JPS6361428B2 - - Google Patents

Info

Publication number
JPS6361428B2
JPS6361428B2 JP61095395A JP9539586A JPS6361428B2 JP S6361428 B2 JPS6361428 B2 JP S6361428B2 JP 61095395 A JP61095395 A JP 61095395A JP 9539586 A JP9539586 A JP 9539586A JP S6361428 B2 JPS6361428 B2 JP S6361428B2
Authority
JP
Japan
Prior art keywords
printing method
epoxy
compound
protein fibers
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61095395A
Other languages
Japanese (ja)
Other versions
JPS62250276A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61095395A priority Critical patent/JPS62250276A/en
Publication of JPS62250276A publication Critical patent/JPS62250276A/en
Publication of JPS6361428B2 publication Critical patent/JPS6361428B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は絹や矊毛のようなたんぱく繊維の加工
法、詳しくは垃、糞、綿状、玙状、粉状のたんぱ
く繊維及びそれを含む構造物を分散染料可染型た
んぱく系構造物に改質する方法に関するものであ
る。埓぀おそれら構造物を䜿甚する衣料関連産業
はもずより医療、建築、情報など巟広い分野ぞの
甚途拡倧に貢献するこず倧である。 埓来技術 絹や矊毛のような芪氎性の倧きいたんぱく繊維
は、分散染料に察しお本質的に芪和性はないが、
近幎の捺染技術の進歩ずたんぱく繊維の甚途拡倧
芁求から、特に也匏転写捺染を可胜ずするたんぱ
く繊維の開発が望たれおいた。実甚的にはポリ゚
ステルなど他の合成繊維ずのブレンド構造物の也
匏転写捺染ぞの期埅が倧きい。 これらの問題に察凊するために、絹繊維を倚䟡
アルコヌルで凊理する方法特公昭47−43156
が提案されおいる他、疎氎性の高いビニル系単量
䜓を倚量にグラフト重合させた堎合にも、分散染
料で染色されるこずは広く知られおいる。しかし
ながらこれらの方法は鮮明な発色性が埗られない
他、染色堅牢床、特に実甚䞊重芁なドラむクリヌ
ニングや湿最摩擊堅牢床が劣悪である。これらを
改善する方法ずしおビニル系単量䜓でグラフト重
合した埌、ヘキサメチレンゞむ゜シアヌトで凊理
する方法特開昭54−156883が提案されおいる
が、絹や矊毛繊維の堎合には加工繊維の颚合や吞
湿性、防しわ性などがかえ぀お損なわれる欠点が
ある。たた、カルボン酞の無氎物あるいは塩化物
で凊理したたんぱく繊維は、分散染料に染たるよ
うになるが、実甚皋床たで濃色に染めるこずは困
難であ぀た〔日蚕雑49(4)302−3061980〕。そこ
でモノカルボン酞の無氎物又は塩化物によるアシ
ル化埌、疎氎性ビニル系単量䜓をグラフト重合す
る方法特公昭57−30185が提案されたが、こ
れらの方法は刺激性のカルボン酞無氎物又は塩化
物を、ゞメチルホルムアミドやゞメチルスルホキ
シドなど、高䟡で吞氎性の高い溶媒ずずもに、し
かも無氎の条件䞋で䜿甚せねばならないなど、実
甚䞊䞍利な点が倚か぀た。すなわちそれら酞無氎
物もしくは酞塩化物は、埮量の氎によ぀お容易に
カルボン酞に加氎分解し反応性を䜎䞋させ、たん
ぱく繊維のアシル化が進行しなくなるなど工皋管
理が困難であ぀た。 発明の解決しようずする問題点 分散染料に䞍染性であるたんぱく繊維に察しお
は、䜕らかの手段により分散染料可染性を付䞎せ
ねばならないわけだが、たずビニル単量䜓をグラ
フト重合する方法では、分散染料可染性の疎氎性
単量䜓をグラフトしなければならないにもかかわ
らず、それらはたんぱく繊維ずの芪和性に欠ける
