JPS6362473B2 - - Google Patents
Info
- Publication number
- JPS6362473B2 JPS6362473B2 JP57053616A JP5361682A JPS6362473B2 JP S6362473 B2 JPS6362473 B2 JP S6362473B2 JP 57053616 A JP57053616 A JP 57053616A JP 5361682 A JP5361682 A JP 5361682A JP S6362473 B2 JPS6362473 B2 JP S6362473B2
- Authority
- JP
- Japan
- Prior art keywords
- base
- manufacturing
- grout
- clay
- horizontal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011440 grout Substances 0.000 claims description 25
- 239000004927 clay Substances 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 22
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 21
- 229910002804 graphite Inorganic materials 0.000 claims description 15
- 239000010439 graphite Substances 0.000 claims description 15
- 238000001816 cooling Methods 0.000 claims description 13
- 239000002689 soil Substances 0.000 claims description 7
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000012530 fluid Substances 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 3
- 229920003002 synthetic resin Polymers 0.000 claims description 3
- 239000000057 synthetic resin Substances 0.000 claims description 3
- 239000008188 pellet Substances 0.000 claims 1
- 238000000034 method Methods 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 7
- 239000004567 concrete Substances 0.000 description 6
- 229910021383 artificial graphite Inorganic materials 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 4
- 239000004570 mortar (masonry) Substances 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 239000004568 cement Substances 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910021382 natural graphite Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910001338 liquidmetal Inorganic materials 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000011800 void material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000007767 bonding agent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 239000002362 mulch Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F21/00—Implements for finishing work on buildings
- E04F21/20—Implements for finishing work on buildings for laying flooring
- E04F21/22—Implements for finishing work on buildings for laying flooring of single elements, e.g. flooring cramps ; flexible webs
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/10—Cooling; Devices therefor
- C21B7/106—Cooling of the furnace bottom
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/12—Working chambers or casings; Supports therefor
- F27B3/14—Arrangements of linings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/12—Casings; Linings; Walls; Roofs incorporating cooling arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D1/00—Casings; Linings; Walls; Roofs
- F27D1/16—Making or repairing linings increasing the durability of linings or breaking away linings
- F27D1/1626—Making linings by compacting a refractory mass in the space defined by a backing mould or pattern and the furnace wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/12—Shells or casings; Supports therefor
- F27B1/14—Arrangements of linings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B1/00—Shaft or like vertical or substantially vertical furnaces
- F27B1/10—Details, accessories, or equipment peculiar to furnaces of these types
- F27B1/24—Cooling arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27B—FURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
- F27B3/00—Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
- F27B3/10—Details, accessories, or equipment peculiar to hearth-type furnaces
- F27B3/24—Cooling arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D9/00—Cooling of furnaces or of charges therein
- F27D2009/0002—Cooling of furnaces
- F27D2009/0018—Cooling of furnaces the cooling medium passing through a pattern of tubes
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Architecture (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Ceramic Products (AREA)
Description
【発明の詳細な説明】
本発明は冶金で使用される炉の新規基盤、より
特定的には高温に加熱された液体金属又は液体合
金を収容するルツボ(炉床)を備えた炉の新規基
盤に係る。DETAILED DESCRIPTION OF THE INVENTION The invention relates to a new basis for a furnace used in metallurgy, more particularly a new basis for a furnace with a crucible (heart) containing a liquid metal or liquid alloy heated to a high temperature. Pertains to.
より特定的には、本発明は高炉及び電気冶金用
炉、特に水、油又は他の流体の循環により温度レ
ベルが制御される冷却底面がルツボのライニング
(内張りgarnissage)の下に形成されている炉に
係る。本発明は更に耐火性ライニングの少くとも
一部がグラフアイト及び/又は炭素のブロツクを
一体的に組合わせて構成されているようなルツボ
を有する冶金用炉に係る。実験の結果、特に高炉
の場合は、ライニングブロツクが極めて精密に組
合わされていて時が経つても完壁な安定性を維持
する限り、前記のような構造を有するルツボの寿
命は極めて長いことが判明した。 More particularly, the present invention relates to blast furnaces and electrometallurgical furnaces, especially those in which a cooling bottom is formed below the lining of the crucible, the temperature level of which is controlled by the circulation of water, oil or other fluids. Regarding the furnace. The invention further relates to a metallurgical furnace having a crucible in which at least a portion of the refractory lining consists of an integral combination of graphite and/or carbon blocks. Experiments have shown that, especially in the case of blast furnaces, crucibles with the above structure have an extremely long lifespan, as long as the lining blocks are assembled very precisely and maintain perfect stability over time. found.
このためには、ルツボの耐火性ライニングを支
持する基盤が時間の経過に拘らず秀れた平面性及
び機械的耐性を維持することが重要である。現在
では炭素含有ブロツクの平面を±0.2mmの精度を
もつて機械加工する技術が知られているだけに、
基盤に関しても前記の特性が強く要求される。 To this end, it is important that the base supporting the refractory lining of the crucible maintains excellent planarity and mechanical resistance over time. As the technology for machining the flat surfaces of carbon-containing blocks with an accuracy of ±0.2 mm is currently known,
The above characteristics are also strongly required for the substrate.
