JPS6362323B2 - - Google Patents

Info

Publication number
JPS6362323B2
JPS6362323B2 JP61043459A JP4345986A JPS6362323B2 JP S6362323 B2 JPS6362323 B2 JP S6362323B2 JP 61043459 A JP61043459 A JP 61043459A JP 4345986 A JP4345986 A JP 4345986A JP S6362323 B2 JPS6362323 B2 JP S6362323B2
Authority
JP
Japan
Prior art keywords
cutting
helix angle
end mill
blade
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61043459A
Other languages
Japanese (ja)
Other versions
JPS62203711A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61043459A priority Critical patent/JPS62203711A/en
Priority to DE19873706282 priority patent/DE3706282A1/en
Priority to KR1019870001730A priority patent/KR930001459B1/en
Publication of JPS62203711A publication Critical patent/JPS62203711A/en
Publication of JPS6362323B2 publication Critical patent/JPS6362323B2/ja
Priority to US07/317,067 priority patent/US4963059A/en
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/003Milling-cutters with vibration suppressing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/04Plain cutters, i.e. having essentially a cylindrical or tapered cutting surface of substantial length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] この発明は、外周にねじれを有する複数の切刃
が形成された転削工具に関するものである。 [従来の技術] 従来のこの種の転削工具としては、第8図A,
Bに示すエンドミルがある。このエンドミルは、
棒状をなすエンドミル本体1の先端部にある刃部
1aの外周に複数の切刃2を形成されてなるもの
であり、切刃2はエンドミル本体1が大きく振動
するのを防止するために、ねじれをもつて形成さ
れている。 すなわち、仮に切刃2をエンドミル本体1の長
手方向に沿つてストレートに形成した場合には、
切刃2の軸線方向における切り込み部分全体がワ
ークに同時に喰付き、またワークから同時に離れ
る。そして、切刃2がワークに喰付く際にエンド
ミル本体1に切削荷重が衝撃的に作用する一方、
切刃2がワークから離れる際にはエンドミル本体
1に作用する切削荷重が急激に減少する。この切
削荷重の急激な変化によつて、エンドミル本体1
が振動せしめられる。この点、上記のエンドミル
においては、切刃2をねじれをもつて形成してい
るから、切刃2はワークに徐々に喰付き、またワ
ークから徐々に離れる。したがつて、切削荷重が
急激に変動することがなく、エンドミル本体1が
振動するのを防止することができる。 [発明が解決しようとする問題点] しかしながら、上記のエンドミルにおいては、
切削荷重の急激な変化に伴う比較的大きな振動は
防止することができるものの、比較的小さな振動
の発生があつた。このため、仕上げ面が悪化し、
特に高い面粗度が要求されるような場合、あるい
は重切削(深切り込み)または高送りで切削する
ような場合には、充分に満足し得るものとはいい
難かつた。 [問題点の原因追及] そこで、この出願の発明者は、比較的小さな振
動の発生原因を追及し、その原因が次のような点
にあるものと推定するに至つた。 すなわち、上記従来のエンドミルにおいては、
各切刃2のねじれ角が互いに等しく、しかも各切
刃2が周方向に等間隔をもつて形成されているか
ら、第9図に示すように、切刃2の各部からその
切刃2に隣接する切刃2までの軸線方向および周
方向の間隔はいずれの部分においても一定になつ
ている。そして、一定間隔を有する各切刃2に切
削荷重が作用した場合には、その切削荷重によつ
て惹起されるエンドミル本体1の振動も常にほぼ
一定の振動数を有し、この振動が互いに共振し
て、エンドミル本体1に比較的小さな、しかし面
粗度に悪影響を及ぼす程度の振動を発生させるも
のと推定した。 [発明の目的] この発明は、上記の推定に基づいてなされたも
のであり、工具本体に比較的小さな振動が発生す
るのを防止することができ、これによつて仕上げ
面の向上、重切削(深切り込み)および高送り切
削を可能ならしめ、しかも切屑詰まりの発生を防
止することができる転削工具を提供することを目
的とする。 [問題点を解決するための手段および作用] この発明は、上記の目的を達成するために、複
数の切刃のうちの少なくとも1つの切刃のねじれ
角を他の切刃のねじれ角と異なる角度に設定する
とともに、回転方向において隣接する2つの切刃
で、回転方向前方に位置する切刃のねじれ角が回
転方向後方に位置する切刃のねじれ角より大きい
2つの切刃の間の周方向の間隔を、回転方向にお
いて隣接する2つの切刃で、回転方向前方に位置
する切刃のねじれ角が回転方向後方に位置する切
刃のねじれ角より小さい2つの切刃の間の間隔よ
りも、切刃の2つの端縁のうち回転方向前方に位
置する端縁が存する前記工具本体の端部において
大きく設定したものである。 少なくとも1つの切刃のねじれ角を他の切刃の
ねじれ角と異なる角度に設定すると、異なるねじ
れ角に設定された切刃とこれに隣接する切刃との
間の周方向および軸線方向の間隔がその切刃の先
端から後端側へ向かうにしたがつて連続的に変化
する。この結果、エンドミル本体に発生する振動
の振動数がエンドミルの回転に伴つて変化し、そ
れらの振動が互いに打ち消し合う。したがつて、
エンドミル本体に仕上げ面を悪化させるような振
動が発生するのを防止することができる。 ところで、切刃のねじれ角を互いに異なるもの
に設定すると、上記のように2つの切刃の間の周
方向の間隔が切刃の一端側から他端側へ向かうに
したがつて漸次減少または増大する。これに対応
して、2つの切刃の間に形成すべきチツプポケツ
トの周方向の幅を漸次減少または増大させること
が必要になつてくる。この場合、幅が漸次増大す
るチツプポケツトについては問題ないが、幅が漸
次減少するチツプポケツトについては、幅が減少
する側の端部において切屑詰まりが生じるおそれ
がある。 そこで、この発明においては、回転方向におい
て隣接する2つの切刃で、回転方向前方に位置す
る切刃のねじれ角が回転方向後方に位置する切刃
のねじれ角より大きい2つの切刃の間の周方向の
間隔を、回転方向において隣接する2つの切刃
で、回転方向前方に位置する切刃のねじれ角が回
転方向後方に位置する切刃のねじれ角より小さい
2つの切刃の間の間隔よりも、切刃の2つの端縁
のうち回転方向前方に位置する端縁が存する側の
前記工具本体の端部において大きく設定するよう
にしている。すなわち、幅が工具本体の一端側か
ら他端側へ向かうにしたがつて漸次狭くなるチツ
プポケツトにおいては、その一端側の幅を他のチ
ツプポケツトの一端側の幅よりも予め広くしてお
き、これによつて漸次幅狭になるチツプポケツト
が過度に狭くなるのを防止しているのである。 なお、平フライスのように、両端部および中央
部がほぼ同じ頻度をもつて使用されるような転削
工具においては、各チツプポケツトの幅が刃部の
中央部において互いに同幅になるように設定し、
エンドミルのように切刃の使用範囲がその先端か
ら一定の範囲まである転削工具においては、工具
本体の先端から刃長の1/3ないし中央部の範囲に
おいて、各チツプポケツトの幅が同幅になるよう
に設定するのが望ましい。 [実施例] 以下、この発明の一実施例について第1図A,
Bおよび第3図を参照して説明する。 図中、符号11はエンドミル本体であり、この
エンドミル本体11の先端部は刃部12とされて
いる。この刃部12の外周には、ねじれを有する
4つの切刃13a,13b,13c,13dが形
成されている。切刃13a,13b,13c,1
3dの各間には、順次チツプポケツト14a,1
4b,14c,14dが形成されている。また、
エンドミル本体11の先端面には、各切刃13
a,13b,13c,13dから回転中心O側へ
向つて延びる底刃15a,15b,15c,15
dがそれぞれ形成されている。各底刃15a〜1
5dは、軸方向先端視において凹湾曲状に形成さ
れており、これによつてその切削性能の向上を図
つている。 上記4つの切刃13a,13b,13c,13
dのうち回転中心Oを挾んで位置する2つの切刃
13a,13cのねじれ角はθ1とされ、他の2つ
の切刃13b,13dのねじれ角はθ2とされてい
る。そして、これらθ1とθ2とは、θ1<θ2に設定さ
れている。また、4つの切刃13a,13b,1
3c,13dは、第1図Aおよび第2図に示すよ
うに、刃部12の先端においては周方向の間隔が
切刃13aと13bとの間l1および切刃13cと