ため、グラフト重合䜓の繊維内沈積が䞍均䞀ずな
り、加工斑の原因ずな぀おきた。芪氎性単量䜓を
甚いれば、グラフト重合䜓が比范的均䞀に繊維内
に沈積されるが、分散染料による染色性は䜎䞋す
るなどの問題が残぀おいた。そこでたずたんぱく
繊維ず芪和性の高い化合物でたんぱく繊維を凊理
しお、たんぱく繊維䞭の芪氎性官胜基を封鎖した
埌、疎氎性ビニル単量䜓をグラフト重合する方法
が考えられる。前述のカルボン酞の無氎物あるい
は塩化物を甚いる方法はこの範疇に入るものであ
るが、䞊述のような欠点の他に、凊理たんぱく繊
維の吞湿性は激枛し、少なくずも衣料甚繊維玠材
ずしおは䞍適圓ずなり、利甚範囲が限定される。
本発明者らはこれらの問題点を解決し、ポリ゚ス
テルなど合成繊維ず同等の堅牢な也匏気盞染色を
可胜ならしめる、たんぱく繊維及びたんぱく繊維
を含む構造物の改質方法を怜蚎した結果、本発明
を完成した。 問題点を解決するための手段 たんぱく繊維及びたんぱく繊維を含む構造物
を、䞭性塩氎溶液の存圚䞋、皮々の゚ポキシ化合
物で凊理するず、繊維䞭のアミノ基、カルボキシ
ル基、アルコヌル性及びプノヌル性氎酞基が封
鎖されお、疎氎性が増すずずもに、防しわ性、耐
黄倉性などが向䞊するこずは知られおいる特公
昭47−24199、52−38131。特に矊毛ではアミノ
基が豊富なので、酞化染料の染料堅牢床やセツト
性が顕著に向䞊する。この凊理によ぀おたんぱく
繊維は分散染料にも染たるようにはなるが、実甚
的な濃色にたで染色するこずは困難である。 しかしながら、゚ポキシ化合物で凊理したたん
ぱく繊維及びたんぱく繊維を含む構造物に、さら
にビニル系単量䜓をグラフト重合させるず、30
皋床のグラフト率でも、気盞也匏捺染が可胜ずな
り、しかも十分実甚に耐えるだけの堅牢床を瀺す
こずがわか぀た。すなわち゚ポキシ化合物により
たんぱく繊維のアミノ基、カルボキシル基、氎酞
基などが封鎖されお疎氎性が増加し、次のグラフ
ト重合によ぀おグラフト重合䜓が均䞀に繊維内に
沈積されるため、グラフト重合埌、分散染料で染
色するず染料の繊維内拡散ず染着座垭ずが均䞀に
か぀増加する結果、濃色均䞀に、しかも堅牢に染
色されるず思われる。実際に期埅以䞊の改質効果
が認められるので、゚ポキシ化合物凊理ずグラフ
ト重合凊理ずの組合せにより、個々の凊理及びグ
ラフト重合凊理埌゚ポキシ化合物凊理する方法で
は予期し埗ない盞乗効果が発揮されたず考えられ
る。 すなわち本発明は絹、矊毛などのたんぱく繊維
構造物又はたんぱく繊維を含む構造物を゚ポキシ
化合物で凊理した埌、重合性有機単量䜓によ぀お
グラフト重合するこずを特城ずする、分散染料可
染型たんぱく繊維構造物又はたんぱく繊維を含む
構造物の補造方法及びそれら分散染料可染型たん
ぱく繊維構造物又はたんぱく繊維を含む構造物を
分散染料、油溶性染料、塩基性染料、ベンゞン可
溶性染料、媒染染料、建染め染料のうち少なくず
も皮の染料を甚いお捺染するこずを特城ずする
染色法に関する。 本発明における゚ポキシ化合物による凊理は、
公知の方法特公昭47−24199、52−38131を甚
いるこずができる。すなわち氎溶性の䞭性もしく
は匱塩基性金属塩の存圚䞋、皮々の゚ポキシ化合
物を含む組成物をたんぱく繊維構造物又はたんぱ
く繊維を含む構造物に含浞させた埌、皮々の方法
で加熱凊理するこずにより、該構造物の長所を損
なわずに゚ポキシ化合物による加工を行うこずが
できる。 本発明においお甚いられる゚ポキシ化合物凊理
甚觊媒は、公知のもの、すなわちリチりム、ナト
リりム、カリりム、ルビゞりム、オスミりムのよ
うなアルカリ金属や、ベリリりム、マグネシり
ム、カルシりム、ストロンチりム、バリりムのよ
うなアルカリ土類金属のカチオンず、北玠、塩
基、臭玠、ペり玠、硝酞、硫酞、酢酞、モノクロ
ル酢酞、プロピオン酞、亜硫酞、シアン酞、チオ
シアン酞、チオ硫酞などのアニオンずからなる氎
溶性䞭性塩ないし匱塩基性塩で、芏定氎溶液の
PHが5.5〜9.0の範囲内にあるものが望たしい。 これらの塩を氎に溶解し、単独に、あるいぱ
ポキシ化合物を含む組成物䞭に加えお䜿甚する
が、その濃床は䞀般に0.1〜芏定でよく、䜎す
ぎるず反応促進効果が埗られず、高すぎるず加熱
凊理条件や凊理繊維構造物の違いによ぀お、構造
物が郚分的に溶解する危険があるので、これら塩
の濃床調敎には十分な泚意が必芁である。䞀般に
矊毛や兎毛など獣毛繊維を含む堎合で0.1〜0.5芏
