JPS6362043B2 - - Google Patents

Info

Publication number
JPS6362043B2
JPS6362043B2 JP9953479A JP9953479A JPS6362043B2 JP S6362043 B2 JPS6362043 B2 JP S6362043B2 JP 9953479 A JP9953479 A JP 9953479A JP 9953479 A JP9953479 A JP 9953479A JP S6362043 B2 JPS6362043 B2 JP S6362043B2
Authority
JP
Japan
Prior art keywords
powder
cable
conductive
particle size
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9953479A
Other languages
Japanese (ja)
Other versions
JPS5624710A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9953479A priority Critical patent/JPS5624710A/en
Publication of JPS5624710A publication Critical patent/JPS5624710A/en
Publication of JPS6362043B2 publication Critical patent/JPS6362043B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はケーブルの鉛或はアルミニウム等の金
属シースの上に施したポリエチレン、ポリ塩化ビ
ニル等の防食層の周面に導電性被膜を有する電気
ケーブルの製造方法の改良に関するものである。 このようなケーブル防食層は一般に絶縁性を有
しており、金属シースを単に機械的に保護するだ
けでなく、電気的或は化学的腐食から防護する役
目も果している。しかしこの防食層に何等かの原
因で欠陥を生じた場合、そこから侵入した水によ
つて金属シースが腐食し、さらに反応が進めば金
属シース内へも浸水してケーブルの絶縁性能を低
下させるおそれがある。従つてケーブル使用開始
後は適時防食層の健全性を検査することが望まれ
る。 この健全性の検査を容易にするための一つの手
段として、絶縁性を有する防食層の外周面に導電
性被膜を設けたケーブルが採用されている。 この導電性被膜があれば金属シースと導電性被
膜即ち接地間に課電することにより容易にケーブ
ル全長の防食層の検査ができる。 防食層外周面に導電性被膜を形成する従来の代
表的な方法は、カーボン粉末とポリ塩化ビニル粉
末を混合した導電性粉末をメチルエチルケトン等
の溶剤に溶かして導電性塗料とし、これを塗料槽
に入れ、該塗料槽中に防食ケーブルを通過させて
防食層の外周面に上記導電性塗料を付着せしめ、
空気中で溶剤を蒸発させることにより導電性被膜
を形成していた。 しかし、このような方法では、被膜の導電性が
不均一であるとか、被膜が剥離するとか、或は防
食層自体に亀裂を生ずる等のおそれがあり、又ポ
リエチレン防食層には応用できない等の問題があ
つた。さらに気化した溶剤が臭気を有するとか、
溶剤自体が危険物である等ケーブルの製造現場の
作業環境の管理も重要な問題であつた。 このような問題点を解決する方法として溶剤を
使用しない被膜形成方法が既に提案されている。
即ち導電性粉末とプラスチツク粉末をバンバリミ
キサ等により混練した等、冷凍粉砕した複合粉体
中に防食ケーブルを通過させて表面に導電性被膜
を形成している。しかし、このような方法により
得られた導電性複合粉末は導電性粉末の周囲にプ
ラスチツク粉末がコーテイングされた状態となつ
ているため被膜の電気抵抗のバラツキが大きく、
又油によつて剥離する等の欠点がある。 本発明は上記溶剤を用いないで形成した導電性
被膜の欠点を解消した導電性被膜を有する防食ケ
ーブルのケーブル防食層周面に導電性被膜を形成
する方法を提供するもので、以下図面に示す実施
例について本発明を詳細に説明する。 図面は本発明に係る電気ケーブルの一実施例の
横断面図で、1はケーブル心、2は鉛、アルミニ
ウム等の金属シース、3はポリエチレン、塩化ビ
ニル等の防食層、4は上記防食層3の外周面に施
された導電性被膜である。この導電性被膜4は樹
脂粉末の周囲に導電性粉末をコーテイングした複
合粉末をケーブル防食層3の外周面に塗布した後
加熱して樹脂粉末を溶融させ一体化させたもので
ある。樹脂粉末としては、防食層への接着性にす
ぐれる材料であり、かつ接着後、OFケーブル等
の絶縁油と接触しても容易に剥離しない樹脂であ
る。ポリエチレン、エチレン・酢酸ビニル共重合
体、ポリスチレン、ポリビニルブチラール、ポリ
塩化ビニル及びポリビニルアセタールの中から選
ばれた一種又はそれ以上が用いられ、その平均粒
径は10〜300μmである。平均粒径が10μm以下の
場合には製造が困難で、コストも大きくなつて実
用的ではなく、300μm以上では塗装性が劣るので
平均粒径10〜300μmとした。導電性粉末としては
カーボン、黒鉛、金属粉末が用いられ、その平均
粒径は1〜150μmである。平均粒径が1μm以下の
場合は電気抵抗が大きく、コストも高くなり、
150μm以上の場合は塗装性が劣るので、平均粒径
は1〜150μmとした。複合粉末としての樹脂粉末
と導電性粉末の割合は重量%にして樹脂粉末が30
〜95、導電性粉末5〜70が望ましい。樹脂粉末が
30重量%以下では接着性が劣り、95重量%以上で
は電気抵抗が大きく、又導電性粉末が5重量%以
下では電気抵抗が大きく、70重量%以上では接着
性が劣るためである。なお、好ましくは樹脂粉末
60〜80重量%、導電性粉末40〜20重量%が電気抵
抗、接着性の両面よりみてよい。 樹脂粉末の周辺に導電性粉末をコーテイングす
るには各種方式があるが、たとえば容器内に樹脂
と黒鉛を入れて流動させたところへ熱風を送付す
る方法、又は容器を加熱して雰囲気を熱し樹脂表
面を溶融させて黒鉛の粉末を付着させる方法があ
る。 なお、本発明による複合粉末、従来法による複
合粉末及び溶剤タイプの導電性塗料を防食層表面
に適用する場合の比較表を下表に示す。
The present invention relates to an improvement in a method for manufacturing an electric cable having a conductive coating on the circumferential surface of an anti-corrosion layer made of polyethylene, polyvinyl chloride, etc. applied on a metal sheath made of lead, aluminum, etc. of the cable. Such a cable corrosion protection layer is generally insulative and serves not only to mechanically protect the metal sheath, but also to protect it from electrical or chemical corrosion. However, if a defect occurs in this anti-corrosion layer for some reason, the metal sheath will corrode due to water entering through it, and if the reaction progresses further, water will also seep into the metal sheath, reducing the insulation performance of the cable. There is a risk. Therefore, it is desirable to inspect the integrity of the corrosion protection layer from time to time after the cable is put into use. As one means for facilitating this health inspection, a cable is used in which a conductive coating is provided on the outer peripheral surface of an insulating anti-corrosion layer. With this conductive coating, the corrosion protection layer over the entire length of the cable can be easily inspected by applying a current between the metal sheath and the conductive coating, ie, ground. The typical conventional method for forming a conductive film on the outer circumferential surface of the anticorrosion layer is to dissolve conductive powder, which is a mixture of carbon powder and polyvinyl chloride powder, in a solvent such as methyl ethyl ketone to make a conductive paint, and then pour this into a paint tank. and passing the anti-corrosion cable through the paint bath to adhere the conductive paint to the outer peripheral surface of the anti-corrosion layer,
