 したがつて、これら機器類に使用されるパツキ
ング、シール材、枠、ホース類などの各種樹脂成
形物、および電線・ケーブルの電気絶縁材料とし
ては高度の耐放射線性を備えていることが必要で
ある。 しかし、ポリオレフイン系樹脂組成物の耐放射
線性は一般にかなり低く、比較的短期間のうちに
劣化を招くことになる。 この対策として、フエニル基を含む化合物など
を添加することにより、耐放射線性を付与するこ
とが行われている。しかし、耐放射線性を付与す
るためには比較的多量の化合物を添加する必要が
あり、添加量を多くすると、成形体表面への化合
物のしみ出し(ブリード)が生ずることになる。
また、化合物を添加することにより、ポリオレフ
イン系樹脂の耐熱性も低下することになる。 本発明は上記に基いてなされたものであり、十
分な耐放射線性を付与でき、しかもブリードの発
生を防止できるポリオレフイン系樹脂組成物の提
供を目的とするものである。 本発明者らは上記目的を達成するために種々検
討した結果、フエニルシラン化合物と水酸基(−
OH)含有無機充填剤を反応させて得たものをポ
リオレフイン系樹脂に添加することにより、無機
充填剤とフエニルシラン化合物は化学的に結合し
た状態で樹脂中に存在するため揮発減量は少なく
ブリードの発生を防止でき、その上、系内にはフ
エニル成分が多量に存在するため耐放射線性を著
しく向上でき、更には無機充填剤の存在により耐
熱性を向上できるという知見を得、本発明に到つ
た。 すなわち、本発明の耐放射線性樹脂組成物は、
ポリオレフイン系樹脂100重量部に対して、一般
式: (式中R1、R2およびR3は、これらのうち少なく
とも1個がフエニル基またはハロゲン化フエニル
基である一価の飽和炭化水素を示し、R4はフエ
ニル基またはハロゲン化フエニル基を示し、Xは
加水分解可能な基または水酸基を示し、mは0〜
10の整数である。) にて表わされるフエニルシラン化合物と水酸基
(−OH)含有無機充填剤とを前者を後者の0.2〜
1.2倍量加えて反応させて得たものを20〜120重量
部配合してなるものである。 本発明において、ポリオレフイン系樹脂として
は、ポリエチレン、ポリプロピレン、ポリブテ
ン、エチレン−酢酸ビニル共重合体、エチレン−
エチルアクリレート共重合体、エチレン−プロピ
レン共重合体、エチレン−プロピレン−ジエン共
重合体といつたものがあげられ、これらは単独ま
たは2種以上組合せて使用される。 フエニルシラン化合物の一般式中Xとしては水
酸基の他には、たとえばメトキシ基、エトキシ
基、プロポキシ基、ブトキシ基などのアルコキシ
基、あるいは塩素などがあげられ、これらは加水
分解の過程を経て無機充填剤の表面に対し化学的
に結合することになる。フエニルシラン化合物の
具体例としては、ジフエニルメチルシラノール、
ジメチルフエニルシラノール、トリフエニルシラ
ノール、ジメチルクロロフエニルシラン、ジメチ
ルフエニルクロロシラン、ジフエニルメチルクロ
ロシラン、トリフエニルクロロシラン、ジフエニ
ルメチルメトキシシラン、トリフエニルメトキシ
シラン、ジフエニルメチルエトキシシラン、トリ
フエニルエトキシシラン、1,1,3−トリフエ
ニル−1,3−ジメチル−3−ヒドロキシジシロ
キサン、1,1,3−トリフエニル−1,3−ジ
メチル−3−メトキシジシロキサン、1,1,3
−テトラフエニル−3−メチル−3−メトキシジ
シロキサン、1,1,3,5−テトラフエニル−
1,3,5−トリメチル−5−メトキシトリシロ
キサン、1,1,1,3,5−ペンタフエニル−
3,5−ジメチル−5−エトキシトリシロキサ
ン、1,1,3,5,7−ペンタフエニル−1,
2,5,7−テトラメチル−7−メトキシテトラ
シロキサンなどがあげられる。 水酸基(−OH)含有無機充填剤としては、無
水ケイ酸、タルク(ケイ酸マグネシウム)、クレ
ー(ケイ酸アルミニウム)などがあげられる。 フエニルシラン化合物と無機充填剤とは、前者
が後者の0.2〜1.2倍量の割合で混合して反応させ
る必要があり、下限値以下ではポリオレフイン系
樹脂と無機充填剤との親和性が不足して耐放射線
性が十分に改善されず、逆に上限値以上では得ら
れる樹脂組成物が粘着性を帯び、また成形体の機
械的強度も低下することになる。 フエニルシラン化合物と無機充填剤との反応物
の配合は、ポリオレフイン系樹脂100重量部に対
して20〜120重量部の範囲内とする必要があり、
20重量部以下では十分な補強効果と耐放射線性が
得られず、120重量部以上では、伸びの著しい低
下などの機械的特性が得られなくなる。 以下、本発明の実施例を比較例と共に説明す
る。 実施例 1 ヨウ素価20、エチレン量80モル%、ムーニ粘度
(ML1+4、100℃)40のエチレン−プロピレン−ジ
エン共重合体100重量部に、比表面積が200m2/g
の煙霧質無水ケイ酸をその30重量%のメチルジフ
エニルメチルシラノールで処理したもの30重量
部、酸化亜鉛5重量部、フエノール系酸化防止剤
1重量部、ジクミルパーオキサイド1.5重量部を
加え、6インチ2本ロールで混練した。この組成
物をプレスにて180℃、10分、100Kg/cm2の条件で
架橋成形して1mm厚さのシートを得た。 実施例 2 実施例1において、煙霧質無水ケイ酸をその60
重量%のメチルジフエニルメチルシラノールで処
理した。 実施例 3 実施例1において、煙霧質無水ケイ酸をその
110重量%のメチルジフエニルメチルシラノール
で処理した。 実施例 4 実施例1において、煙霧質無水ケイ酸に代えて
タルクを用いた。 実施例 5 実施例1において、煙霧質無水ケイ酸に代えて
焼成クレーを用いた。 実施例 6 実施例1において、メチルジフエニルメチルシ
ラノールに代えてジメチルフエニルシラノールを
用いた。 実施例 7 実施例1において、メチルジフエニルメチルシ
ラノールで処理した煙霧質無水ケイ酸を100重量
部配合した。 比較例 1 実施例1において、無処理の煙霧質無水ケイ酸
を用いた。 比較例 2 実施例1において、煙霧質無水ケイ酸をその10
重量%のメチルジフエニルメチルシラノールで処
理した。 比較例 3 実施例1において、煙霧質無水ケイ酸をその
130重量%のメチルジフエニルメチルシラノール
で処理した。 比較例 4 実施例1において、メチルジフエニルメチルシ
ラノールで処理した煙霧質無水ケイ酸を10重量部
配合した。 比較例 5 実施例1において、メチルジフエニルメチルシ
ラノールで処理した煙霧質無水ケイ酸を130重量
部配合した。 実施例および比較例で得られた各シートにコバ
ルト60線源からのγ線を100Mrad照射し、180゜折
り曲げ試験を行うと共にγ線照射前のブリードの
有無および引張特性(引張強さ0.4Kg/mm2以上、
伸び300%以上を〇印とした)を調べた。その結
果を第1表に示す。