定、絹繊維の堎合で0.5〜1.5芏定の範囲が望たし
い。 本発明に䜿甚し埗る゚ポキシドは公知のごずく
䞀般匏 䜆し匏䞭、R1、R2、R3及びR4は氎玠原子又は
匏化合物を安定に存圚せしめ、か぀たんぱく繊維
ずの反応を劚げない任意の有機残基で、盞互に連
結しお環を圢成するこずができる基でもある。そ
れら有機残基ずしおはニトロ、ニトロ゜、シア
ノ、む゜シアノ、ハロゲン、カルボキシル、ゞチ
オカルボキシル、カルボニル、チオカルボニル、
ヒドロキシル、アミノ、アミド、アルコキシル、
゚ポキシ、スルホニル、スルフアニル、むミノ、
むミド、ホスホニル、ホスフむニル基や、それら
の基を眮換した、あるいは眮換しないアルキル、
アルケニル、アルキニル、アラリキル、アリヌ
ル、アルコキシル、アリヌルオキシル、アリル、
アリルオキシルなどの基であるで衚される。そ
れらにはアルキレンオキシド類、グリシゞル゚ヌ
テル類、グリシゞル゚ステル類、゚ポキシ酞及び
その゚ステルやアミド類、グリシゞルりレタン
類、スルホン酞や燐酞のグリシゞル゚ステル類、
゚ポキシシラン類、゚ポキシアルコヌル類、゚ポ
キシアミン類、ハロゲン化゚ポキシド類、カルボ
ニル゚ポキシド類などが包含される。 なお、本゚ポキシ化合物凊理法は前述の䞭性も
しくは匱塩基性塩氎溶液の存圚䞋で行うため、た
んぱく繊維は十分に膚匵する結果、䞊述蚘茉の゚
ポキシ化合物のたんぱく繊維構造物内ぞの拡散
は、均䞀か぀すみやかに行われるので、反応は均
䞀に進行する。埓぀おカルボン酞の無氎物や塩化
物で凊理する方法特公昭57−30185のように、
長鎖化合物が䞍適圓であるようなこずはない。 これらの゚ポキシ化合物は皮又は皮以䞊混
合しお䜿甚するこずができるが、該゚ポキシ化合
物分子䞭の゚ポキシ基の数、反応性、゚ポキシ化
合物の盞互䜜甚を考慮し、か぀加工たんぱく繊維
の皮類ず䜿途に適甚するごずく遞択しお、適宜反
応する凊理条件を決定するこずが肝芁である。か
かる゚ポキシ化合物はそのたた䜿甚できるが、適
圓な溶媒に溶解しおもよい。すなわち氎溶性の堎
合はそのたた氎溶液ずしお䜿甚されるが、氎䞍溶
性のものはメタノヌル、アセトン、ゞオキサンな
どの氎溶性溶剀ず氎ずの混合溶媒に溶解するか、
又は適圓な方法で乳化分散液ずしお、たた適圓な
非氎溶媒に溶解しお䜿甚できる。䜿甚する゚ポキ
シ化合物の量は、たんぱく繊維の皮類、組織など
の他、゚ポキシ化合物の皮類によ぀おも異なる
が、たんぱく繊維の重量に察しお〜40、奜た
しくは〜20である。 なお、本発明における゚ポキシ化合物による凊
理工皋は、公知のごずくたんぱく繊維を゚ポキシ
化合物を含む配合物䞭に含浞させるが、たんぱく
繊維に゚ポキシ化合物を含む噎霧又は発泡組成物
を包含させ、加熱凊理するものである。也燥埌、
也熱で凊理する方法以倖の加熱法ならば、蒞熱凊
理やマむクロ波照射凊理などすべおの公知な加熱
方法が適甚できる。 このようにしお゚ポキシ化合物で凊理をしたた
んぱく繊維構造物又はたんぱく繊維を含む構造物
は、垞法に埓぀お゜ヌピング、氎掗した埌、その
たたあるいは也燥させお次のグラフト重合加工工
皋で脱色せず、さらに分散染料の転写捺染時にも
䜕ら障害ずならない染料を、塩類ず同時に添加し
た氎溶液を甚いれば、たんぱく繊維の恒久的改質
の他に染色をも同時に実斜するこずができる特
公昭48−22874、49−3470。 ゚ポキシ化合物で凊理したたんぱく繊維構造物
及びたんぱく繊維を含む構造物をグラフト重合す
るのには、たんぱく繊維にグラフト重合する公知
の有機単量䜓はすべお䜿甚できる。䞭でも有甚な
ものは、䞀般匏 CH2CR1CO2R2 䜆し匏䞭、R1は又はハロゲン、アルキル基
を瀺し、R2はヒドロキシル、アミノ、ハロゲン、
アルコキシル、゚ポキシ、カルボニル、カルボア
ルコキシル、アルケニルオキシル、アルカノむル
オキシル、チオカルボニル、ゞチオカルボキシ
ル、シアノ、む゜シアノ、ニトロなどの基を眮換
した、あるいは眮換しないアルキル、アルケニ
ル、アルキニル、アラリキル、アリヌル、アリル
などの基であるで衚わされるアクリル酞及びメ
タクリル酞の゚ステル誘導䜓類で、䟋えばアクリ
ル酞及びメタクリル酞のメチル、゚チル、プロピ
ル、ブチル、アリル、ペンチル、ヘキシル、ヘプ
チル、オクチル、ノニル、デシル、ビニル、プロ
ピニル、プニル、ベンヂル、グリシゞル、テト
ラヒドロフルフリル、ヒドロキシ゚チル、ヒドロ