更に、長期間のうちにはライニングを腐食さ
せ、場合によつてはライニングに穴をあけて炉外
に流出する可能性もある液体金属の浸透を阻止す
べく、ルツボのライニングを冷却する必要がある
ことも確認された。 In addition, the crucible lining must be cooled to prevent liquid metal penetration, which can corrode the lining and even puncture the lining and leak out of the furnace over a long period of time. It was also confirmed that
特に炉の軸近傍の区域ではこのように冷却をよ
り促進させることが重要であり、従つて基盤はラ
イニングを構成するグラフアイト及び/又は炭素
のブロツクと冷却手段との間における熱量の流れ
を良好にしなければならない。特に高炉炉床この
種の耐火性ライニングの場合、これを載置するの
に適した基盤に関して既に多くの製法が提案され
てきた。 Particularly in the area near the axis of the furnace, it is important to promote cooling in this way, and the base is therefore designed to facilitate the flow of heat between the graphite and/or carbon blocks constituting the lining and the cooling means. must be done. In the case of refractory linings of this kind, especially for blast furnace hearths, many manufacturing methods have already been proposed for suitable substrates on which to place them.
これら基盤の中次の2大主要タイプが特に良く
知られている。 Two major types of these foundations are particularly well known.
第1タイプの基盤は酸化物をベースとする骨
材、例えばセメントを結合剤とするシリコアルミ
ナ質耐火材などで構成された耐火コンクリートで
ある。この種のコンクリートは製造が比較的簡単
であり且つ水硬性を有する。 The first type of foundation is fireproof concrete composed of oxide-based aggregates, such as silico-alumina refractories with cement as a binder. This type of concrete is relatively simple to manufacture and has hydraulic properties.
しかしながらコンクリート層がほぼ水平で平滑
な表面を有するよう、コンクリートを流し込んだ
後で特に念入りに表面を均しても、部分的に数ミ
リメートルの高低差が殆んど不可避的に生じるこ
とが実験の結果判明した。従つて、このような基
盤上に加工ブロツクで構成されたライニングを正
確に載置したい場合はこのような高低差を除くた
めに基盤表面を全面的に研削しなければならず、
そのため相当な手間がかかるが、それでも十分平
滑にすることは極めて困難である。更に、このよ
うな基盤は熱伝導率が約1W.m-1.K-1と小さい。
コランダムをベースとする骨材を使用すればこの
熱伝導率を培増することが可能であるが、このよ
うな方法をとるとコストが上昇し、加えて該骨材
が硬質であるため研削作業が更に困難になる。 However, even if the surface is carefully leveled after concrete is poured so that the concrete layer has a nearly horizontal and smooth surface, experimental results show that differences in height of several millimeters will almost inevitably occur in some areas. The result is clear. Therefore, if you want to accurately place a lining made of processed blocks on such a base, the entire surface of the base must be ground to eliminate such height differences.
Although this requires considerable effort, it is still extremely difficult to make the surface sufficiently smooth. Furthermore, such a substrate has a low thermal conductivity of about 1 W.m -1 .K -1 .
It is possible to increase this thermal conductivity by using corundum-based aggregates, but this increases costs and, due to the hardness of the aggregates, requires grinding. becomes even more difficult.
第2タイプの基盤は例えばセメント床などの上
に厚み数センチメートルの耐火タイルを敷設した
もので構成されている。 The second type of foundation consists of refractory tiles several centimeters thick laid on, for example, a cement floor.
フランス特許第2104389号に、上表面が同一平
面上に位置するよう前記の如き耐火タイルを正確
に敷設する方法が開示されている。これによれ
ば、予めベースプレート(tole de fond)上に延
ばされたセメント床又はモルタル床の上に正確に
所定の間隔をおいて基準タイルを配置し、当業者
に良く知られているオプチカル手段により制御さ
れる基準面にタイル表面が一致するよう、これら
タイルをモルタル中に多少とも沈めながら表面の
高さを調整する。このように基点を設定しておけ
ば、あとは平定規を用いて上表面が基準面に位置
するよう調整するだけで他のタイルを間に嵌込む
作業が実施され得る。タイルの表面特性が十分で
あり且つ十分な注意をもつて配置された場合には
この方法で極めて正確な基準面を有する基盤を実
現することができる。基盤の熱伝導率を増大させ
るべく、炭素含有材料、特にグラフアイト製のタ
イルを敷設してもよい。 French Patent No. 2,104,389 discloses a method for precisely laying such refractory tiles so that the upper surfaces lie in the same plane. According to this, reference tiles are placed at precisely predetermined intervals on a cement or mortar bed which has been previously extended on a base plate, and optical means well known to those skilled in the art are used. The height of the surface of the tiles is adjusted by submerging them more or less into the mortar so that the tile surface coincides with a reference plane controlled by the method. Once the base point is set in this way, all that is left to do is to use a flat ruler to adjust the top surface so that it is positioned on the reference plane, and then you can fit other tiles in between. If the surface properties of the tiles are sufficient and they are placed with sufficient care, it is possible in this way to achieve a foundation with a very precise reference surface. To increase the thermal conductivity of the substrate, tiles made of carbon-containing material, especially graphite, may be laid.
しかしながら、グラフアイト製の薄いタイルは
原価が高いためこの方法は費用がかかり、且つ前
述したようにライニングを構成するブロツクが所
望の正確度をもつて配置されるよう基準表面を完
全に平らにすべく敷設に多大な注意を払わなけれ
ばならない。場合によつては基準レベルに一致さ
せて配置することが不可能であつたタイルを例え
ば振り子型フライスなどを用いて更に研削しなけ
ればならないこともある。しかし、前記のフライ
スを使用した場合は基準表面が僅かにカーブする
可能性もある。 However, this method is expensive due to the high cost of thin graphite tiles and, as mentioned above, the reference surface must be completely flat so that the blocks forming the lining can be placed with the desired accuracy. Great care must be taken in the installation. In some cases, tiles that cannot be placed in accordance with the reference level may have to be further ground, for example using a pendulum milling cutter. However, when using the milling cutter described above, the reference surface may also be slightly curved.