The present invention relates to a polyolefin resin composition having excellent radiation resistance. Equipment installed around nuclear reactors, breeder reactors, or equipment that generates ionizing radiation is exposed to significant amounts of radiation. Therefore, various resin molded products such as packing, sealing materials, frames, and hoses used in these devices, as well as electrical insulation materials for wires and cables, must have a high degree of radiation resistance. be. However, the radiation resistance of polyolefin resin compositions is generally quite low, leading to deterioration within a relatively short period of time. As a countermeasure against this problem, radiation resistance has been imparted by adding a compound containing a phenyl group. However, in order to impart radiation resistance, it is necessary to add a relatively large amount of the compound, and if the amount added is increased, the compound will seep (bleed) onto the surface of the molded article.
Moreover, by adding the compound, the heat resistance of the polyolefin resin also decreases. The present invention has been made based on the above, and aims to provide a polyolefin resin composition that can provide sufficient radiation resistance and prevent the occurrence of bleeding. As a result of various studies to achieve the above object, the present inventors found that a phenylsilane compound and a hydroxyl group (-
By adding the product obtained by reacting an inorganic filler containing OH) to a polyolefin resin, the inorganic filler and phenylsilane compound exist in the resin in a chemically bonded state, so there is little volatilization loss and no bleeding occurs. In addition, due to the presence of a large amount of phenyl component in the system, radiation resistance can be significantly improved, and furthermore, the presence of an inorganic filler can improve heat resistance, which led to the present invention. . That is, the radiation-resistant resin composition of the present invention is
General formula for 100 parts by weight of polyolefin resin: (In the formula, R 1 , R 2 and R 3 represent a monovalent saturated hydrocarbon in which at least one of them is a phenyl group or a halogenated phenyl group, and R 4 represents a phenyl group or a halogenated phenyl group. , X represents a hydrolyzable group or a hydroxyl group, m is 0-
is an integer of 10. ) and a hydroxyl group (-OH)-containing inorganic filler.
It is made by blending 20 to 120 parts by weight of the product obtained by adding 1.2 times the amount and reacting. In the present invention, polyolefin resins include polyethylene, polypropylene, polybutene, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate copolymer,
Examples include ethyl acrylate copolymer, ethylene-propylene copolymer, and ethylene-propylene-diene copolymer, and these may be used alone or in combination of two or more. In addition to the hydroxyl group, X in the general formula of the phenylsilane compound includes alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy groups, and chlorine, which can be converted into inorganic fillers through the process of hydrolysis. chemically bond to the surface of Specific examples of phenylsilane compounds include diphenylmethylsilanol,
Dimethylphenylsilanol, triphenylsilanol, dimethylchlorophenylsilane, dimethylphenylchlorosilane, diphenylmethylchlorosilane, triphenylchlorosilane, diphenylmethylmethoxysilane, triphenylmethoxysilane, diphenylmethylethoxysilane, triphenylethoxysilane, 1,1,3-triphenyl-1,3-dimethyl-3-hydroxydisiloxane, 1,1,3-triphenyl-1,3-dimethyl-3-methoxydisiloxane, 1,1,3
-tetraphenyl-3-methyl-3-methoxydisiloxane, 1,1,3,5-tetraphenyl-
1,3,5-trimethyl-5-methoxytrisiloxane, 1,1,1,3,5-pentaphenyl-
3,5-dimethyl-5-ethoxytrisiloxane, 1,1,3,5,7-pentaphenyl-1,
