JPS6361575B2 - - Google Patents

Info

Publication number
JPS6361575B2
JPS6361575B2 JP4844483A JP4844483A JPS6361575B2 JP S6361575 B2 JPS6361575 B2 JP S6361575B2 JP 4844483 A JP4844483 A JP 4844483A JP 4844483 A JP4844483 A JP 4844483A JP S6361575 B2 JPS6361575 B2 JP S6361575B2
Authority
JP
Japan
Prior art keywords
cold
hot water
air
water
bubbles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4844483A
Other languages
Japanese (ja)
Other versions
JPS59173639A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4844483A priority Critical patent/JPS59173639A/en
Publication of JPS59173639A publication Critical patent/JPS59173639A/en
Publication of JPS6361575B2 publication Critical patent/JPS6361575B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】 本発明は建物における空調用冷温水密閉配管シ
ステムに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a closed piping system for cold and hot water for air conditioning in buildings.

かかるシステムは、熱媒である水の冷却又は加
熱を行なう熱源機器とフアンコイルユニツト等の
負荷機器の間を循環する冷温水の温度変化による
膨張、収縮を密閉型圧力タンクにより内部の圧力
変化として吸収するので冷温水が一切大気と触れ
ず、また新たな水の補給も特別の場合を除きなさ
れない。このような密閉配管構造としたのは、冷
温水が大気に触れたり、新たな水が補給されたり
すると、冷温水中に新たに酸素が溶け込み、それ
が配管内を循環する間に配管と反応して錆びを生
じ、耐久寿命を短かくするからである。
This system uses a closed pressure tank to convert expansion and contraction due to temperature changes in cold and hot water circulating between a heat source device that cools or heats water, which is a heat medium, and a load device such as a fan coil unit, into internal pressure changes. Because the water is absorbed, the cold and hot water never comes into contact with the atmosphere, and new water is not replenished except in special cases. The reason for this sealed piping structure is that when cold and hot water comes into contact with the atmosphere or when new water is replenished, new oxygen dissolves into the cold and hot water, and this reacts with the pipes as it circulates through the pipes. This is because it causes rust and shortens its durable life.

ところで、このように密閉配管としても、当初
から存する冷温水中にも空気が溶け込んでおり、
それが気水分離器で分離されることなく循環し、
そのため鳥居配管のエルボ部とか、立上り型負荷
機器のコイル上部とかの循環途中の最も高い部分
に気泡が滞留する現象が生じる。そして、この結
果、負荷機器に異音が発生したり、熱交換の効率
が低下するといつた支障がある。このため、現在
はエルボ部やフアンコイルユニツトにおけるコイ
ル上部等の気泡が滞留する箇所に空気抜き弁を設
けて対処している。しかしながらこのような空気
抜き弁によつて空気抜きを行なつた場合、内部が
負圧になる等の原因によつて逆に大気中の空気が
内部に入り込むこととなり、その結果、しばしば
気泡の滞留現象が生じたり、新しい酸素が冷温水
中に溶け込むこととなつて密閉型の利点が完全に
損なわれてしまうという欠点がある。
By the way, even in sealed piping like this, air has been dissolved in the cold and hot water that has existed since the beginning.
It circulates without being separated in a steam separator,
This causes air bubbles to accumulate at the highest point during circulation, such as the elbow of torii piping or the upper part of the coil of a rising type load device. As a result, there are problems such as generation of abnormal noise in the load equipment and reduction in heat exchange efficiency. For this reason, air vent valves are currently provided at locations where air bubbles accumulate, such as the elbow portion and the upper part of the coil in the fan coil unit. However, when air is vented using such an air vent valve, air from the atmosphere may enter the interior due to negative pressure inside, and as a result, air bubbles often accumulate. The disadvantage is that the advantages of the closed type are completely lost as new oxygen is dissolved in the cold and hot water.

そこで本発明は、負荷機器の空気抜き弁を省略
して、空気抜き弁から大気吸入を無くし、冷温水
の溶存酸素を低濃度に保つて、システム各部位の
腐蝕を効果的に防止できると共に、エルボ部やコ
イル上部等に滞留する気泡によつて異常が発生し
たり、熱交換率が低下したりしないようにし、し
かも、通常時には冷温水の流速が必要以上に速く
ならないようにして経済性を確保できるようにし
た新規な一手段を提供するものである。
Therefore, the present invention eliminates the air vent valve of the load equipment, eliminates air intake from the air vent valve, maintains dissolved oxygen in cold and hot water at a low concentration, and effectively prevents corrosion in various parts of the system. This prevents abnormalities from occurring or the heat exchange rate from decreasing due to air bubbles staying at the top of the coil, etc., and also ensures economic efficiency by preventing the flow rate of hot and cold water from becoming faster than necessary during normal times. This provides a new means for doing so.