キシパルミチル、゚トキシブチル、メトキシプロ
ピル、゚チレングリコヌル、プロピレングリコヌ
ル゚ステルなどが挙げられる。 たた䞀般匏 CH2CR1CONR2R3 䜆し匏䞭、R1は又はアルキル基を瀺し、R2、
R3は又はヒドロキシル、゚ポキシ、シアノ、
ハロゲン、カルボニル、む゜シアノ、ニトロ、ア
ルコキシル、アリルオキシル、アリヌルオキシ
ル、チオカルボニル、ゞチオカルボキシル基など
を眮換した、又は眮換しないアルキル、アリル、
アリヌル、アルケニルなどの基であるで衚わさ
れるアクリルアミドやメタクリルアミドも有甚
で、−プロピルアクリルアミド、−゚チルメ
タクリルアミド、−゚チル、プロピルアク
リルアミド、−ゞメチルメタクリルアミ
ド、−メチルカルボニルブチルメタクリルアミ
ドなどを挙げるこずができる。 さらに䞀般匏 CH2CHOCOR1 䜆し匏䞭、R1はヒドロキシル、アミノ、ニト
ロ、シアノ、む゜シアノ、カルボニル、ハロゲ
ン、゚ポキシ、チオカルボニル、ゞチオカルボキ
シル、アルカノむルオキシ基などを眮換した、又
は眮換しないアルキル、アリヌル、アリル、アル
ケニルなどの基であるで衚わされるビニルアル
コヌルの゚ステル類や、䞀般匏 CH2CR1C6H4R2 䜆し匏䞭、R1は又はアルキル基で、R2は
又はヒドロキシル、アルコキシル、アルケニルオ
キシ、カルボアルコキシル、ニトロ、ハロゲン、
シアノ、アミノ、む゜シアノ、カルボニル、チオ
カルボニル、ゞチオカルボキシルなどの基、もし
くはそれらの基を眮換した、あるいは眮換しない
アルキル、アリル、アリヌル基などであるで衚
わされるスチレン及びスチレン誘導䜓が含たれる
が、これらに限定されるものではない。なお、こ
れらのビニル単量䜓は単独で䜿甚しおも以䞊を
䜵甚しおもよい。さらには他のビニル単量䜓ずず
もに甚いおもよいが、その堎合には䞊蚘ビニル単
量䜓が䞻成分をなすように配合䜿甚するのが奜た
しい。 グラフト重合法ずしおは、公知の化孊開始法の
他に、玫倖線やγ線、電子線などの゚ネルギヌ照
射法のいずれも䜿甚できるが、通垞のラゞカル開
始剀の存圚䞋、氎性媒䜓䞭でのグラフト重合法が
実甚的である。グラフト重合増量率は染色性を倧
きく巊右し、少なくずも繊維重量の15以䞊、望
たしくは30〜10が必芁であるが、䜿甚するビニ
ル単量䜓の皮類によ぀おは70以䞊の増量では繊
維の颚合が倉化するずずもに、染色堅牢床がかえ
぀お䜎䞋する堎合もあるので、適圓に定めるこず
が奜たしい。 なお、グラフト重合加工は単量䜓含有液にたん
ぱく繊維を含浞させお凊理する方法の他、単量䜓
含有液をたんぱく繊維に付着させた埌、適圓な加
熱方法、䟋えば也熱又は蒞熱、マむクロ波加熱凊
理する方法も甚いるこずができる。 グラフト重合加工液には、繊維䞭ぞの加工液の
浞透を迅速か぀円滑に行わせるための界面掻性
剀、加工液のPH調敎のための添加物質、その他加
工液の粘床を調敎するための調敎剀、䟋えば糊料
などの各補助剀を適宜加えおもよい。 本発明方法が適甚されるたんぱく繊維は、糞
状、垃状、綿状、玙状いかなるものでもよく、単
独又は皮以䞊の混玡あるいは混織にも適甚でき
る。たた、これら繊維は未粟緎のもの、粟緎した
もの、いずれであ぀おもよい。 本発明に甚いられる開始剀ずしおは、公知のも
の、䟋えば過硫酞のカリりム、ナトリりム、アン
モニりムのような過硫酞塩、過酞化氎玠、過酢酞
又は過酞化ベンゟむルのごずき無機及び有機過酞
化物の他、過硌酞塩、過マンガン酞塩などであ
り、これらは皮又は皮以䞊甚いおもよく、さ
らに亜硫酞塩、チオ硫酞塩、酞化チオ尿玠など
の還元性化合物を䜵甚し、レドツクス重合ずする
こずもできる。 以䞊のような加工剀を含む加工液をたんぱく繊
維に付着させる堎合には、皮々の方法をずるこず
ができる。䟋えば加工液䞭に浞積しお絞぀おもよ
く、たた加工液を噎霧したり、パツデむングある
いは䞋郚を加工液に浞積しおいるロヌラを回転さ
せ、その䞊を通過させたりするなど適宜の方法が
甚いられる。たた、䞍連続匏、連続匏のいずれで
もよく、垃状のものに察しおは連続匏、䟋えば加
工液を容れた槜内に蚭けたガむドロヌルによ぀お
垃を誘導しながら加工液䞭に浞積し、最埌にマン
グルで絞぀たり、あるいは倚数の现孔を穿぀たパ
むプの䞊を通し、過剰分の加工液を䞊蚘现孔から
枛圧吞匕しお陀去するなどしお生産性をあげるこ
ずができる。いずれにしおもたんぱく繊維に察し