13dとの間l1で狭く、切刃13bと13cとの
間l2および切刃13dと13aとの間l2で広くな
るように配置されている(l1<l2)。しかも、実際
に使用される刃長が刃部12の長さの2/3程度で
ある点を考慮して、刃部12の先端からその全長
の1/3程度後方に向かつた位置において、各切刃
間の間隔が同じになるように設定されている。 しかして、上記構成のエンドミルにおいては、
2つの切刃13a,13cのねじれ角θ1を小さ
く、他の2つの切刃13b,13dのねじれ角θ2
を大きくしているから、第2図に示すように、切
刃13aと13bとの間および切刃13cと13
dとの間の周方向並びに軸方向の間隔は各切刃に
沿つて先端から後端側へ向かうにしたがつて漸次
広くなり、切刃13bと13cとの間および切刃
13dと13aとの間の周方向並びに軸方向の間
隔は漸次狭くなる。したがつて、各切刃がワーク
を切削することによつて生じる微少な振動の振動
数が、エンドミルの回転に伴つて変化する。この
結果、切刃の切削によつて惹起される振動が互い
に打ち消し合い、仕上げ面の面粗度を悪化させる
ような振動がエンドミル本体11に発生するのを
防止することができる。 ところで、上述のように、この発明において切
刃13a,13cと切刃13b,13dとのねじ
れ角を互いに異なるものとしたのは、それによつ
て各切刃間の間隔を変化させ、これによつてエン
ドミル本体11が振動するのを防止するためであ
り、振動防止効果は切刃間の間隔の変化率が大き
いほど発揮することができる。その変化率を大き
くするためには、ねじれ角θ1とθ2との差を大きく
すればよい。しかしその一方、また、ねじれ角θ1
とθ2とを異なる大きさのものにすると、切刃間の
間隔が変化するのに伴つて、4つのチツプポケツ
ト14a,14b,14c,14dの幅に広狭の
差が生じる。具体的には、チツプポケツト14
a,14cの幅が先端側から後端側へ向かうにし
たがつて漸次広くなり、チツプポケツト14b,
14dの幅が漸次狭くなる。この場合、チツプポ
ケツト14a,14cについては、その幅が漸次
広くなるから問題ないが、チツプポケツト14
b,14dについてはその後端側における幅が過
度に狭くなると、切屑の排出に難が生じる。この
点、上記のエンドミルにおいては、後端側の幅が
狭くなる切刃13b,13cの間および13d,
13aの間の先端における間隔l2を他の切刃間の
間隔l1よりも予め広くしてあるから、それに対応
してチツプポケツト14bおよび14dの先端に
おける幅を他のチツプポケツト14a,14cの
幅よりも広くすることができる。したがつて、切
屑詰まりが発生するのを防止することができる。 なお、θ1とθ2との差については、4枚刃のエン
ドミルにおいてその直径Dが20mm程度で、刃部1
2の長さが3D内であれば、|θ1−θ2|=1゜〜10゜と
するのが望ましい。 次に、この発明の他の実施例を説明する。な
お、以下に示す実施例においては、上記実施例と
異なる点についてのみ説明し、上記実施例と同様
な部分については同一符号を付してその説明を省
略する。 第3図に示すエンドミルは、エンドミル本体1
1の中央部に先端面から後端面まで貫通する貫通
孔16を形成したものである。なお、貫通孔16
を形成している関係上、いずれの底刃13a,1
3b,13c,13dもエンドミル本体11の中
心Oには達しておらず、またいずれも同じ長さに
なつている。 第4図に示すエンドミルは、底刃13a,13
b,13c,13dをそれぞれ直線状に形成した
ものである。なお、底刃を回転方向に向つて膨出
した形状とすることもある。 第5図に示すものは、刃部12の先端部を半球
状に形成したボールエンドミルである。 さらに、第6図に示すものは、平フライスであ
り、このものにおいては、ねじれの弱い切刃17
aとねじれの強い切刃17bとが交互に形成され
ている。 なお、上記の実施例は、全体が高速度鋼あるい
は超硬合金製のソリツドタイプのものであるが、
工具本体に切刃を有する切刃チツプをろう付けし
たろう付けタイプのものであつてもよい。また、
上記の実施例のエンドミルにおいては、4つの切
刃を形成しているが、切刃の数については複数で
あれば4つに限られるものではない。また、4つ
の切刃のうち2つ宛の切刃のねじれ角を同一に
し、しかもねじれ角を交互に大小としているが、
すべての切刃のねじれ角を互いに異なるものとし
てもよく、また互いに異なるねじれ角を有する切
刃をそのねじれ角が小さいものから周方向に順次
形成してもよい。いずれにしても、この発明では
複数の切刃のうちの少なくとも一の切刃のねじれ
角を他のもののねじれ角と異なる大きさに設定す
ればよい。さらに、上記実施例においては、ねじ
れ方向を切刃の軸方向すくい角が正のすくい角と
なるように設定しているが、ねじれ方向を逆にし
てもよい。さらにまた、この発明はエンドミル、
平フライスの他に、側フライス等の転削工具にも
適用することができる。 [実施例] 次に、この発明の効果の1つである振動防止に
ついての確認をするために行つた実験例を紹介す
る。なお、実験例の切削状態は第7図に示すとお
りである。 実験例 使用エンドミル 直径×全長×刃長×刃数 =20×120×60×4 ねじれ角、従来品 40゜(4刃共通) 発明品 38゜(2刃) 41゜(2刃) 切削条件 切削速度 40m/min 送り速度 50,70,90,100および120mm/
mm 切削方式 ダウンカツト(湿式) 軸方向切り込み量L 40mm 径方向切り込み量D 10mm 被削材 SCM440 硬度 HB250 実験結果は次表のとおりである。
[Industrial Application Field] The present invention relates to a milling tool having a plurality of twisted cutting edges formed on its outer periphery. [Prior art] Conventional milling tools of this type include those shown in Fig. 8A,
There is an end mill shown in B. This end mill is
A plurality of cutting edges 2 are formed on the outer periphery of a blade portion 1a at the tip of a rod-shaped end mill body 1, and the cutting edges 2 are twisted to prevent the end mill body 1 from vibrating greatly. It is formed with That is, if the cutting edge 2 is formed straight along the longitudinal direction of the end mill body 1,
The entire cutting portion of the cutting blade 2 in the axial direction bites into the workpiece at the same time and separates from the workpiece at the same time. When the cutting blade 2 bites into the workpiece, the cutting load acts impulsively on the end mill body 1, while
When the cutting blade 2 separates from the workpiece, the cutting load acting on the end mill body 1 rapidly decreases. Due to this sudden change in cutting load, the end mill body 1
is made to vibrate. In this regard, in the end mill described above, since the cutting blade 2 is formed with a twist, the cutting blade 2 gradually bites into the workpiece and gradually separates from the workpiece. Therefore, the cutting load does not change suddenly, and the end mill main body 1 can be prevented from vibrating. [Problems to be solved by the invention] However, in the above end mill,
Although relatively large vibrations due to rapid changes in cutting load could be prevented, relatively small vibrations did occur. This results in poor surface finish and
