JPS6361786B2 - - Google Patents

Info

Publication number
JPS6361786B2
JPS6361786B2 JP15915182A JP15915182A JPS6361786B2 JP S6361786 B2 JPS6361786 B2 JP S6361786B2 JP 15915182 A JP15915182 A JP 15915182A JP 15915182 A JP15915182 A JP 15915182A JP S6361786 B2 JPS6361786 B2 JP S6361786B2
Authority
JP
Japan
Prior art keywords
region
type
semiconductor device
glass
mesa groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15915182A
Other languages
Japanese (ja)
Other versions
JPS5947765A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15915182A priority Critical patent/JPS5947765A/en
Publication of JPS5947765A publication Critical patent/JPS5947765A/en
Publication of JPS6361786B2 publication Critical patent/JPS6361786B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0661Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 従来よりサイリスタ等において、高い信頼性と
すぐれた量産性を得る目的で、順、逆方向の印加
電圧を阻止するp−n接合の露出部分をガラス膜
で被覆する、いわゆるガラスパツシベーシヨン法
が多く適用されてきた。
DETAILED DESCRIPTION OF THE INVENTION Conventionally, in thyristors and the like, for the purpose of obtaining high reliability and excellent mass production, the exposed part of the p-n junction that blocks applied voltage in the forward and reverse directions is covered with a glass film. The so-called glass pinning method has been widely applied.

第1図に従来のガラスパツシベーシヨン形サイ
リスタの製造プロセスの例を示す。
FIG. 1 shows an example of the manufacturing process of a conventional glass casing type thyristor.

第1図aの如くn形シリコン基板1の両主面よ
りGaの拡散を行なつてp形領域2及び3を形成
し、しかる後、p形領域3の一部に選択的にn形
エミツタ領域4を形成した後、第1図bに示す如
く、基板の両主面より選択的に基板のエツチング
を行なつて、p−n接合5又は6より深いメサ溝
7及び8を形成し、このメサ溝の表面に粉末状の
ガラスを被着させた後、所定の温度に加熱すれ
ば、第1図cに示す如く接合5,6の露出部分が
ガラス膜10で覆われたサイリスタの構造が得ら
れる。以上のプロセス中、メサ溝の形成法やガラ
ス膜の形成法に関しては周知である。以上の後、
第1図dの如く所定の場所に電極11,12,1
3を形成した後、A−A′の線で切断すれば、サ
イリスタチツプが得られる。
As shown in FIG. 1a, p-type regions 2 and 3 are formed by diffusing Ga from both main surfaces of n-type silicon substrate 1, and then n-type emitters are selectively formed in a part of p-type region 3. After forming the region 4, as shown in FIG. 1B, the substrate is etched selectively from both main surfaces of the substrate to form mesa grooves 7 and 8 deeper than the p-n junction 5 or 6. After coating powdered glass on the surface of this mesa groove and heating it to a predetermined temperature, a thyristor structure in which the exposed portions of the junctions 5 and 6 are covered with a glass film 10 as shown in FIG. is obtained. In the above process, the method of forming the mesa groove and the method of forming the glass film are well known. After the above,
Electrodes 11, 12, 1 are placed at predetermined locations as shown in Figure 1d.
3 and then cut along the line A-A' to obtain a thyristor chip.

しかるに、以上の構造では、メサ溝7及び8が
それぞれ対向する面にあるため、メサ溝部分のn
領域1の残り巾Dが狭くなり、ウエハが非常に割
れやすく、歩留りの著しい低下を来たすという欠
点がある。また、これを防ぐためにn領域1の層
を厚くするとサイリスタの電気的特性、例えばオ
ン電圧やターンオフ特性を劣化させるという問題
があつた。
However, in the above structure, since mesa grooves 7 and 8 are located on opposing surfaces, n of the mesa groove portion
There is a drawback that the remaining width D of the region 1 is narrow, the wafer is very easy to break, and the yield is significantly reduced. Furthermore, if the layer of n-region 1 is made thicker in order to prevent this, there is a problem in that the electrical characteristics of the thyristor, such as on-voltage and turn-off characteristics, deteriorate.

以上の欠点を補うために考案されたのが、第2
図に示す構造である。第2図aは第1図aの構造
を作るに先立ち、両主面の互いに対向する部分に
選択的にp形不純物を拡散して、両主面から形成
されたp形領域を貫通させて分離領域9(第2図
a)を形成することにより得られる。しかる後、
第2図bの如く選択的にメサ溝8を形成した後、
従来と同様の方法によつてガラス膜、電極を形成
し、切断すればサイリスタのチツプが得られる。
The second product was devised to compensate for the above drawbacks.
This is the structure shown in the figure. FIG. 2a shows that prior to creating the structure of FIG. 1a, p-type impurities are selectively diffused into opposing portions of both main surfaces to penetrate the p-type regions formed from both main surfaces. This is obtained by forming a separation region 9 (FIG. 2a). After that,
After selectively forming mesa grooves 8 as shown in FIG. 2b,
Thyristor chips can be obtained by forming a glass film and electrodes using the same conventional methods and cutting them.