Examples include 2,5,7-tetramethyl-7-methoxytetrasiloxane. Examples of the hydroxyl group (-OH)-containing inorganic filler include silicic anhydride, talc (magnesium silicate), and clay (aluminum silicate). It is necessary to mix and react the phenylsilane compound and the inorganic filler at a ratio of 0.2 to 1.2 times the amount of the latter; below the lower limit, the affinity between the polyolefin resin and the inorganic filler will be insufficient and the resistance will be reduced. The radiation resistance is not sufficiently improved, and on the other hand, if it exceeds the upper limit, the resulting resin composition will become sticky and the mechanical strength of the molded article will also decrease. The blending of the reactant between the phenylsilane compound and the inorganic filler must be within the range of 20 to 120 parts by weight per 100 parts by weight of the polyolefin resin.
If it is less than 20 parts by weight, sufficient reinforcing effect and radiation resistance cannot be obtained, and if it is more than 120 parts by weight, mechanical properties such as a significant decrease in elongation cannot be obtained. Examples of the present invention will be described below along with comparative examples. Example 1 A specific surface area of 200 m 2 /g was added to 100 parts by weight of an ethylene-propylene-diene copolymer with an iodine value of 20, an ethylene content of 80 mol%, and a Mooney viscosity (ML 1+4 , 100°C) of 40.
30 parts by weight of fumed silicic anhydride treated with 30% by weight of methyldiphenylmethylsilanol, 5 parts by weight of zinc oxide, 1 part by weight of a phenolic antioxidant, and 1.5 parts by weight of dicumyl peroxide, The mixture was kneaded using two 6-inch rolls. This composition was crosslinked in a press at 180° C. for 10 minutes at 100 kg/cm 2 to obtain a 1 mm thick sheet. Example 2 In Example 1, atomized silicic anhydride was
% by weight of methyldiphenylmethylsilanol. Example 3 In Example 1, fumed silicic anhydride was
Treated with 110% by weight methyldiphenylmethylsilanol. Example 4 In Example 1, talc was used in place of fumed silicic anhydride. Example 5 In Example 1, calcined clay was used in place of fumed silicic anhydride. Example 6 In Example 1, dimethylphenylsilanol was used in place of methyldiphenylmethylsilanol. Example 7 In Example 1, 100 parts by weight of fumed silicic anhydride treated with methyldiphenylmethylsilanol was blended. Comparative Example 1 In Example 1, untreated fumed silicic anhydride was used. Comparative Example 2 In Example 1, fumed silicic anhydride was
% by weight of methyldiphenylmethylsilanol. Comparative Example 3 In Example 1, fumed silicic anhydride was
Treated with 130% by weight methyldiphenylmethylsilanol. Comparative Example 4 In Example 1, 10 parts by weight of fumed silicic anhydride treated with methyldiphenylmethylsilanol was blended. Comparative Example 5 In Example 1, 130 parts by weight of fumed silicic anhydride treated with methyldiphenylmethylsilanol was blended. Each sheet obtained in the Examples and Comparative Examples was irradiated with 100 Mrad of γ-rays from a cobalt-60 radiation source, subjected to a 180° bending test, and examined for the presence or absence of bleed before irradiation with γ-rays and its tensile properties (tensile strength 0.4 kg/ mm2 or more,
The elongation of 300% or more was marked with an ○). The results are shown in Table 1.