通常、前述した2タイプの基盤は時間をかけて
丁寧に作業を遂行しないと満足のいく結果が得ら
れず、結果の良し悪しは作業者の熟練度によつて
大きく左右される。加えて、熱伝導率が比較的小
さい耐火モルタル又は耐火コンクリートを使用す
るためこれら基盤の熱伝導率は不十分であること
が多い。モルタル又はコンクリートに代えて炭素
含有材料をベースとする練土(pise′)を使用す
れば熱伝導率は増大するが平坦度の問題が残つて
しまう。 Normally, with the two types of bases mentioned above, a satisfactory result cannot be obtained unless the work is carried out carefully over time, and the quality of the result is largely determined by the skill level of the worker. In addition, the thermal conductivity of these foundations is often insufficient due to the use of refractory mortar or concrete, which have relatively low thermal conductivity. The use of pise' based on carbon-containing materials instead of mortar or concrete increases thermal conductivity, but flatness remains a problem.
これまでにも、冷却底面を有する冶金用炉の基
盤で、理論平面に対して極めて小さい偏差を有す
る水平基準面を上表面が確実に形成し、簡単な方
法によつて短時間の中に経済的に製造され得、実
用化が容易で且つ効果が完全に再現され得る新型
基盤の開発が試みられてきた。 Until now, in the base of a metallurgical furnace with a cooling bottom, the upper surface reliably forms a horizontal reference plane with an extremely small deviation from the theoretical plane, and a simple method has been used to achieve economical results in a short time. Attempts have been made to develop a new type of base that can be easily manufactured, easily put into practical use, and whose effects can be completely reproduced.
ライニングの温度を低下させるよう熱伝導率の
大きい基盤の実現も試みられてきた。 Attempts have also been made to create a substrate with high thermal conductivity to reduce the temperature of the lining.
更に、例えばベースプレート下での空気の循環
により冷却する場合又はベースプレート上に配置
された管路内での液体の循環により冷却する場合
などに、炉の底面を冷却する手段との間に好まし
い熱伝導結合を生じるような基盤の実現も同様に
試られてきた。 Furthermore, there is a favorable heat transfer between the bottom of the furnace and the means for cooling, for example when cooling by air circulation under the base plate or by circulating liquid in conduits arranged above the base plate. Attempts have also been made to create a foundation that will cause coupling.
本発明の対象である基盤は、少くとも80重量%
のグラフアイトと合成樹脂をベースにした結合剤
とを含み冷却底面に直接接触している練土層、並
びに少くとも40%のグラフアイト微粉と合成樹脂
をベースにした結合剤とを含み該練土を被覆する
地均用グラウトの薄層で構成されている。 The substrate that is the subject of the invention has at least 80% by weight
a clay layer in direct contact with the cooling bottom surface, the clay layer containing at least 40% graphite fines and a synthetic resin-based binder; It consists of a thin layer of grade grout covering the soil.
後述のように、本発明は該基盤の製法にも係
る。 As described below, the present invention also relates to a method of manufacturing the substrate.
グラフアイトをベースとする練土はセイロン又
はマダカスカル産グラフアイトの如き天然グラフ
アイトか、人工グラフアイトか、もしくはこれら
2種類のグラフアイトの混合物を含んでいる。 Graphite-based clays contain natural graphite, such as graphite from Ceylon or Madagascar, artificial graphite, or a mixture of these two types of graphite.
結合剤としては例えば熱硬化性樹脂などの樹脂
が約8乃至15重量%含まれており、練土が室温で
凝固するよう通常は触媒も加えられている。高炉
底に敷詰められた練土層は硬化後非変形性ベース
を構成すべく十分な厚みを有していなければなら
ない。この厚みは高炉の直径と冷却手段の配置と
にある程度依存する。 The binder contains a resin such as a thermosetting resin in an amount of about 8 to 15% by weight, and a catalyst is usually added so that the clay solidifies at room temperature. The clay layer placed at the bottom of the blast furnace must have sufficient thickness to form a non-deformable base after hardening. This thickness depends to some extent on the diameter of the blast furnace and the arrangement of the cooling means.
冷却用流体管路はベースプレート上に配置され
ることが多く、その場合は該練土でこれら管路を
包囲し被覆する必要がある。 Cooling fluid conduits are often located on the base plate, in which case it is necessary to surround and cover these conduits with the clay.
実際には、該練土層の厚みは緊密充填後夫々の
場合に応じて約5乃至20cmになる。該練土を被覆
する地均用グラウト層の厚みを最小限に抑制する
ためには練土の上表面を比較的平滑で水平な面に
する必要があろう。 In practice, the thickness of the clay layer after close packing amounts to approximately 5 to 20 cm, depending on the case. In order to minimize the thickness of the ground leveling grout layer covering the clay, it is necessary to make the upper surface of the clay a relatively smooth and horizontal surface.
ベースプレート及び、場合によつては、冷却用
管路に練土が完壁に接触し且つその上表面が可能
な限り基準面と合致して最小限の凹凸を有するよ
う該練土を十分に緊密充填するためには種々の方
法が使用可能である。 The base plate and, as the case may be, the cooling conduits, are tightly packed together so that the clay is in full contact with the base plate and, as the case may be, the upper surface matches the reference plane as much as possible and has minimal irregularities. Various methods can be used for filling.
練土を前記の状態に緊密充填する上で特に効果
的な基盤製造法が開発された。この方法は本発明
の一部を成すがその説明は後に回す。 A method of manufacturing a base has been developed which is particularly effective in closely packing the clay into the conditions described above. This method forms part of the present invention and will be described later.