In particular, it could not be said to be fully satisfactory in cases where high surface roughness is required, or in cases where heavy cutting (deep cutting) or high feed rate cutting is required. [Searching for the cause of the problem] Therefore, the inventor of this application investigated the cause of relatively small vibrations, and came to the conclusion that the cause lies in the following points. That is, in the conventional end mill described above,
Since the helix angles of each cutting edge 2 are equal to each other and each cutting edge 2 is formed at equal intervals in the circumferential direction, as shown in FIG. The distance between adjacent cutting edges 2 in the axial direction and the circumferential direction is constant in any part. When a cutting load acts on each cutting blade 2 having a constant interval, the vibration of the end mill body 1 caused by the cutting load also always has a substantially constant frequency, and these vibrations resonate with each other. As a result, it was estimated that relatively small vibrations would be generated in the end mill body 1, but to the extent that they would have an adverse effect on the surface roughness. [Object of the Invention] This invention was made based on the above estimation, and can prevent relatively small vibrations from occurring in the tool body, thereby improving the finished surface and improving heavy cutting. An object of the present invention is to provide a milling tool that enables deep cutting and high-feed cutting, and prevents chip clogging. [Means and effects for solving the problem] In order to achieve the above object, the present invention makes the helix angle of at least one of the plurality of cutting edges different from the helix angle of the other cutting edges. In addition to setting the angle, the circumference between two cutting edges that are adjacent in the rotational direction and the helix angle of the cutting edge located at the front in the rotational direction is larger than the helix angle of the cutting edge located at the rear in the rotational direction. The distance in the direction is less than the distance between two cutting edges that are adjacent in the rotational direction, and the helix angle of the cutting edge located at the front in the rotational direction is smaller than the helix angle of the cutting edge located at the rear in the rotational direction. is also set larger at the end of the tool body where the edge located forward in the rotational direction of the two edges of the cutting blade exists. When the helix angle of at least one cutting edge is set to a different angle from the helix angle of the other cutting edges, the circumferential and axial spacing between the cutting edge set to the different helix angle and the adjacent cutting edge changes continuously from the tip of the cutting edge toward the rear end. As a result, the frequency of vibrations generated in the end mill body changes as the end mill rotates, and these vibrations cancel each other out. Therefore,
It is possible to prevent vibrations from occurring in the end mill body that would deteriorate the finished surface. By the way, when the helix angles of the cutting blades are set to be different from each other, the circumferential distance between the two cutting blades gradually decreases or increases from one end of the cutting blade to the other as described above. do. Correspondingly, it becomes necessary to gradually decrease or increase the circumferential width of the tip pocket to be formed between the two cutting edges. In this case, there is no problem with a tip pocket whose width gradually increases, but with a tip pocket whose width gradually decreases, there is a risk that chips will become clogged at the end on the side where the width decreases. Therefore, in this invention, between two cutting edges that are adjacent in the rotational direction, the helix angle of the cutting edge located at the front in the rotational direction is larger than the helix angle of the cutting edge located at the rear in the rotational direction. The distance in the circumferential direction is defined as the distance between two cutting edges that are adjacent in the rotational direction, where the helix angle of the cutting edge located at the front in the rotational direction is smaller than the helix angle of the cutting edge located at the rear in the rotational direction. It is set