【表】 表1からも明らかな通り、本発明によれば
100Mradの高線量の放射線に曝された後の180゜折
り曲げ試験に対してもクラツクを生ずることがな
く、またブリードを防止できると共に機械的特性
に優れた成形体を得られることになる。 更に、本発明では無機充填剤を使用しているこ
とから耐熱性に優れた成形体を得られるものであ
る。
[Table] As is clear from Table 1, according to the present invention
Even in a 180° bending test after being exposed to a high dose of radiation of 100 Mrad, no cracks occur, and it is possible to prevent bleeding and obtain a molded product with excellent mechanical properties. Furthermore, since an inorganic filler is used in the present invention, a molded article with excellent heat resistance can be obtained.

Claims (1)

【特許請求の範囲】 1 ポリオレフイン系樹脂100重量部に対して、
一般式: (式中R1,R2およびR3は、これらのうちの少な
くとも1個がフエニル基またはハロゲン化フエニ
ル基である一価の飽和炭化水素を示し、R4はフ
エニル基またはハロゲン化フエニル基を示し、X
は加水分解可能な基または水酸基を示し、mは0
〜10の整数である。) にて表わされるフエニルシラン化合物と水酸基
(−OH)含有無機充填剤とを前者を後者の0.2〜
1.2倍量加えて反応させて得たものを20〜120重量
部配合してなることを特徴とする耐放射線性樹脂
組成物。
[Claims] 1. Based on 100 parts by weight of polyolefin resin,
General formula: (In the formula, R 1 , R 2 and R 3 represent a monovalent saturated hydrocarbon in which at least one of them is a phenyl group or a halogenated phenyl group, and R 4 represents a phenyl group or a halogenated phenyl group. Show, X
represents a hydrolyzable group or a hydroxyl group, m is 0
is an integer between ~10. ) and a hydroxyl group (-OH)-containing inorganic filler.
A radiation-resistant resin composition comprising 20 to 120 parts by weight of a product obtained by adding 1.2 times the amount and reacting it.
JP1660883A 1983-02-03 1983-02-03 Radiation-resistant resin composition Granted JPS59142237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1660883A JPS59142237A (en) 1983-02-03 1983-02-03 Radiation-resistant resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1660883A JPS59142237A (en) 1983-02-03 1983-02-03 Radiation-resistant resin composition