以下、図面に基づいて本発明の一実施例を説明
する。第1図において、1は間接熱交換方式によ
つて熱媒である水を冷やし又は温ためる熱源機器
(これは、冷却器、加熱器のいずれか1つでもよ
く、冷却器と加熱器を設けて、必要に応じ択一的
に使用すべく構成したり、両者の機能を併せ持
ち、必要に応じて、冷却機能と加熱機能の切換え
を行なうように構成したものでもよい。)、2は冷
温水中に含まれる空気を分離する気水分離器であ
り、この実施例では、第2図、第3図に示すよう
に、縦筒2aと、縦筒2aに接線方向に連通連設
された冷温水流入管2b、冷温水流出管2cと、
縦筒2aの上端中心部に連通連設された気泡排出
管2dとを備えたサイクロン方式の気水分離器が
使用されている。3は冷温水循環用の可変ポンプ
である。これら3者は主管4によつて直列に接続
されている。5…は間接熱交換方式によつて建物
の各部屋の空気を温ため或いは冷やすフアンコイ
ルユニツト等の負荷機器で、前記直列回路に対し
て供給用ヘツダーSH、戻り用ヘツダーRHを介
して配管7…により接続されている。この配管7
として本実施例では直径15mmのものを、主管4と
して25mmのものを夫々用いている。8は密閉型圧
力タンクで、前記気水分離器2に気泡排出管2d
を介して接続されている。このタンク8と気水分
離器2とは第2,3図に示すように一つのフレー
ム9内に収めてユニツト化するのが望ましい。図
中10は安全弁、11は水位調整コツク、12は
給水装置で、減圧弁13、圧力計14、逆止弁1
5、ストレナー16とからなつている。この給水
装置12は最初に水をシステム内に供給する時や
故障等によりタンク内の水位が非常に低くなつた
場合等特に必要な場合のみ使用され、通常は使用
されない。
Hereinafter, one embodiment of the present invention will be described based on the drawings. In Figure 1, 1 is a heat source device that cools or warms water, which is a heat medium, by an indirect heat exchange method (this may be either a cooler or a heater, and a cooler and a heater are installed). (2) may be configured to be used alternatively as necessary, or may be configured to have both functions and switch between the cooling function and heating function as necessary. In this embodiment, as shown in FIGS. 2 and 3, a vertical tube 2a and a cold/hot water stream tangentially connected to the vertical tube 2a are used. An inlet pipe 2b, a cold and hot water outlet pipe 2c,
A cyclone type steam/water separator is used, which is equipped with a bubble discharge pipe 2d that is connected to the center of the upper end of the vertical cylinder 2a. 3 is a variable pump for circulating hot and cold water. These three are connected in series by a main pipe 4. 5... is a load device such as a fan coil unit that heats or cools the air in each room of the building by indirect heat exchange method, and connects the piping 7 to the series circuit via the supply header SH and the return header RH. ...connected by... This piping 7
In this embodiment, a pipe with a diameter of 15 mm is used, and a pipe with a diameter of 25 mm is used as the main pipe 4. 8 is a closed pressure tank, and a bubble discharge pipe 2d is connected to the steam separator 2.
connected via. It is desirable that the tank 8 and the steam separator 2 be housed in one frame 9 to form a unit, as shown in FIGS. In the figure, 10 is a safety valve, 11 is a water level adjustment pot, 12 is a water supply device, pressure reducing valve 13, pressure gauge 14, check valve 1
5. It consists of a strainer 16. This water supply device 12 is used only when it is particularly necessary, such as when initially supplying water into the system or when the water level in the tank becomes extremely low due to a malfunction or the like, and is not normally used.

以上の構成において、この実施例では、前記直
列回路の一部、例えば気水分離器2と可変ポンプ
3との間に、冷温水中の気泡が滞留しやすい部分
4aを設けて、この部分4aに気泡検出器17を
設け、この気泡検出器17の検出結果に基づい
て、気泡が有るときには主管4を流れる冷温水の
流速が0.6m/sec以上になり、気泡が無いときに
は0.6m/secよりも遅い経済速度となるように前
記可変ポンプ3を制御すべく構成したものであ
る。
In the above configuration, in this embodiment, a part 4a where air bubbles in cold and hot water tend to accumulate is provided in a part of the series circuit, for example, between the steam separator 2 and the variable pump 3. A bubble detector 17 is provided, and based on the detection results of the bubble detector 17, when there are bubbles, the flow rate of cold and hot water flowing through the main pipe 4 is 0.6 m/sec or more, and when there are no bubbles, it is less than 0.6 m/sec. The variable pump 3 is configured to be controlled to achieve a slow economical speed.