おできるだけ均䞀に加工液を付着させるように操
䜜する必芁がある。 加工液を付着させる堎合の付着量は、たんぱく
繊維に察しお50〜350重量、奜たしくは70〜200
重量の範囲がよく、単量䜓の付着量ずしおは繊
維重量に察しお20〜100重量、奜たしくは30〜
80重量の範囲がよく、たんぱく繊維の皮類、単
量䜓の皮類、所望グラフト重合率に応じお䞊蚘範
囲内から適宜遞ぶのがよい。なお、䞊蚘範囲倖で
あ぀おももちろん本発明を実斜するこずはでき
る。 たた本発明による改質されたたんぱく繊維もし
くはたんぱく繊維を含む構造物を染めるこずがで
きる染料には、C.I.Disperse Blue系、䟋えばブ
ルヌ、58、87、95、106、Yellow系、䟋えばむ
゚ロヌ、、23、54、64、Orange系、䟋えば
オレンゞ、20、21、Rad系、䟋えば11、50、
60、Violet系、䟋えばバむオレツト、28、87な
どが含たれるが、これらに限定されるわけではな
い。ポリ゚ステルを察象ずしお開発された垂販也
匏転写捺染染料、転写玙及びアクリル繊維に適し
た染料や転写玙なども䜿甚できる。なお、染色は
本発明の目的に鑑み、公知の捺染法が適甚できる
が、特に昇華転写捺染法で行うずき、本発明は有
甚であり、〜300cm2たでの加圧もしくは加圧
せず、〜250℃たでの加熱で行うこずができる。
公知のナオプリンタヌ2Fやメヌル及びカネギヌ
サを䜿甚したり、転写捺染埌、スチヌミングなど
するこずもできる。 以䞋、実斜䟋により本発明をさらに詳现に説明
するが、実斜䟋䞭に瀺す及び郚は、特に蚘さな
い限り重量及び重量郚であり、各皮枬定倀は次
の方法に埓぀た。 グラフト増量率 グラフト重合加工繊維の重量−未加工繊維の重量
÷未加工繊維の重量×100 染着性は、日立UV−VIS光電比色蚈の600nm
で枬定した衚面反射率から求めた衚面染着濃床の
倧小〜段階で瀺した染色堅牢床は各々次
のJIS芏栌に埓぀お評䟡した。すなわちドラむク
リヌニングはL0860−1974、汚染はL0848−
1974D、摩擊はL0849−1971孊振型である。 実斜䟋  粟緎及び挂癜した16匁付絹矜二重を1Nチオ硫
酞ナトリりム氎溶液に浞積し、本ロヌルマング
ルで玄100に絞液した埌、゚チレングリコヌル
ゞグリシゞル゚ヌテル20郚、四塩化炭玠70郚、む
ンプロパノヌル10郚よりなる加工液俗比玄20
倍に浞積し、75−76℃で時間凊理した。凊理
埌、沞隰アセトン、石鹞氎で掗浄、さらに氎掗
し、也燥した。この凊理による重量増加率は17
であ぀た。該絹繊維に察しおスチレン40、非む
オン性乳化剀、過硫酞アンモニりム、ギ
酾0.04を含む氎性乳濁液俗比20倍に、この
゚ポキシ凊理絹垃を入れ、30分間で85℃たで埐々
に昇枩した埌、同枩床で30分間グラフト重合加工
を行぀た。垞枩付近たで冷华した埌、氎掗、さら
に50℃の石鹞氎、枩氎で掗浄埌、颚也し、グラフ
ト重合加工絹繊維を埗た。 グラフト重合加工埌、絹繊維は日本サヌモプリ
ンテツクス瀟補、転写玙青を重ね合わせ、盎
本工業瀟補、転写捺染機ネオプリンタヌ2F型
で230℃で30秒熱転写を行぀た。なお比范のため、
同䞀絹矜二重を゚ポキシ化合物凊理及びグラフト
重合加工ずもに行わずに同䞀条件で染料を熱転写
した堎合を比范䟋−、絹繊維をレゟルシンゞ
グリシゞル゚ヌテルで゚ポキシ化合物凊理し、グ
ラフト重合加工を行わないで同䞀条件で染料の熱
転写した堎合を比范䟋−、絹繊維を゚ポキシ
化合物で凊理するこずなく、スチレンにより䞊蚘
同様にグラフト重合加工しお染料を同様に熱転写
した堎合を比范䟋−、たたポリ゚ステルタフ
タを同䞀染料、同䞀条件で転写染色した堎合を比
范䟋−ずし、それらの染着性の良吊及び染色
堅牢床を衚にたずめる衚のような結果ずな぀
た。