本発明によれば、流動性グラウトで構成された
地均し用薄膜で練土層を被覆することによりほぼ
完壁な水平面を構成する上表面を有した基盤が得
られる。このようなグラウトは僅かな凹凸部分及
びへこみ部分へ簡単に配分されてこれらの部分を
埋塞するため、完全に水平な基準面が得られるの
である。該グラウトの厚みは必要最低限に制限さ
れるが、通常その平均値は1乃至5mmである。該
グラウトは粒径0.3mmより小さい微粉末の粉末天
然グラフアイト又は物粉末人工グラフアイトを約
40乃至70重量%含んでいる。残余は熱硬化性樹脂
であるが、通常はその流動性を増大させるべく溶
剤が添加されている。 According to the present invention, a base having an upper surface constituting a substantially perfect horizontal surface is obtained by covering a layer of soil with a thin layer for leveling composed of a fluid grout. Such grout is easily distributed over slight irregularities and depressions and fills these areas, so that a perfectly horizontal reference surface is obtained. The thickness of the grout is limited to the minimum necessary, but usually its average value is 1 to 5 mm. The grout is made of finely powdered natural graphite or powdered artificial graphite with a particle size of less than 0.3 mm.
Contains 40 to 70% by weight. The remainder is a thermosetting resin, usually with a solvent added to increase its fluidity.
室温で凝固するように、該グラウトには多くの
場合適当な触媒が混合される。 The grout is often mixed with a suitable catalyst so that it solidifies at room temperature.
本発明により開発された基盤製造法は、グラウ
ト硬化後理想平均面からの偏差が全ゆる点で通常
ミリメートルより小さい水平面によつて上表面が
構成されるような基盤を実現するための方法であ
るが、これについては後程説明する。 The base manufacturing method developed according to the invention is a method for realizing a base whose upper surface is constituted by a horizontal plane whose deviation from the ideal mean plane after grout hardening is usually less than a millimeter at all points. However, this will be explained later.
本発明による基盤に与えられた機械的特性を測
定した結果、該基盤が天然グラフアイトをベース
としている場合は8MPaの最小破砕強さを有して
いることが判明した。該基盤が人工グラフアイト
をベースとしている場合この最小値は20MPaに
達する。 As a result of measuring the mechanical properties imparted to the substrate according to the invention, it was found that the substrate has a minimum crushing strength of 8 MPa when it is based on natural graphite. This minimum value reaches 20 MPa if the substrate is based on artificial graphite.
該基盤の熱伝導率は練土層及びグラウト層の相
対的厚みにある程度左右される。 The thermal conductivity of the base depends in part on the relative thicknesses of the fill and grout layers.
グラウトの熱伝導率は練土の熱伝導率より小さ
いため、該グラウトの厚みを最小限に減少するこ
とが極めて重要であり、本発明の別の対象である
基盤製造法の主要利点の1つはまさにグラウトの
平均的厚みを僅か数ミリメートルに減少させ得る
ことなのである。 Since the thermal conductivity of the grout is lower than that of the clay, it is extremely important to reduce the thickness of the grout to a minimum, which is one of the main advantages of the base manufacturing method, which is another object of the present invention. This is precisely because the average thickness of the grout can be reduced to just a few millimeters.
このようにすれば、基盤の熱伝導率は使用グラ
フアイトの性質、重量%で示される練土の組成、
及び締固め(緊密充填)度に応じ通常10乃至
20W.m-1.K-1の間の値を示す。 In this way, the thermal conductivity of the base can be determined by the properties of the graphite used, the composition of the clay expressed in weight percent,
and depending on the degree of compaction (tight packing), usually 10 to
Indicates a value between 20W.m -1 .K -1 .
該製法では複数の直線状水平調整棒を、被覆す
べき表面を幾つかの区域に分割するよう、互に適
当な間隔をあけ、且つ炉の底部から上方へ練土の
所望の厚みに等しい平均距離をおいて配置する。
場合によつては、これら調整棒をほぼ等距離をお
いて互に平行に配置するか、正方形の格子状に配
置するか、もしくは他の適切な状態に配置しても
よい。該調整棒の高さは、これらの棒と炉の底面
との間にこれら両者間の垂直距離を調整するため
の取り外し可能な可調整連結手段を設置すること
により、各棒の上表面が同一水平面上に位置する
よう調整される。このための簡単な方法として、
垂直軸ツトなど当業者に良く知られている固定手
段をベースプレート上の所定の位置に溶着し、こ
のようにして炉の底部に取り付けられた固定手段
にねじ山付き垂直ロツドの如き連結手段の下方端
を固定させる一方、水平調整棒の高さが調整され
得るよう連結手段の上方端をこれら調整棒に接合
する方法がある。ねじ山付きロツドを使用する場
合は水平調整棒先端に形成されたホール内に該ロ
ツド上方端を係合させてもよく、この場合調整棒
の高さ調整は例えばナツトなどにより当業者に公
知の方法で実施させる。練土の上表面と一致する
ことになる第1基準面の高さは水平調整棒を調整
したら、該練土を例えば当業者に良く知られてい
る空気圧式緊密充填の手段などを使用する従来の
方法で連続的に層を形成しながら底部に充填す
る。 In this method, a plurality of straight leveling rods are placed at suitable intervals from each other so as to divide the surface to be coated into several areas, and with an average height equal to the desired thickness of the clay from the bottom of the furnace upwards. Place at a distance.