尚、前述した気泡が滞留しやすい分4aとして
は、主管4におけるエルボ部分等をそのまま利用
してもよく、可変ポンプ3の近傍に適当なエルボ
部分等が無い場合には、前記部分4aを積極的に
設けるのである。つまり、主管4の鳥居配管部分
やエルボ部分、負荷機器5を接続する鳥居配管部
分や負荷機器5内のコイル上部等々、気泡が滞留
しやすい部分に気泡が滞留するのに先立つて、気
泡が滞留するか、あるいは、前記各部位に気泡が
滞留しているものとみなし得るダミーのエルボ部
分4aやコイル状の曲り管等を設けるものとす
る。気泡検出器17としては、例えば超音波を利
用した流速計を用いることができる。
In addition, as the above-mentioned portion 4a where air bubbles tend to accumulate, the elbow portion etc. of the main pipe 4 may be used as is, and if there is no suitable elbow portion etc. near the variable pump 3, the said portion 4a may be actively used. It is set up in a specific manner. In other words, air bubbles accumulate before they accumulate in areas where air bubbles tend to accumulate, such as the torii piping part and elbow part of the main pipe 4, the torii piping part that connects the load equipment 5, and the upper part of the coil inside the load equipment 5. Alternatively, a dummy elbow portion 4a, a coiled bent pipe, or the like may be provided in each of the above portions, where air bubbles may be retained. As the bubble detector 17, for example, a current meter using ultrasonic waves can be used.

上記の構成によれば、冷温水中に気泡が有る
と、気泡検出器17がこれを検出して、冷温水の
流速を速めるので、前記部分4aや主管4におけ
る他のエルボ部分、負荷機器3のコイル上端部等
に滞留している気泡を冷温水と共に押し流すこと
ができ、結果として、気泡の滞留による種々の不
都合を回避できるのであり、また、負荷機器5…
に空気抜き弁を設ける必要がなくなり、空気抜き
弁からの大気吸入やこれによる溶存酸素濃度の上
昇がなく、システム各部位の腐蝕を長年月にわた
つて確実に防止できるのである。そして、気泡が
無い通常時には、冷温水が経済速度で流れること
になり、運転コストの低減やポンプ等の長寿命化
等が可能である。
According to the above configuration, if there are bubbles in the cold/hot water, the bubble detector 17 detects the bubbles and increases the flow rate of the cold/hot water, so that Air bubbles accumulated at the upper end of the coil etc. can be washed away together with cold and hot water, and as a result, various inconveniences caused by the accumulation of air bubbles can be avoided, and the load equipment 5...
There is no need to install an air vent valve in the system, there is no need for atmospheric air to be sucked in through the air vent valve, and there is no increase in dissolved oxygen concentration due to this, and corrosion of various parts of the system can be reliably prevented for many years. In normal times when there are no air bubbles, cold and hot water flows at an economical speed, making it possible to reduce operating costs and extend the life of pumps and the like.

流速を0.6m/sec以上とする臨界的意義は実験
によつて確められた。つまり、流速を各種変化
し、各々の流速で滞留している空気が動き出すか
どうかを調べた。第4図はその実験結果を示す。
同図から明らかな通り、0.6m/sec以下ではほと
んど動かず、0.6m/sec以上とすると流速に比例
して空気の動く速度が速まつた。この結果から、
流速は0.6m/sec以上必要であることが確認され
た。但し、実際には滞留している空気を抜き去る
のに要する時間との関係で0.6m/sec以上の適当
な速度に定めることが望ましく、例えば、新築さ
れた建物の密閉配管システムに新たに水を供給し
てシステムを始動する場合のように大量の空気が
配管系に入つているときは、流速は運転途中の空
気抜き時よりも速く、通常1.0m/sec程度にする
のが良い。
The critical significance of setting the flow velocity to 0.6 m/sec or higher was confirmed through experiments. In other words, we varied the flow velocity and examined whether the stagnant air would start to move at each flow velocity. Figure 4 shows the experimental results.
As is clear from the figure, at 0.6 m/sec or less, there is almost no movement, and at 0.6 m/sec or more, the speed of air movement increases in proportion to the flow velocity. from this result,
It was confirmed that a flow velocity of 0.6 m/sec or higher is required. However, in reality, it is desirable to set the speed to an appropriate speed of 0.6 m/sec or more in relation to the time required to remove the accumulated air. When a large amount of air enters the piping system, such as when starting the system by supplying air, the flow velocity should be faster than when air is removed during operation, usually about 1.0 m/sec.