Publications (2)

Publication Number Publication Date
JPS59142237A JPS59142237A (en) 1984-08-15
JPS6362545B2 true JPS6362545B2 (en) 1988-12-02

Family

ID=11921019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1660883A Granted JPS59142237A (en) 1983-02-03 1983-02-03 Radiation-resistant resin composition

Country Status (1)

Country Link
JP (1) JPS59142237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218635A (en) * 1995-02-14 1996-08-27 Yashiro Sekiyu:Goushi Device for placing concrete

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130360A (en) * 1984-11-28 1986-06-18 Nok Corp Packing material for hermetical sealing
EP1790703B1 (en) * 1998-04-24 2014-07-30 JGC Catalysts and Chemicals Ltd. Coating liquid for forming silica-based film having low dielectric constant and substrate having film of low dielectric constant coated thereon
GB0227003D0 (en) * 2002-11-19 2002-12-24 Solvay Crosslinking retarders for crosslinkable polyolefins
KR100790732B1 (en) 2006-02-15 2008-01-02 삼성전기주식회사 Insulating Liquid For Liquid Lens Satisfying Reliability And Liquid Lens Using The Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08218635A (en) * 1995-02-14 1996-08-27 Yashiro Sekiyu:Goushi Device for placing concrete

Also Published As

Publication number Publication date
JPS59142237A (en) 1984-08-15

Similar Documents

Publication Publication Date Title
US5091453A (en) Flame retardant polymer composition
CN1047252C (en) Non-halogenated pire retardant resin composition and wires and cables coated therewith
US4533687A (en) Flame-retardant rubber composition
EP0031637B1 (en) Improvements in or relating to filled polymeric compositions, hydrated alumina fillers therefor and processes for the production thereof
JPH08261389A (en) Flame-retardant heat-insulating composition having improved curing characteristic
JPS59230059A (en) Organic functional silane-siloxane oligomer coupling composition and curable and cured elastomer composition containing same
KR100509213B1 (en) Flame retardant composition
US4376180A (en) Ethylene polymers stabilized against water-treeing by N-phenyl substituted amino silanes; and the use of these compositions as insulation about electrical conductors
JPS6362545B2 (en)
US20080194749A1 (en) Flame Retardant Polymer Composition Comprising Nanofillers
CA1181940A (en) Compositions of hydrocarbon-substituted diphenyl amines and high molecular weight polyethylene glycols; and the use thereof as water-tree retardants for polymers
CA1318061C (en) Fillers
JPH07179675A (en) Crosslinkable. highly flame-retardant composition
KR20000060307A (en) Thermoplastic flame retartant polymeric composition and cable using it
JP2003192865A (en) Non-halogen flame-retardant composition and electric wire or cable using the same
JP2001011262A (en) Non-halogen flame retardant resin composition and flame retardant electric wire and cable using it
JPH03254013A (en) Non-halide insulator having high oxygen coeficient
JPH1135923A (en) Sealing material composition
JPS624419B2 (en)
EP1316581A1 (en) Flame retardant polymer composition
JPH04335055A (en) Production of water-crosslinked resin molding
JPH0562148B2 (en)
JPH07173339A (en) Cross-linkable highly flame retardant composition
JPS6259667A (en) Silane-crosslinked halogenated polymer mixture
JP2820736B2 (en) Radiation resistant insulation composition