larger at the end of the tool body on the side where the edge located forward in the rotational direction of the two edges of the cutting blade exists. In other words, in the case of a tip pocket whose width gradually narrows from one end of the tool body to the other, the width at one end is made wider in advance than the width at one end of the other tip pocket. This prevents the chip pocket, which gradually becomes narrower, from becoming too narrow. In addition, for milling tools such as flat milling cutters where both ends and the center are used with almost the same frequency, the width of each tip pocket should be set to be the same width at the center of the blade. death,
In milling tools such as end mills, where the cutting edge can be used within a certain range from the tip, the width of each chip pocket is the same from the tip of the tool body to 1/3 of the blade length or the center. It is desirable to set it so that [Example] Hereinafter, an example of the present invention will be described with reference to FIGS.
This will be explained with reference to FIG. In the figure, reference numeral 11 is an end mill main body, and the tip of this end mill main body 11 is a blade portion 12. Four twisted cutting edges 13a, 13b, 13c, and 13d are formed on the outer periphery of this blade portion 12. Cutting blades 13a, 13b, 13c, 1
There are chip pockets 14a, 1 in sequence between each of the 3d
4b, 14c, and 14d are formed. Also,
Each cutting blade 13 is provided on the tip surface of the end mill body 11.
Bottom blades 15a, 15b, 15c, 15 extending from a, 13b, 13c, 13d toward the rotation center O side
d are formed respectively. Each bottom blade 15a-1
5d is formed in a concavely curved shape when viewed from the axial end, thereby improving its cutting performance. The above four cutting edges 13a, 13b, 13c, 13
The helix angle of the two cutting blades 13a and 13c located between the center of rotation O in d is θ 1 , and the helix angle of the other two cutting blades 13b and 13d is θ 2 . These θ 1 and θ 2 are set to satisfy θ 12 . In addition, four cutting edges 13a, 13b, 1
3c and 13d, as shown in FIG. 1A and FIG. 2, at the tip of the blade portion 12, the circumferential spacing is l 1 between the cutting blades 13a and 13b and l 1 between the cutting blades 13c and 13d. 1 and wide at l 2 between the cutting blades 13b and 13c and l 2 between the cutting blades 13d and 13a (l 1 <l 2 ). Moreover, considering that the length of the blade actually used is about 2/3 of the length of the blade part 12, at a position facing backward from the tip of the blade part 12 by about 1/3 of its total length, The spacing between each cutting edge is set to be the same. However, in the end mill with the above configuration,
The helix angle θ 1 of the two cutting edges 13a and 13c is reduced, and the helix angle θ 2 of the other two cutting edges 13b and 13d is reduced.
As shown in FIG.
The circumferential and axial intervals between the cutting edges 13b and 13c gradually widen from the tip to the rear end along each cutting edge, and between the cutting edges 13b and 13c and between the cutting edges 13d and 13a. The circumferential and axial spacing between them gradually narrows. Therefore, the frequency of minute vibrations generated by each cutting blade cutting the work changes as the end mill rotates. As a result, the vibrations caused by the cutting of the cutting blade cancel each other out, and it is possible to prevent vibrations from occurring in the end mill body 11 that would deteriorate the surface roughness of the finished surface. By the way, as mentioned above, the reason why the helix angles of the cutting blades 13a, 13c and the cutting blades 13b, 13d are made different from each other in this invention is that the interval between each cutting blade is changed thereby. This is to prevent the end mill main body 11 from vibrating, and the greater the rate of change in the interval between the cutting blades, the greater the vibration prevention effect. In order to increase the rate of change, the difference between the twist angles θ 1 and θ 2 may be increased. But on the other hand, also the torsion angle θ 1
When and θ 2 are made to have different sizes, the widths of the four tip pockets 14a, 14b, 14c, and 14d vary as the distance between the cutting edges changes. Specifically, chip pocket 14