Optionally, the adjustment rods may be arranged parallel to each other at approximately equal distances, or arranged in a square grid, or in any other suitable arrangement. The height of the adjustment rods can be adjusted so that the upper surface of each rod is the same by installing removable adjustable coupling means between these rods and the bottom of the furnace to adjust the vertical distance between them. Adjusted to lie on a horizontal plane. A simple way to do this is to
A fixing means well known to those skilled in the art, such as a vertical shaft, is welded in place on the base plate, and the fixing means, which is thus attached to the bottom of the furnace, is connected to the bottom of the connecting means, such as a threaded vertical rod. There is a method of joining the upper end of the connecting means to the horizontal adjustment rods so that the height of the horizontal adjustment rods can be adjusted while the ends are fixed. If a threaded rod is used, the upper end of the rod may be engaged in a hole formed at the tip of the leveling rod, in which case the height adjustment of the rod may be adjusted, for example by a nut, as known to those skilled in the art. have it carried out in a method. Once the leveling rod has been adjusted, the height of the first reference plane, which is to be coincident with the upper surface of the mulch, can be adjusted using conventional methods, such as by means of pneumatic close packing, which are well known to those skilled in the art. Fill the bottom part by continuously forming layers using the method described in the following.
練土層は表面全体が完全に調整棒のレベルに到
達するよう調整されるが、この場合可動性水平定
規を公知の方法で使用し、該定規先端を調整棒上
でスライド式に移動させながらこれら調整棒間の
練土のレベルを調整してもよい。 The soil layer is adjusted so that the entire surface completely reaches the level of the adjustment rod. In this case, a movable horizontal ruler is used in a known manner, and the tip of the ruler is moved on the adjustment rod in a sliding manner. The level of the clay between these adjustment rods may be adjusted.
次に、該水平調整棒を第2基準面、即ち第1基
準面より高方に位置し基盤上表面の最終的高さに
一致する面、の高さまで再度調整する。第1及び
第2基準面間の平均距離は従つて練土を被覆する
地均し用グランドの厚みに該当することになる。 Next, the leveling rod is readjusted to the height of the second reference plane, that is, the plane that is located higher than the first reference plane and corresponds to the final height of the top surface of the substrate. Therefore, the average distance between the first and second reference planes corresponds to the thickness of the ground for leveling that covers the ground.
前記の第2調整を行うためには可調整連結手段
に沿つて調整棒の位置を調整すればよい。該手段
がねじ山付ロツドの場合は調整棒を該ロツドに固
定させているナツトを介して調整する。 In order to carry out the second adjustment, the position of the adjustment rod along the adjustable coupling means may be adjusted. If the means is a threaded rod, the adjustment is made via a nut which fixes the adjusting rod to the rod.
場合によつては所望の正確度にかんがみて、第
1基準面の設定には値段が比較的安い中程度の精
度を有する調整棒を使用し、第2基準面の設定に
はこれらの調整棒に代えて別の精密な調整棒一組
を使用し極めて慎重にこれら調整棒の高さを調整
する。このように調整には水盛り式水準器及び/
又は水準測量用光学装置などの当業者に良く知ら
れている手段を使用してもよい。第2基準面に設
定に次いで地均し用グラウドを薄膜状に流し込
む。該グラウトは流動性が大きいため表面が極め
て容易に均等化され、その結果調整棒の上表面と
同一の高さで完全に平坦な面が形成される。グラ
ウトが凝固したら、通常は調整棒及び連結手段を
取り外し、その結果生じる空隙に練土及び/又は
グラウトを少量充填する。 In some cases, taking into account the desired accuracy, relatively inexpensive adjustment rods with medium accuracy are used for setting the first reference plane, and these adjustment rods are used for setting the second reference plane. Instead, use another set of precision adjustment rods and adjust the height of these adjustment rods very carefully. For adjustment in this way, a water level and/or
Alternatively, means well known to those skilled in the art, such as leveling optical devices, may be used. After setting the second reference surface, a thin film of ground leveling ground is poured. Due to the high fluidity of the grout, the surface is very easily leveled, so that a perfectly flat surface is formed at the same height as the upper surface of the adjustment rod. Once the grout has solidified, the adjustment rod and connecting means are typically removed and the resulting void is filled with a small amount of clay and/or grout.
以上説明してきた製法は作業が極めて簡単であ
るという大きな利点を有しており、同時に基盤の
製造が極めて正確に且つ極めて短時間の中に実施
されるが、該製法を様々に変形することも可能で
ある。 The manufacturing method described above has the great advantage of being extremely simple to work with, and at the same time allows the manufacturing of the base to be carried out extremely accurately and in an extremely short time, but it is possible to modify the manufacturing method in various ways. It is possible.
実際、極めて容積の大きい炉を作り直すのに必
要とされる時間を最小限に抑えるべく多くの場合
に製造時間の短縮が所望されている。例えば最新
式高炉を作り直す場合、工事によつて中断される
作動時間はかなりの生産高損失につながるため、
この中断時間を可能な限り短縮することは極めて
重要である。 In fact, it is often desirable to reduce manufacturing time in order to minimize the time required to rebuild extremely large furnaces. For example, when rebuilding a state-of-the-art blast furnace, the interruption in operation time due to construction will result in significant production losses.
It is extremely important to reduce this interruption time as much as possible.
以下、実験的に製造された本発明による高炉基
盤を、本発明を限定しない一具体例として挙げ、
添付図面を参照しながら説明する。 Hereinafter, an experimentally produced blast furnace base according to the present invention will be cited as a specific example without limiting the present invention,
This will be explained with reference to the attached drawings.
第1図及び第2図は高炉のベースプレート1
(金属製底面薄板tole de fond)の一部を示して
いる。該ベースプレート上には2の如き鋼鉄製冷
却用管路が3の如きフランジにより互に間隔をお
いて固定されており、該プレートに溶着されたナ
ツト4を介して該プレートにねじ山付ロツド5が
固定されている。 Figures 1 and 2 show the base plate 1 of the blast furnace.