尚、流速は常に上記のような速さを維持する必
要はなく、エルボ部等に空気が滞留したときに一
定時間だけ維持すれば足り、またそのように構成
することが経済性の面で有利である。従つて、本
発明では、上述したように流速を可変とし、気泡
検出器17の検出結果に基づいて、流速を変化さ
せるようにしたのである。
It should be noted that the flow velocity does not need to be maintained at the above speed all the time; it is sufficient to maintain it for a certain period of time when air accumulates in the elbow, etc., and such a configuration is advantageous in terms of economy. It is. Therefore, in the present invention, the flow rate is made variable as described above, and is changed based on the detection result of the bubble detector 17.

以上説明したように本発明に係る建物における
空調用冷温水密閉配管システムは、主管で直列に
接続された間接熱交換式熱源機器、気水分離器及
び冷温水循環用の可変ポンプと、この直列回路に
配管にて接続された間接熱交換式負荷機器と、前
記気水分離器に接続されるか又は一体となつた密
閉型圧力タンクとを備え、前記直列回路の一部に
は、冷温水中の気泡が滞留しやすい部分を設け
て、この部分に気泡検出器を設け、この気泡検出
器の検出結果に基づいて前記可変ポンプを制御す
るようにしたものであるから、前記部分に気泡が
有る場合には、冷温水の流速を上げて、気泡を押
し流し、前記気水分離器を経て密閉型圧力タンク
へと排出することができ、気泡が無い場合には、
流速を遅くして経済性を確保できるのである。従
つて、負荷機器の空気抜き弁を省略しても、負荷
機器のコイル上部等に気泡が滞留して、異音が発
生したり、熱交換効率が低下することを防止で
き、空気抜き弁からの大気吸入もなくなつて、冷
温水の溶存酸素濃度を低くすることができるか
ら、システム各部位の腐蝕を防止でき、耐久寿命
を飛躍的に延長し得るのであり、また、気泡の無
い通常時に流速を遅くすること、空気抜き弁を省
略すること、耐久寿命の延長等々が相まつて、総
合的に経済性を確保できるのである。
As explained above, the air-conditioning cold/hot water sealed piping system for buildings according to the present invention includes an indirect heat exchange type heat source device, a steam separator, and a variable pump for cold/hot water circulation connected in series through a main pipe, and this series circuit. A part of the series circuit includes an indirect heat exchange type load device connected by piping to the steam separator, and a closed pressure tank connected to or integrated with the steam separator. A part where air bubbles tend to accumulate is provided, a bubble detector is provided in this part, and the variable pump is controlled based on the detection result of this air bubble detector, so that if there are air bubbles in the part, the variable pump is controlled. In order to increase the flow rate of cold and hot water, the air bubbles can be washed away and discharged into the closed pressure tank through the steam separator, and if there are no air bubbles,
Economic efficiency can be ensured by slowing down the flow velocity. Therefore, even if the air bleed valve of the load equipment is omitted, it is possible to prevent air bubbles from accumulating in the upper part of the coil of the load equipment, causing abnormal noise and reducing heat exchange efficiency. Since suction is eliminated and the dissolved oxygen concentration in cold and hot water can be lowered, corrosion of various parts of the system can be prevented and the durability life can be dramatically extended. The combination of slowing down, eliminating the need for an air vent valve, extending the service life, etc. all make it possible to ensure overall economic efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施例を示し、第1図は本発明の
一実施例を示す全体配管構成図、第2図は気水分
離器とタンクとをユニツト化した構成の正面図、
第3図は第2の上面図、第4図は流速とエヤー抜
き時間の関係を示す実験データである。 1…熱源機器、2…気水分離器、3…可変ポン
プ、4…主管、4a…気泡の滞留しやすい部分、
17…気泡検出器。
The figures show an embodiment of the present invention; FIG. 1 is an overall piping configuration diagram showing an embodiment of the present invention; FIG. 2 is a front view of a configuration in which a steam separator and a tank are integrated;
FIG. 3 is a top view of the second one, and FIG. 4 is experimental data showing the relationship between flow velocity and air removal time. 1...Heat source equipment, 2...Steam water separator, 3...Variable pump, 4...Main pipe, 4a...Part where air bubbles tend to accumulate,
17...Bubble detector.