The widths of the tip pockets 14b, 14c gradually become wider from the tip side to the rear end side.
The width of 14d becomes gradually narrower. In this case, there is no problem with the chip pockets 14a and 14c because their widths gradually increase, but the chip pocket 14
For b and 14d, if the width at the rear end side becomes too narrow, it will be difficult to discharge chips. In this respect, in the above end mill, between the cutting blades 13b and 13c where the width is narrower on the rear end side, and between the cutting blades 13d and 13d,
Since the spacing l 2 at the tips between the cutting edges 13a is made wider than the spacing l 1 between the other cutting edges, the widths at the tips of the tip pockets 14b and 14d are correspondingly made wider than the widths of the other tip pockets 14a and 14c. can also be made wider. Therefore, it is possible to prevent chip clogging from occurring. Regarding the difference between θ 1 and θ 2 , in a 4-flute end mill, the diameter D is about 20 mm, and the blade part 1
If the length of 2 is within 3D, it is desirable that |θ 1 −θ 2 |=1° to 10°. Next, another embodiment of the invention will be described. In the embodiment shown below, only the points different from the above embodiment will be explained, and the same parts as in the above embodiment will be given the same reference numerals and the explanation thereof will be omitted. The end mill shown in Fig. 3 has an end mill main body 1
A through hole 16 is formed in the center of the body 1, passing through from the front end surface to the rear end surface. Note that the through hole 16
Due to the relationship between the two bottom blades 13a and 1
3b, 13c, and 13d also do not reach the center O of the end mill body 11, and all have the same length. The end mill shown in FIG. 4 has bottom blades 13a, 13
b, 13c, and 13d are each formed into a straight line. Note that the bottom blade may have a shape that bulges in the direction of rotation. What is shown in FIG. 5 is a ball end mill in which the tip of the blade portion 12 is formed into a hemispherical shape. Furthermore, the one shown in FIG. 6 is a flat milling cutter, in which the cutting edge 17 has a weak twist.
A and strongly twisted cutting edges 17b are formed alternately. The above embodiment is a solid type made entirely of high-speed steel or cemented carbide.
The tool may be of a brazing type in which a cutting tip having a cutting edge is brazed to the tool body. Also,
In the end mill of the above embodiment, four cutting blades are formed, but the number of cutting blades is not limited to four as long as it is plural. In addition, the helix angles of two of the four cutting edges are the same, and the helix angles are alternately large and small.
The helix angles of all the cutting edges may be different from each other, or the cutting edges having different helix angles may be sequentially formed in the circumferential direction from the smallest helix angle. In any case, in the present invention, the helix angle of at least one of the plurality of cutting edges may be set to be different from the helix angle of the other cutting edges. Further, in the above embodiment, the twisting direction is set so that the axial rake angle of the cutting blade is a positive rake angle, but the twisting direction may be reversed. Furthermore, this invention also provides an end mill,
In addition to flat milling cutters, it can also be applied to milling tools such as side milling cutters. [Example] Next, an example of an experiment conducted to confirm vibration prevention, which is one of the effects of the present invention, will be introduced. Note that the cutting state of the experimental example is as shown in FIG. Experimental example End mill used Diameter x total length x blade length x number of teeth = 20 x 120 x 60 x 4 Helix angle, conventional product 40° (4 blades common) Invented product 38° (2 blades) 41° (2 blades) Cutting conditions Cutting Speed 40m/min Feed rate 50, 70, 90, 100 and 120mm/
mm Cutting method Down cut (wet) Axial depth of cut L 40mm Radial depth of cut D 10mm Work material SCM440 Hardness HB250 The experimental results are shown in the table below.