Industrial Application Field The present invention relates to a method for processing protein fibers such as silk and wool, and more specifically, to processing protein fibers in the form of cloth, thread, cotton, paper, and powder, and structures containing the same with disperse dyes. The present invention relates to a method for modifying a system structure. Therefore, it will greatly contribute to the expansion of applications in a wide range of fields such as medical care, architecture, and information, as well as clothing-related industries that use these structures. Prior Art Highly hydrophilic protein fibers such as silk and wool have essentially no affinity for disperse dyes;
Due to the recent advances in printing technology and the demand for expanded uses for protein fibers, there has been a strong desire to develop protein fibers that can be used in dry transfer printing. In practical terms, there are great expectations for dry transfer printing of blended structures with other synthetic fibers such as polyester. To deal with these problems, a method of treating silk fibers with polyhydric alcohol (Special Publication No. 47-43156)
has been proposed, and it is widely known that dyeing with disperse dyes also occurs when a large amount of highly hydrophobic vinyl monomers is graft-polymerized. However, these methods do not provide clear color development and are also poor in color fastness, especially dry cleaning and wet rubbing fastness, which are important in practice. As a method to improve these problems, a method has been proposed in which graft polymerization with a vinyl monomer is performed and then treatment with hexamethylene diisocyanate (Japanese Patent Application Laid-open No. 156883/1983), but in the case of silk and wool fibers, the treatment The disadvantage is that the texture, moisture absorption, and wrinkle resistance of the fibers are adversely affected. In addition, protein fibers treated with carboxylic acid anhydrides or chlorides can be dyed with disperse dyes, but it was difficult to dye them in deep colors to a practical level [Nichisokuzo 49 (4) 302-306 (1980)]. Therefore, a method was proposed (Japanese