この構造によれば、メサ溝は基板の片面にしか
なく、従つてウエハの割れによる歩留り低下は防
げる。
According to this structure, the mesa groove is present only on one side of the substrate, and therefore, a decrease in yield due to cracking of the wafer can be prevented.

ところが、第2図の構造において、次のような
問題点がある。すなわち、以上の如き目的に使用
されるガラスはその膨張係数がシリコン基板に近
いものが用いられるが、ガラスの膨張係数をシリ
コンの値に近づけるとガラスの軟化温度が高く、
かつガラス膜の電気的安定性が悪くなるという特
徴があり、一般にガラスの膨張係数はシリコンよ
り大きくなる。そのため、第2図の構造によれば
ガラス粉末を被着し、加熱してガラス膜を形成す
ると、ガラスのある面を内側にしてシリコン基板
が反る。
However, the structure shown in FIG. 2 has the following problems. In other words, the glass used for the above purpose has an expansion coefficient close to that of the silicon substrate, but when the expansion coefficient of the glass approaches the value of silicon, the softening temperature of the glass becomes high;
Another characteristic is that the electrical stability of the glass film deteriorates, and the expansion coefficient of glass is generally larger than that of silicon. Therefore, according to the structure shown in FIG. 2, when glass powder is deposited and heated to form a glass film, the silicon substrate is warped with the glass side facing inside.

本発明は以上の欠点に鑑みてなされたもので、
シリコン基板の反りなく、第2図の形を得るため
の改良された構造を与えるものである。
The present invention has been made in view of the above drawbacks.
This provides an improved structure for obtaining the shape shown in FIG. 2 without warping the silicon substrate.

p形不純物であるボロンはその原子径がシリコ
ンに比べ小さく、ボロンをシリコン基板の片面に
高濃度に拡散すると、拡散された面を内側にして
基板が反るという特徴があり、本発明はこれを利
用したものである。
Boron, which is a p-type impurity, has a smaller atomic diameter than silicon, and when boron is diffused at a high concentration on one side of a silicon substrate, the substrate warps with the diffused side facing inside. This is what was used.

第3図に本発明による構造の製造方法を示す。
第2図と同様にして、n基板1にp形分離領域
9、p形領域2,3を形成した後、後工程にてメ
サ溝を形成すべき面に対向する面にボロンを高濃
度に拡散してp+領域14を形成する。しかる後、
第2図と同様の方法において、n領域4及びメサ
溝8、電極を形成すれば、第3図の如きサイリス
タの構造が得られる。この場合、メサ溝を対向す
る面にボロンの高濃度拡散層があるため、ガラス
による反りとボロンによる反りが相殺して、ウエ
ハ全体の反りは大きく軽減される。以上の効果は
ボロンの表面濃度が1018/cm3以上ある場合、特に
有効である。
FIG. 3 shows a method of manufacturing a structure according to the invention.
After forming the p-type isolation region 9 and the p-type regions 2 and 3 on the n-type substrate 1 in the same manner as shown in FIG. Diffusion to form p + region 14. After that,
By forming the n-region 4, mesa groove 8, and electrodes in the same manner as in FIG. 2, a thyristor structure as shown in FIG. 3 can be obtained. In this case, since there is a highly concentrated boron diffusion layer on the surface facing the mesa groove, the warpage due to the glass and the warpage due to the boron cancel each other out, and the warpage of the entire wafer is greatly reduced. The above effects are particularly effective when the surface concentration of boron is 10 18 /cm 3 or more.

以上の如く、本発明によれば、シリコン基板の
片側にのみメサ溝が形成され、このメサ溝にガラ
ス被膜が形成されたサイリスタにおいて、シリコ
ン基板を厚くすることなく、ウエハの反りを軽減
することができるという優れた効果を有する。
As described above, according to the present invention, in a thyristor in which a mesa groove is formed only on one side of a silicon substrate and a glass coating is formed on the mesa groove, warpage of the wafer can be reduced without increasing the thickness of the silicon substrate. It has the excellent effect of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来のサイリスタの製造方
法を示す工程別断面図、第3図は本発明の一実施
例を示す断面図である。 1はn形シリコン基板、2及び3はp形領域、
4はn形領域、7はメサ溝、9は分離領域、10
はガラス膜、11,12,13は電極、14は
p+ボロン拡散層である。
1 and 2 are cross-sectional views showing each step of a conventional thyristor manufacturing method, and FIG. 3 is a cross-sectional view showing an embodiment of the present invention. 1 is an n-type silicon substrate, 2 and 3 are p-type regions,
4 is an n-type region, 7 is a mesa groove, 9 is an isolation region, 10
is a glass film, 11, 12, 13 are electrodes, and 14 is a glass film.
It is a p + boron diffusion layer.