【表】 上表から明らかなように、従来品ではいずれの
切削条件でも振動が発生し、特に送り速度が100
mm/min以上になると振動が大きくなり過ぎた結
果実験を中止せざるを得なかつたのに対し、発明
品ではいずれの切削条件でも、振動が発生するこ
となく、スムースに切削を行うことができた。な
お、発明品は所要動力も従来品に比して小さくて
済むが、これは、従来品が振動して径方向切り込
み量が大小変化し、切り込み量が大きくなつたと
きに所要動力が増大するのに対し、発明品ではそ
のような切り込み量の変化がなく、その分だけ所
要動力が少なくて済むものと思われる。 [発明の効果] 以上説明したように、この発明の転削工具によ
れば、複数の切刃のうちの少なくとも1つの切刃
のねじれ角を他の切刃のねじれ角と異なる角度に
設定している。するとともに、回転方向において
隣接する2つの切刃で、回転方向前方に位置する
切刃のねじれ角が回転方向後方に位置する切刃の
ねじれ角より大きい2つの切刃の間の周方向の間
隔を、回転方向において隣接する2つの切刃で、
回転方向前方に位置する切刃のねじれ角が回転方
向後方に位置する切刃のねじれ角より小さい2つ
の切刃の間の間隔よりも、切刃の2つの端縁のう
ち回転方向前方に位置する端縁が存する前記工具
本体の端部において大きく設定しているから、異
なるねじれ角を有する切刃とこれに隣接する切刃
との間の周方向および軸線方向の間隔が切刃の一
端から他端側へ向かうにしたがつて連続的に変化
し、この結果工具本体に発生する振動の振動数が
工具の回転に伴つて変化し、それらの振動が互い
に打ち消し合う。したがつて、工具本体に仕上げ
面を悪化させるような振動が発生するのを防止す
ることができ、特に重切削(深切り込み)におい
て低送りから高送りまで顕著な効果が得られる。
また所要動力を軽減することができ、さらに切屑
詰まりが発生するのを防止することができる等の
効果が得られる。また、切刃の周方向の間隔が工
具本体の端部から刃長の1/3ないし中央部の範囲
で等しく設定したので、工具本体後端で切屑詰ま
りを起こすことなく切屑を良好に排出することが
できるという利点を持つている。
[Table] As is clear from the table above, vibration occurs with the conventional product under all cutting conditions, especially when the feed rate is 100
When the vibration exceeded mm/min, the vibration became too large and the experiment had to be stopped.However, with the invented product, cutting can be carried out smoothly without vibration under any cutting conditions. Ta. The invented product also requires less power than the conventional product, but this is because the conventional product vibrates and the radial depth of cut changes in size, and when the depth of cut increases, the required power increases. On the other hand, with the invented product, there is no such change in the depth of cut, and the required power is thought to be reduced accordingly. [Effects of the Invention] As explained above, according to the milling tool of the present invention, the helix angle of at least one of the plurality of cutting edges is set to a different angle from the helix angle of the other cutting edges. ing. At the same time, the circumferential distance between two cutting edges that are adjacent in the rotational direction, and the helix angle of the cutting edge located at the front in the rotational direction is larger than the helix angle of the cutting blade located at the rear in the rotational direction. , with two cutting edges adjacent in the rotation direction,
The helix angle of the cutting blade located at the front in the rotational direction is smaller than the helix angle of the cutting blade located at the rear in the rotational direction.The cutting edge is located at the front of the two edges of the cutting blade in the rotational direction than the distance between the two cutting blades. Since the gap is set larger at the end of the tool body where the edge exists, the circumferential and axial distances between cutting edges with different helix angles and adjacent cutting edges are larger from one end of the cutting edge. The vibration frequency changes continuously toward the other end, and as a result, the frequency of vibrations generated in the tool body changes as the tool rotates, and these vibrations cancel each other out. Therefore, it is possible to prevent vibrations that would deteriorate the finished surface from occurring in the tool body, and a remarkable effect can be obtained particularly in heavy cutting (deep cutting) from low feed to high feed.
In addition, the required power can be reduced, and the occurrence of chip clogging can be prevented. In addition, since the circumferential spacing of the cutting blades is set equally from the end of the tool body to 1/3 of the blade length to the center, chips can be efficiently discharged without causing chip clogging at the rear end of the tool body. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bはこの発明の一実施例を示し、A
図はその側面図、B図はA図のX矢視図、第2図
は第1図に示すエンドミルの刃部の展開図、第3
図〜第6図はそれぞれこの発明の他の実施例を示
し、A図はその側面図、B図はA図のX矢視図、
第7図はこの発明の効果を確認するために行つた
実験の切削状況を示す図、第8図は従来のエンド
ミルの一例を示し、A図はその側面図、B図はA
図のX矢視図、第9図は第8図に示すエンドミル
における刃部の展開図である。 11……エンドミル本体、13a,13b,1
3c,13d……切刃。
FIGS. 1A and 1B show an embodiment of the present invention;
The figure is a side view, the B figure is a view taken in the direction of the X arrow in figure A, the second figure is a developed view of the blade of the end mill shown in figure 1, and the third figure is a side view of the end mill.
Figures to Figures 6 each show other embodiments of the present invention, where Figure A is a side view thereof, Figure B is a view in the direction of the X arrow of Figure A,
Fig. 7 is a diagram showing cutting conditions in an experiment conducted to confirm the effects of the present invention, Fig. 8 shows an example of a conventional end mill, Fig. A is its side view, and Fig. B is A.
9 is a developed view of the blade portion of the end mill shown in FIG. 8. 11... End mill body, 13a, 13b, 1
3c, 13d...cutting blade.