A conductive film was formed by evaporating the solvent in air. However, with this method, there is a risk that the conductivity of the coating may be uneven, the coating may peel off, or cracks may occur in the anticorrosive layer itself, and it cannot be applied to polyethylene anticorrosive layers. There was a problem. Furthermore, the vaporized solvent may have an odor.
Management of the working environment at the cable manufacturing site was also an important issue, as the solvent itself was dangerous. As a method for solving these problems, a film forming method that does not use a solvent has already been proposed.
That is, an anti-corrosion cable is passed through a frozen and pulverized composite powder, such as conductive powder and plastic powder kneaded in a Banbury mixer or the like, to form a conductive film on the surface. However, since the conductive composite powder obtained by this method is coated with plastic powder around the conductive powder, the electrical resistance of the coating varies greatly.
It also has the disadvantage of peeling off due to oil. The present invention provides a method for forming a conductive coating on the circumferential surface of a cable anti-corrosion layer of a corrosion-proof cable having a conductive coating that eliminates the drawbacks of the conductive coating formed without using a solvent, as shown in the drawings below. The invention will be explained in detail with reference to examples. The drawing is a cross-sectional view of an embodiment of an electric cable according to the present invention, in which 1 is a cable core, 2 is a metal sheath made of lead, aluminum, etc., 3 is a corrosion protection layer made of polyethylene, vinyl chloride, etc., and 4 is the above-mentioned corrosion protection layer 3. It is a conductive coating applied to the outer peripheral surface of the This conductive coating 4 is made by applying a composite powder in which conductive powder is coated around resin powder to the outer peripheral surface of the cable anticorrosion layer 3, and then heating it to melt and integrate the resin powder. The resin powder is a material that has excellent adhesion to the anticorrosion layer, and is a resin that does not easily peel off even if it comes into contact with insulating oil of an OF cable or the like after adhesion. One or more selected from polyethylene, ethylene/vinyl acetate copolymer, polystyrene, polyvinyl butyral, polyvinyl chloride, and polyvinyl acetal is used, and the average particle size thereof is 10 to 300 μm. If the average particle size is 10 μm or less, it is difficult to manufacture and increases the cost, making it impractical. If it is 300 μm or more, the paintability is poor, so the average particle size is set to 10 to 300 μm. Carbon, graphite, or metal powder is used as the conductive powder, and its average particle size is 1 to 150 μm. If the average particle size is less than 1μm, the electrical resistance will be high and the cost will be high.
If the particle size is 150 μm or more, the paintability is poor, so the average particle size was set to 1 to 150 μm. The ratio of resin powder and conductive powder as a composite powder is 30% by weight.
-95, conductive powder 5-70 is desirable. resin powder
This is because if the amount of the conductive powder is less than 30% by weight, the adhesiveness will be poor, if it is more than 95% by weight, the electrical resistance will be large, if the amount of the conductive powder is less than 5% by weight, the electrical resistance will be large, and if it is more than 70% by weight, the adhesiveness will be poor. Note that preferably resin powder
60 to 80% by weight and 40 to 20% by weight of conductive powder are good from both electrical resistance and adhesive properties. There are various methods for coating conductive powder around resin powder. For example, there is a method in which hot air is sent to a place where resin and graphite are placed in a container and flowed, or a method in which the container is heated to heat the atmosphere and resin is coated. There is a method of melting the surface and attaching graphite powder. The table below shows a comparison table when the composite powder according to the present invention, the composite powder according to the conventional method, and the solvent-type conductive paint are applied to the surface of the anticorrosion layer.