(A part of the thin metal bottom plate tole de fond) is shown. Steel cooling conduits such as 2 are fixed at intervals on the base plate by flanges such as 3, and threaded rods 5 are connected to the plate via nuts 4 welded to the plate. is fixed.
6は如き調整棒には穴が形成されており、この
穴をロツド5の上端が貫通している。調整棒はこ
れを挾持する7及び8の如きナツトを介して基準
面の高さに調整される。ねじ山付ロツド上でナツ
トを締めたり緩めたりすれば調整棒上表面9の高
さを調整して第1水平基準面の高さに合致させる
ことができることは明白であろう。ベースプレー
ト及び該基準面間の平均距離は約12cmである。こ
の調整は水準器を使用して光学的視準により当業
者に良く知られている方法で制御される。調整棒
を第1基準面の高さに合致させたら、次に87重量
%の人工グラフアイトと10重量%のフエノールホ
ルムアルデヒド樹脂と3%の凝固触媒とで組成さ
れた練土を充填し、約20×20cmの平形突き板を有
する空気圧式ランマー(dame)を用い締固め作
業を数回に分けて連続的に繰り返し層を形成す
る。この場合練土は密度が約1.7になるまでコン
パクトに締固される。該練土層の厚みはその表面
が調整棒の上表面で規定された第1基準面に可能
な限り完壁に一致するよう前述の方法で調整され
る。 A hole is formed in the adjusting rod such as 6, and the upper end of the rod 5 passes through this hole. The height of the adjustment rod is adjusted to the reference plane through nuts such as 7 and 8 that hold it. It will be clear that by tightening or loosening the nut on the threaded rod, the height of the adjustment rod upper surface 9 can be adjusted to match the height of the first horizontal reference plane. The average distance between the base plate and the reference surface is about 12 cm. This adjustment is controlled by optical collimation using a spirit level in a manner well known to those skilled in the art. After adjusting the adjustment rod to the height of the first reference plane, fill it with clay composed of 87% by weight of artificial graphite, 10% by weight of phenol formaldehyde resin, and 3% of coagulation catalyst. Using a pneumatic rammer (dame) with a flat veneer of 20 x 20 cm, the compaction process is divided into several steps and repeated continuously to form layers. In this case, the clay is compacted until its density is approximately 1.7. The thickness of the clay layer is adjusted by the method described above so that its surface coincides as perfectly as possible with the first reference plane defined by the upper surface of the adjustment rod.
練土が硬化したら、第1基準面の設定に使用さ
れた調整棒を取り外し、これに代えて大きさは同
一であるが精度がこれより高く、たわみ度が0.1
mm/mを越えない第2調整棒一組を設置する。該
調整棒は先ず先端がねじ山付ロツドに係合され、
次いで第1基準面から上方へ平均距離約3mmをお
いた位置にある第2基準水平面に上表面が一致す
るよう高さが調整される。調整手段自体は第2調
整棒の場合も第1調整棒の場合と同一手段が使用
される。 Once the clay has hardened, remove the adjustment rod used to set the first reference plane and replace it with a rod of the same size but higher precision and a deflection of 0.1.
Install a second set of adjustment rods that do not exceed mm/m. The adjustment rod is first engaged with a threaded rod at its tip;
The height is then adjusted so that the upper surface coincides with a second reference horizontal plane located an average distance of about 3 mm upward from the first reference plane. The adjustment means itself is the same for the second adjustment rod as for the first adjustment rod.
次に、地均し用グラウトを練土上流し込む。該
グラウトは粒径が0.3mmより小さい人工グラフア
イトの微粉60重量%、フエノールホルムアルデヒ
ド樹脂30%、及び凝固触媒10%で構成されてお
り、調整棒の上越沿いにスライドさせて使用する
地均し定規によつて、表面の高さが可等調整棒上
縁の高さに一致するよう調整棒騒互間に間隙に流
し込まれる。グラウトが硬化した後は調整棒及び
ねじ山付ロツドを取り外し、その結果生じた空隙
に少量のグラウトを充填して完全に平滑な面を形
成する。凹凸がある場合は研削により平坦化す
る。このようにして、第3図に示されている如く
練土10とこれを被覆するグラウト層11から成
り、上表面12が完全に水平である基盤ができ上
がる。該表面12上にはルツボの底を極めて正確
に載置することが可能である。該表面12は完全
に平坦であるため、グラフアイト製又はセミグラ
フアイト製のブロツクかもしくは極めて正確に加
工された炭素含有ブロツクを接合剤を一切介さず
一的体に組合せ、殆んど変形せずに長期間使用す
ることが可能であるよう載置する上で特に有利で
ある。ブロツクをこのように組合わせると、一方
で基盤及びベースプレート間に、他方ではグラフ
アイト製又は他の炭素含有材料製のブロツク及び
基盤間に好ましい熱的接触状態が生じるため、高
炉の軸区域の熱流がベースプレート方向へ極めて
順調に伝達される。このようにして製造された基
盤のサンプルの熱伝導率を測定した結果、その平
均値は18W.m-1.K-1であつた。 Next, pour grout for leveling into the soil. The grout is composed of 60% by weight of fine powder of artificial graphite with a particle size of less than 0.3 mm, 30% of phenol formaldehyde resin, and 10% of coagulation catalyst, and is used as a ground leveler by sliding it along the Joetsu adjustment rod. A ruler is poured into the gap between the adjustable rods so that the height of the surface corresponds to the height of the upper edge of the adjustable rod. After the grout has hardened, the adjustment rod and threaded rod are removed and the resulting void is filled with a small amount of grout to create a perfectly smooth surface. If there are any irregularities, flatten them by grinding. In this way, a base is created, as shown in FIG. 3, consisting of the clay 10 and the grout layer 11 covering it, the upper surface 12 of which is completely horizontal. On said surface 12 it is possible to place the bottom of the crucible very precisely. Since the surface 12 is completely flat, graphite or semi-graphite blocks or very accurately machined carbon-containing blocks can be assembled in one piece without any bonding agent and with almost no deformation. This is particularly advantageous for mounting in such a way that it can be used for a long period of time without any problems. This combination of blocks creates a favorable thermal contact between the base and the base plate on the one hand, and between the block made of graphite or other carbon-containing material and the base on the other hand, thereby improving the heat flow in the shaft area of the blast furnace. is transmitted extremely smoothly toward the base plate. As a result of measuring the thermal conductivity of a sample of the substrate manufactured in this manner, the average value was 18 W.m -1 .K -1 .