Patent Publication No. 57-30185) in which a monocarboxylic acid is acylated with an anhydride or chloride and then a hydrophobic vinyl monomer is graft-polymerized. There were many practical disadvantages, such as the fact that the compound or chloride had to be used together with an expensive and highly water-absorbing solvent such as dimethylformamide or dimethyl sulfoxide, and under anhydrous conditions. In other words, these acid anhydrides or acid chlorides are easily hydrolyzed into carboxylic acids by trace amounts of water, reducing reactivity and preventing acylation of protein fibers, making process control difficult. Problems to be Solved by the Invention Protein fibers that are not dyeable with disperse dyes must be made dyeable with disperse dyes by some means, but first, a method of graft polymerizing vinyl monomers is not possible. Although disperse dye-dyeable hydrophobic monomers have to be grafted, their lack of affinity with protein fibers results in non-uniform intra-fiber deposition of the grafted polymer, leading to processing irregularities. It has become the cause. If a hydrophilic monomer is used, the graft polymer can be deposited relatively uniformly within the fiber, but there remain problems such as reduced dyeability with disperse dyes. Therefore, a method can be considered in which the protein fibers are first treated with a compound that has a high affinity with the protein fibers to block the hydrophilic functional groups in the protein fibers, and then a hydrophobic vinyl monomer is graft-polymerized. The method using the anhydride or chloride of carboxylic acid mentioned above falls into this category, but in addition to the drawbacks mentioned above, the hygroscopicity of the treated protein fiber is drastically reduced, making it unsuitable at least as a textile material for clothing. It becomes appropriate and the scope of use is limited.