【表】 上記の表より明らかなように本発明による複合
粉末をケーブル防食層に適用した場合、従来のも
のに比してすべての面ですぐれていることがわか
る。
[Table] As is clear from the table above, when the composite powder according to the present invention is applied to a cable anti-corrosion layer, it is superior in all aspects to the conventional powder.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る電気ケーブルの実施例の横
断面図である。 1ケーブル心、2ケーブルの金属シース、3防
食層、4導電性被膜。
The drawing is a cross-sectional view of an embodiment of an electrical cable according to the invention. 1 cable core, 2 cable metal sheath, 3 anti-corrosion layer, 4 conductive coating.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒径が10〜300μmのポリエチレン、エチ
レン・酢酸ビニル共重合体、ポリスチレン、ポリ
ビニルブチラール、ポリ塩化ビニル及びポリビニ
ルアセタールより選ばれた一種又はそれ以上の樹
脂粉末の周囲に、平均粒径が1〜150μmの導電性
粉末をコーテイングした複合粉末をケーブルのプ
ラスチツク防食層の周面に塗布溶融して一体化す
ることを特徴とするケーブル防食層周面に導電性
被膜を形成する方法。
1. Around one or more resin powders selected from polyethylene, ethylene/vinyl acetate copolymer, polystyrene, polyvinyl butyral, polyvinyl chloride, and polyvinyl acetal with an average particle size of 10 to 300 μm, a powder with an average particle size of 1 A method for forming a conductive coating on the circumferential surface of a cable anti-corrosion layer, which comprises applying a composite powder coated with conductive powder of ~150 μm to the circumferential surface of a plastic anti-corrosion layer of a cable and melting and integrating it.
JP9953479A 1979-08-04 1979-08-04 Electric cable having conductive coating on peripheral surface of cable corrosion preventive layer Granted JPS5624710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9953479A JPS5624710A (en) 1979-08-04 1979-08-04 Electric cable having conductive coating on peripheral surface of cable corrosion preventive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9953479A JPS5624710A (en) 1979-08-04 1979-08-04 Electric cable having conductive coating on peripheral surface of cable corrosion preventive layer

Publications (2)

Publication Number Publication Date
JPS5624710A JPS5624710A (en) 1981-03-09
JPS6362043B2 true JPS6362043B2 (en) 1988-12-01

Family

ID=14249868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9953479A Granted JPS5624710A (en) 1979-08-04 1979-08-04 Electric cable having conductive coating on peripheral surface of cable corrosion preventive layer

Country Status (1)

Country Link
JP (1) JPS5624710A (en)

Also Published As

Publication number Publication date
JPS5624710A (en) 1981-03-09

Similar Documents

Publication Publication Date Title
US3260661A (en) Sacrificial metal pipe coverings
DE2041785C3 (en) Thermoplastic mixed polymer for coating metals
US3344228A (en) Thermal barriers for electric cables
US3100136A (en) Method of making polyethylene-insulated power cables
KR100483658B1 (en) Anti-corrosion coating and tape for electronic cable
JPS6362043B2 (en)
CN102983419A (en) Grounding device and grounding method
JP3119265B2 (en) Tubular heating element
JPS6316093Y2 (en)
CN220171823U (en) Corrosion-resistant semiconductive belt for cable
DE2839085A1 (en) Corrosion protection sheath for underground heat transport steel pipe - comprises zinc-coated impermeable polymer film resistant to heat and hydrolysis
CN105474761A (en) Compound to form electrical tracks into
CN217677362U (en) Double-layer Teflon heat-shrinkable tube
US3607515A (en) Asbestos pipeline felt
JPS6024585Y2 (en) heat shrinkable tube
CN1563495A (en) Metal piece for cladding anode layer
JPH0137978B2 (en)
JPS58107333A (en) Manufacture of polyolefin coated steel pipe
CN206322536U (en) A kind of magnetic thermal contraction casing tube
JPS6228012Y2 (en)
JPS59203313A (en) Method of forming conductive layer on plastic corrosion preventive layer of electric cable
JPS6128334Y2 (en)
JPS6136325B2 (en)
JPS58143869A (en) Corrosion prevention of heat-retaining piping
JPS6344244B2 (en)