本発明の対象である基盤の製法としては前述の
方法以外にも本発明の範囲内で種々の製法が可能
である。 As for the manufacturing method of the substrate which is the object of the present invention, various manufacturing methods other than the above-mentioned method are possible within the scope of the present invention.
第1図は本発明による装置の平面図、第2図は
第1図のA−A断面図、第3図は調整棒及び連結
ロツドとり取し後の本発明による基盤の説明図で
ある。
1……ベースプレート、2……冷却用管路、3
……フランジ、4,7,8……ナツト、5……ロ
ツド、6……調整棒、9……第1基準面、10…
…練土層、11……グラウト層、12……第2基
準面。
FIG. 1 is a plan view of the device according to the present invention, FIG. 2 is a sectional view taken along the line AA in FIG. 1, and FIG. 3 is an explanatory view of the base according to the present invention after removing the adjustment rod and the connecting rod. 1...Base plate, 2...Cooling conduit, 3
... Flange, 4, 7, 8 ... Nut, 5 ... Rod, 6 ... Adjustment rod, 9 ... First reference surface, 10 ...
...Made soil layer, 11... Grout layer, 12... Second reference surface.
Claims (1)
ースとする結合剤とを含み且つ炉底に直接接触し
ている練土層で構成され、該練土が少くとも40%
の微粉グラフアイトと溶媒希釈合成樹脂とを含む
地均用グラウト薄層で被覆されていることを特徴
とする高炉炉床用基盤。 2 練土層の厚みが5乃至20cmでありグラウト層
の厚みが平均1乃至5mmであることを特徴とする
特許請求の範囲第1項に記載の基盤。 3 水平棒群を炉底上方適当な距離の位置に配置
して該水平棒群の上縁で水平基準面を規定するこ
とと、該基準面と炉底との間の空間にグラフアイ
トをベースとする練土をコンパクトに充填するこ
とと、地均用グラウト薄層で該練土を被覆するこ
ととを特徴とする高炉用基盤の製法。 4 所定の間隔をおいて炉底に固定手段を設置
し、連結手段の下端を該固定手段に接続し上端を
高さ調整が可能であるように水平棒先端に接続し
て、該水平棒の高さを調整することを特徴とする
特許請求の範囲第3項に記載の製法。 5 水平棒を調整して先ず第1基準面に合致さ
せ、次いで練土の充填後、該水平棒を調整して第
1基準面より少くとも1mm離れており地均用グラ
ウトの上面のレベルに相当する第2基準面に合致
させることを特徴とする特許請求の範囲第4項に
記載の製法。 6 練土の充填後、第1基準面の設定に使用した
水平棒をたわみ0.1mm/m以下の精密な棒に替え
て第2基準面を規定することを特徴とする特許請
求の範囲第5項に記載の製法。 7 基盤が凝固した後で水平棒をとり外すことを
特徴とする特許請求の範囲第3項乃至第6項のい
ずれかに記載の製法。 8 炉底がベースペレートから成つていることを
特徴とする特許請求の範囲第3項乃至第7項のい
ずれかに記載の製法。 9 液体及び/又は気体流体を循環させる冷却手
段を炉底が有していることを特徴とする特許請求
の範囲第3項乃至第8項のいずれかに記載の製
法。 10 冷却手段が管でありベースプレート上に配
置されていることを特徴とする特許請求の範囲第
9項に記載の製法。[Scope of Claims] 1 Consisting of a layer of clay containing at least 80% graphite and a binder based on a synthetic resin and in direct contact with the hearth bottom, the clay layer containing at least 40%
A base for a blast furnace hearth, characterized in that the base is coated with a thin layer of ground level grout containing finely powdered graphite and a solvent-diluted synthetic resin. 2. The base according to claim 1, wherein the thickness of the clay layer is 5 to 20 cm, and the average thickness of the grout layer is 1 to 5 mm. 3. Placing a group of horizontal rods at an appropriate distance above the hearth bottom, defining a horizontal reference plane with the upper edge of the horizontal rod group, and placing graphite as a base in the space between the reference surface and the hearth bottom. 1. A method for producing a base for a blast furnace, which comprises compactly filling the drilled soil, and covering the dregs with a thin layer of ground leveling grout. 4. Install fixing means on the bottom of the furnace at predetermined intervals, connect the lower end of the connecting means to the fixing means, and connect the upper end to the tip of the horizontal rod so that the height can be adjusted. The manufacturing method according to claim 3, characterized in that the height is adjusted. 5. Adjust the horizontal bar so that it first aligns with the first reference plane, and then, after filling with soil, adjust the horizontal bar so that it is at least 1 mm away from the first reference plane and at the level of the top surface of the grade grout. 5. The manufacturing method according to claim 4, wherein the manufacturing method is made to match a corresponding second reference plane. 6. Claim 5, characterized in that after filling with clay, the horizontal rod used to set the first reference surface is replaced with a precision rod with a deflection of 0.1 mm/m or less to define the second reference surface. The manufacturing method described in section. 7. The manufacturing method according to any one of claims 3 to 6, characterized in that the horizontal bar is removed after the base is solidified. 8. The manufacturing method according to any one of claims 3 to 7, wherein the furnace bottom is made of base pellet. 9. The manufacturing method according to any one of claims 3 to 8, characterized in that the furnace bottom has cooling means for circulating liquid and/or gaseous fluid. 10. The manufacturing method according to claim 9, wherein the cooling means is a tube and is arranged on the base plate.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8106996A FR2503186A1 (en) | 1981-04-01 | 1981-04-01 | NEW CARBON-BASED SOFTWARE FOR METALLURGY FURNACES AND METHOD OF MAKING SAME |