Claims (1)

【特許請求の範囲】[Claims] 1 工具本体の外周にねじれを有する複数の切刃
が形成されてなる転削工具において、前記複数の
切刃のうちの少なくとも1つの切刃のねじれ角を
他の切刃のねじれ角と異なる角度に設定するとと
もに、回転方向において隣接する2つの切刃で、
回転方向前方に位置する切刃のねじれ角が回転方
向後方に位置する切刃のねじれ角より大きい2つ
の切刃の間の周方向の間隔を、回転方向において
隣接する2つの切刃で、回転方向前方に位置する
切刃のねじれ角が回転方向後方に位置する切刃の
ねじれ角より小さい2つの切刃の間の間隔より
も、切刃の2つの端縁のうち回転方向前方に位置
する端縁が存する側の前記工具本体の端部におい
て大きく設定し、かつ前記切刃の周方向の間隔が
工具本体の前記端部から刃長の1/3ないし中央部
の範囲で等しいことを特徴とする転削工具。
1. In a milling tool in which a plurality of twisted cutting blades are formed on the outer periphery of a tool body, the helix angle of at least one of the plurality of cutting blades is set at a different angle from the helix angle of the other cutting blades. , and two cutting edges adjacent in the rotation direction,
The circumferential spacing between two cutting blades in which the helix angle of the cutting blade located at the front in the rotational direction is larger than the helix angle of the cutting blade located at the rear in the rotational direction is determined by rotating two cutting blades that are adjacent in the rotational direction. The helix angle of the cutting blade located at the front in the direction of rotation is smaller than the helix angle of the cutting blade located at the rear in the direction of rotation.The cutting edge is located at the front of the two edges of the cutting blade in the direction of rotation than the distance between the two cutting blades. The cutting edge is set large at the end of the tool body on the side where the edge exists, and the spacing in the circumferential direction of the cutting blade is equal in the range from 1/3 of the blade length to the center of the tool body from the end. A milling tool.
JP61043459A 1986-02-28 1986-02-28 Rotary cutting tool Granted JPS62203711A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61043459A JPS62203711A (en) 1986-02-28 1986-02-28 Rotary cutting tool
DE19873706282 DE3706282A1 (en) 1986-02-28 1987-02-26 CIRCULAR CUTTING TOOL
KR1019870001730A KR930001459B1 (en) 1986-02-28 1987-02-27 Rotary cutting tool
US07/317,067 US4963059A (en) 1986-02-28 1989-02-24 Rotary cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043459A JPS62203711A (en) 1986-02-28 1986-02-28 Rotary cutting tool