Claims (1)

【特許請求の範囲】 1 主管で直列に接続された間接熱交換式熱源機
器、気水分離器及び冷温水循環用の可変ポンプ
と、この直列回路に配管にて接続された1個以上
の間接熱交換式負荷機器と、前記気水分離器に接
続されるか又は一体となつた密閉型圧力タンクと
を備え、前記直列回路の一部には、冷温水中の気
泡が滞留しやすい部分を設けて、この部分に気泡
検出器を設け、この気泡検出器の検出結果に基づ
いて前記可変ポンプを制御すべく構成してあるこ
とを特徴とする建物における空調用冷温水密閉配
管システム。 2 前記可変ポンプは、冷温水中に気泡が有ると
き前記主管中の流速が0.6m/sec以上になるよう
に制御され、冷温水中に気泡が無いときには前記
主管中の流速が0.6m/secより遅くなるように制
御されることを特徴とする特許請求の範囲第1項
に記載のシステム。
[Claims] 1. Indirect heat exchange type heat source equipment, a steam/water separator, and a variable pump for circulating hot and cold water connected in series through a main pipe, and one or more indirect heat sources connected to this series circuit through piping. It comprises a replaceable load device and a closed pressure tank connected to or integrated with the steam separator, and a part of the series circuit is provided with a part where air bubbles in the cold and hot water tend to accumulate. A closed piping system for cold and hot water for air conditioning in a building, characterized in that a bubble detector is provided in this part, and the variable pump is controlled based on the detection result of the bubble detector. 2 The variable pump is controlled such that the flow velocity in the main pipe is 0.6 m/sec or more when there are bubbles in the cold and hot water, and the flow velocity in the main pipe is slower than 0.6 m/sec when there are no bubbles in the cold and hot water. 2. The system according to claim 1, wherein the system is controlled so that:
JP4844483A 1983-03-22 1983-03-22 Cold/hot water closed piping system for air conditioning in building Granted JPS59173639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4844483A JPS59173639A (en) 1983-03-22 1983-03-22 Cold/hot water closed piping system for air conditioning in building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4844483A JPS59173639A (en) 1983-03-22 1983-03-22 Cold/hot water closed piping system for air conditioning in building

Publications (2)

Publication Number Publication Date
JPS59173639A JPS59173639A (en) 1984-10-01
JPS6361575B2 true JPS6361575B2 (en) 1988-11-29

Family

ID=12803516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4844483A Granted JPS59173639A (en) 1983-03-22 1983-03-22 Cold/hot water closed piping system for air conditioning in building

Country Status (1)

Country Link
JP (1) JPS59173639A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708992B2 (en) * 2011-04-08 2015-04-30 清水建設株式会社 Piping system
JP6962758B2 (en) * 2017-09-22 2021-11-05 株式会社Ihiプラント Degassing system

Also Published As

Publication number Publication date
JPS59173639A (en) 1984-10-01

Similar Documents

Publication Publication Date Title
JP2009085045A (en) Oil-cooled air compressor
JP3770103B2 (en) Water-cooled air conditioner
JPS6361575B2 (en)
US4456456A (en) Hot-water heating system having an air eliminator
JPS5818105Y2 (en) Water circuit of heating system
JPH0573894B2 (en)
JPH06248944A (en) Drain water treatment device for engine-driven heat pump
JPH0714734Y2 (en) Drain discharge structure of ceiling embedded air conditioner
JPS58210465A (en) Heat engine driving heat pump device
JPH0442647Y2 (en)
JP2630882B2 (en) Condensate recovery equipment
CN220581272U (en) Energy-saving recovery device of mine screw air compressor
JPH0142791Y2 (en)
JPH0794944B2 (en) refrigerator
CN210320427U (en) Auxiliary assembly for operation transformation based on central air conditioning water cooling unit
JPS6056761U (en) liquid metal purification equipment
KR20000038556A (en) Split type air conditioner and control method thereof
JPH02154932A (en) Drain air conditioner
JPH07180074A (en) Corrosion preventive system of piping equipment of water feeding and distributing system
JP2730069B2 (en) Engine driven air conditioner
JPH0764315B2 (en) Air conditioner for ship
JPS6315744Y2 (en)
JPS5844287Y2 (en) solar water heater
JPH026985B2 (en)
JPH0498070A (en) Cooling device for feed water from deaerator