Claims (1)

【特許請求の範囲】 1 n形シリコン基板の両主面を貫通するように
選択的に形成された分離領域、両主面より所定の
深さで形成された第1及び第2のp形領域、該分
離領域によつて囲まれた領域内の該第2のp形領
域の一部に形成された第2のn形領域、該第2の
n形領域をとり囲み、該第2のp形領域とn形基
板とによつて形成されるp−n接合に達する深さ
で形成されたメサ溝、該メサ溝の表面に被着され
たガラス膜よりなる半導体装置において、該第1
のp形領域の表面にボロン拡散によつて形成され
たp+領域があることを特徴とする半導体装置。 2 p+形領域のボロンの表面濃度は1018atom/
cm3以上であることを特徴とする特許請求の範囲第
1項記載の半導体装置。
[Claims] 1. A separation region selectively formed to penetrate both main surfaces of an n-type silicon substrate, and first and second p-type regions formed at a predetermined depth from both main surfaces. , a second n-type region formed in a part of the second p-type region in a region surrounded by the isolation region; A semiconductor device comprising a mesa groove formed at a depth reaching a p-n junction formed by a shaped region and an n-type substrate, and a glass film deposited on a surface of the mesa groove.
A semiconductor device characterized in that there is a p + region formed by boron diffusion on the surface of the p-type region. The surface concentration of boron in the 2 p + type region is 10 18 atoms/
2. The semiconductor device according to claim 1, wherein the semiconductor device has a diameter of cm 3 or more.
JP15915182A 1982-09-10 1982-09-10 Semicondutor device Granted JPS5947765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15915182A JPS5947765A (en) 1982-09-10 1982-09-10 Semicondutor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15915182A JPS5947765A (en) 1982-09-10 1982-09-10 Semicondutor device

Publications (2)

Publication Number Publication Date
JPS5947765A JPS5947765A (en) 1984-03-17
JPS6361786B2 true JPS6361786B2 (en) 1988-11-30

Family

ID=15687372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15915182A Granted JPS5947765A (en) 1982-09-10 1982-09-10 Semicondutor device

Country Status (1)

Country Link
JP (1) JPS5947765A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102342A (en) * 1994-09-30 1996-04-16 Japan Aviation Electron Ind Ltd Connecting structure of circuit board with flexible cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08102342A (en) * 1994-09-30 1996-04-16 Japan Aviation Electron Ind Ltd Connecting structure of circuit board with flexible cable

Also Published As

Publication number Publication date
JPS5947765A (en) 1984-03-17

Similar Documents

Publication Publication Date Title
US3484662A (en) Thin film transistor on an insulating substrate
US4379726A (en) Method of manufacturing semiconductor device utilizing outdiffusion and epitaxial deposition
EP0262723A2 (en) Process for the formation of a monolithic high voltage semiconductor device
US3745647A (en) Fabrication of semiconductor devices
US3475661A (en) Semiconductor device including polycrystalline areas among monocrystalline areas
US4131909A (en) Semiconductor integrated circuit isolated through dielectric material and a method for manufacturing the same
JPS61292934A (en) Manufacture of semiconductor element
US3546542A (en) Integrated high voltage solar cell panel
US4009484A (en) Integrated circuit isolation using gold-doped polysilicon
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
EP0051534A2 (en) A method of fabricating a self-aligned integrated circuit structure using differential oxide growth
US3725145A (en) Method for manufacturing semiconductor devices
US4404048A (en) Semiconductor device manufacture
US3471922A (en) Monolithic integrated circuitry with dielectric isolated functional regions
JPH0235460B2 (en)
US4451844A (en) Polysilicon emitter and base contacts separated by lightly doped poly separator
JPS5942989B2 (en) High voltage semiconductor device and its manufacturing method
JPS6361786B2 (en)
US4633290A (en) Monolithic CMOS integrated circuit structure with isolation grooves
JP2989113B2 (en) Semiconductor device and manufacturing method thereof
JPS62113471A (en) Formation of external factor base region doped with high concentration and shallow depth in bipolar transistor
US3551221A (en) Method of manufacturing a semiconductor integrated circuit
JPS6273667A (en) Manufacturing semiconductor element
JPH0547913A (en) Manufacture of semiconductor device
JP3157595B2 (en) Dielectric separation substrate