Publications (2)

Publication Number Publication Date
JPS62203711A JPS62203711A (en) 1987-09-08
JPS6362323B2 true JPS6362323B2 (en) 1988-12-02

Family

ID=12664289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043459A Granted JPS62203711A (en) 1986-02-28 1986-02-28 Rotary cutting tool

Country Status (1)

Country Link
JP (1) JPS62203711A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212341A (en) * 1989-12-29 1991-09-17 Fuji Seal Kogyo Kk Complex sheet with ruled lines for folding
US7934890B2 (en) 2008-03-13 2011-05-03 Mitsubishi Materials Corporation End mill
JP2012206197A (en) * 2011-03-29 2012-10-25 Mitsubishi Materials Corp End mill with chip breaker
EP2586552A1 (en) 2011-10-26 2013-05-01 Mitsubishi Materials Corporation End mill

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0634892Y2 (en) * 1986-11-25 1994-09-14 三菱マテリアル株式会社 End mill
JPH01135408A (en) * 1987-11-20 1989-05-29 Mitsubishi Metal Corp End mill made of cermet
US7306408B2 (en) * 2006-01-04 2007-12-11 Sgs Tool Company Rotary cutting tool
US7284935B2 (en) * 2006-02-27 2007-10-23 Ultra-Tool International Incorporated Rotary cutting tool
JP2007268648A (en) * 2006-03-31 2007-10-18 Mitsubishi Materials Kobe Tools Corp End mill
IL177336A (en) * 2006-08-07 2013-05-30 Hanita Metal Works Ltd Chatter-resistant end mill
EP1894655B1 (en) * 2006-08-28 2012-03-21 Fraisa Holding AG Milling tool for chip removing machining of workpieces
JP4996694B2 (en) * 2007-10-29 2012-08-08 オーエスジー株式会社 Thread milling
JP5381125B2 (en) * 2009-01-27 2014-01-08 三菱マテリアル株式会社 End mill
JP5352901B2 (en) * 2009-07-14 2013-11-27 住友電工ハードメタル株式会社 Anti-vibration end mill
JP2011173210A (en) * 2010-02-24 2011-09-08 Mitsubishi Materials Corp Radius endmill
JP6060027B2 (en) * 2012-05-01 2017-01-11 株式会社神戸製鋼所 Cutting tool and design method thereof
DE102013206249A1 (en) * 2013-04-09 2014-10-23 MAPAL Fabrik für Präzisionswerkzeuge Dr. Kress KG milling tool
JP6204203B2 (en) * 2014-01-16 2017-09-27 有限会社栄進機工 Unequal lead end mill
US10040136B2 (en) * 2015-10-12 2018-08-07 Iscar, Ltd. End mill having teeth and associated flutes with correlated physical parameters
US11865629B2 (en) 2021-11-04 2024-01-09 Kennametal Inc. Rotary cutting tool with high ramp angle capability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03212341A (en) * 1989-12-29 1991-09-17 Fuji Seal Kogyo Kk Complex sheet with ruled lines for folding
US7934890B2 (en) 2008-03-13 2011-05-03 Mitsubishi Materials Corporation End mill
JP2012206197A (en) * 2011-03-29 2012-10-25 Mitsubishi Materials Corp End mill with chip breaker
EP2586552A1 (en) 2011-10-26 2013-05-01 Mitsubishi Materials Corporation End mill
US8827601B2 (en) 2011-10-26 2014-09-09 Mitsubishi Materials Corporation End mill

Also Published As

Publication number Publication date
JPS62203711A (en) 1987-09-08

Similar Documents

Publication Publication Date Title
JPS6362323B2 (en)
JP5266813B2 (en) End mill
KR930001459B1 (en) Rotary cutting tool
JP6412022B2 (en) End mill and method of manufacturing cut product
JP6473761B2 (en) End mill and method of manufacturing cut product
JP2601803B2 (en) Router end mill
JPH02256412A (en) End mill
JPH0453850Y2 (en)
JP3270999B2 (en) Indexable end mill
JP2004276142A (en) End mill
JPH0549408B2 (en)
JP3249601B2 (en) Rotary cutting tool with corrugated blade on cylindrical surface
JPS6352911A (en) Throw-away type roll cutting tool
CN113399727A (en) Finish machining cutter for face milling
JPH08112710A (en) End mill
JPS6389214A (en) End mill
JPS637457Y2 (en)
JP5895654B2 (en) End mill
JPH0666910U (en) End mill
JPS6393511A (en) Throwaway type rotary cutting tool
JPS59161208A (en) Rolling cutter
JP3342522B2 (en) End mill
JPH02292109A (en) End mill
JP3275695B2 (en) Indexable milling tools
WO2023054574A1 (en) Rotary tool, and method for manufacturing cut workpiece

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term