FR8106996 | 1981-04-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS582267A JPS582267A (en) | 1983-01-07 |
JPS6362473B2 true JPS6362473B2 (en) | 1988-12-02 |
Family
ID=9257127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57053616A Granted JPS582267A (en) | 1981-04-01 | 1982-03-31 | Carbon material base bed for metallurgical furnace and manufacture |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP0061981B1 (en) |
JP (1) | JPS582267A (en) |
AU (1) | AU545543B2 (en) |
DE (1) | DE3261102D1 (en) |
FR (1) | FR2503186A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054443A1 (en) * | 2007-10-26 | 2009-04-30 | Nippon Steel Engineering Co., Ltd. | Blast furnace bottom structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4104331B2 (en) * | 2000-04-14 | 2008-06-18 | 新日鉄エンジニアリング株式会社 | Brick for blast furnace bottom wall with cooler |
GB2377008A (en) * | 2001-06-27 | 2002-12-31 | Fairmont Electronics Company L | Blast furnace cooling panel. |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE408802C (en) * | 1923-10-06 | 1925-01-26 | Adolf Junius Dr | Process for the production of the bottom, frame and rest of shaft ovens |
ZA755438B (en) * | 1974-09-02 | 1977-04-27 | G Moore | An improvement in or relating to the laying of tiled metallurgical furnace floors |
GB1520896A (en) * | 1975-08-22 | 1978-08-09 | Marshall & Co Loxley Ltd Thoma | Laying of floors of tiles blocks slabs and the like |
-
1981
- 1981-04-01 FR FR8106996A patent/FR2503186A1/en active Granted
-
1982
- 1982-03-29 DE DE8282420041T patent/DE3261102D1/en not_active Expired
- 1982-03-29 EP EP19820420041 patent/EP0061981B1/en not_active Expired
- 1982-03-30 AU AU82176/82A patent/AU545543B2/en not_active Ceased
- 1982-03-31 JP JP57053616A patent/JPS582267A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009054443A1 (en) * | 2007-10-26 | 2009-04-30 | Nippon Steel Engineering Co., Ltd. | Blast furnace bottom structure |
Also Published As
Publication number | Publication date |
---|---|
EP0061981B1 (en) | 1984-10-31 |
JPS582267A (en) | 1983-01-07 |
FR2503186B1 (en) | 1983-05-13 |
AU545543B2 (en) | 1985-07-18 |
FR2503186A1 (en) | 1982-10-08 |
AU8217682A (en) | 1982-10-07 |
EP0061981A1 (en) | 1982-10-06 |
DE3261102D1 (en) | 1984-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111576121B (en) | Floor tile paving structure and floor tile paving construction process | |
JPS6362473B2 (en) | ||
US4526351A (en) | Slag and hot metal runner system | |
KR101530263B1 (en) | Ramming mass for the refractory coating of a metallurgical vessel, method for implementing same and metallurgical vessel, in particular a blast furnace, comprising a coating using said ramming mass | |
US4673167A (en) | Method for installing a converter bottom | |
JP6251541B2 (en) | Subbase construction method | |
US5176873A (en) | Method for forming a lining on a metallurgical vessel, a composition and a machine for the application of said method | |
CN113585317B (en) | Construction method for mucky soil support beam cushion layer | |
CN108643432A (en) | Electronic chip workshop wafer board structure construction engineering method | |
US4913649A (en) | Repair of the refractory lining of the wall of a shaft furnace and a repaired shaft furnace | |
EP1325277B1 (en) | Process for providing a surface with a fire-proof and/or wear resistant lining | |
CN113462833A (en) | Method for accurately building blast furnace carbon bricks | |
US4573668A (en) | Slag and hot metal runner systems | |
JPS5917072B2 (en) | Massive refractories for hot-insertion repair | |
US4279845A (en) | Process for coating the inner wall of a furnace or like apparatus | |
US4783377A (en) | Tundish lid | |
CN105910441B (en) | Aluminium anode carbon baking furnace flue wall compound heat-insulation type boiler face prefabricated section | |
CN110409450A (en) | Improve the construction method of concrete bottom plate flatness and finish | |
JPH0765282B2 (en) | Double-sided precast concrete pavement and installation method | |
SU985034A1 (en) | Foundation for blast furnace well lining | |
CN217326563U (en) | Mortar spreading device for masonry | |
DE1804187A1 (en) | Method for filling the space between the furnace masonry and the furnace shell of, in particular, metallurgical furnaces | |
CN118326100A (en) | Construction method of blast furnace hearth carbon ramming mass | |
RU1795983C (en) | Method of performing rammed lining of runners of blast furnace | |
CN111270033A (en) | Construction method for casting silica gel in gap between blast furnace shell and cooling wall |