The present inventors solved these problems and investigated a method for modifying protein fibers and structures containing protein fibers that would enable dry vapor phase dyeing to be as robust as synthetic fibers such as polyester. Completed the invention. Means for Solving the Problem When protein fibers and structures containing protein fibers are treated with various epoxy compounds in the presence of a neutral salt aqueous solution, amino groups, carboxyl groups, alcoholic and phenolic hydroxyl groups in the fibers are removed. It is known that this increases hydrophobicity and improves wrinkle resistance, yellowing resistance, etc. (Japanese Patent Publication No. 47-24199, 52-38131). In particular, wool is rich in amino groups, so the dye fastness and setting properties of oxidative dyes are significantly improved. Although this treatment allows protein fibers to be dyed with disperse dyes, it is difficult to dye them to a deep color that is practical. However, when a vinyl monomer is further graft-polymerized to protein fibers and structures containing protein fibers treated with epoxy compounds, 30%
It was found that vapor-phase dry printing is possible even with a certain degree of grafting rate, and that it exhibits sufficient fastness for practical use. That is, the amino groups, carboxyl groups, hydroxyl groups, etc. of protein fibers are blocked by the epoxy compound, increasing hydrophobicity, and the graft polymer is deposited uniformly within the fibers during the next graft polymerization. When dyeing with disperse dyes, the diffusion of the dye within the fibers and the number of dyed seats become uniform and increase, resulting in uniformly dark and strong dyeing. Since a modification effect that exceeded expectations was actually observed, it is thought that the combination of epoxy compound treatment and graft polymerization treatment produced a synergistic effect that could not be expected from the individual treatments or the method of treating the epoxy compound after graft polymerization treatment. It will be done. That is, the present invention provides a disperse dye dyeable method, which is characterized in that a protein fiber structure such as silk or wool or a structure containing protein fiber is treated with an epoxy compound, and then graft polymerized with a polymerizable organic monomer. A method for producing a type protein fiber structure or a structure containing protein fiber, and a method for producing a type protein fiber structure or a structure containing protein fiber dyeable with disperse dyes, such as a disperse dye, an oil-soluble dye, a basic dye, a benzine-soluble dye, or a mordant. The present invention relates to a dyeing method characterized by printing using at least one dye selected from dyes and vat dyes. The treatment with an epoxy compound in the present invention is
A known method (Japanese Patent Publication No. 47-24199, 52-38131) can be used. That is, a protein fiber structure or a structure containing protein fibers is impregnated with a composition containing various epoxy compounds in the presence of a water-soluble neutral or weakly basic metal salt, and then heat-treated by various methods. This allows processing with an epoxy compound without impairing the advantages of the structure. Catalysts for treating epoxy compounds used in the present invention are known catalysts, including alkali metals such as lithium, sodium, potassium, rubidium, and osmium, and alkaline earth metals such as beryllium, magnesium, calcium, strontium, and barium. A water-soluble neutral or weakly basic salt consisting of a cation and an anion such as fluorine, base, bromine, iodine, nitric acid, sulfuric acid, acetic acid, monochloroacetic acid, propionic acid, sulfite, cyanic acid, thiocyanic acid, thiosulfate, etc. , of a 1N aqueous solution
It is desirable that the pH is within the range of 5.5 to 9.0. These salts are dissolved in water and used alone or added to a composition containing an epoxy compound, but the concentration is generally 0.1 to 3N; if it is too low, the reaction promotion effect cannot be obtained, If it is too high, there is a risk that the structure will partially dissolve depending on the heat treatment conditions and the treated fiber structure, so sufficient care must be taken in adjusting the concentration of these salts. Generally, the range is preferably 0.1 to 0.5 when animal hair fibers such as wool and rabbit hair are included, and 0.5 to 1.5 when using silk fibers. The epoxide that can be used in the present invention has the general formula: (However, in the formula, R 1 , R 2 , R 3 and R 4 are hydrogen atoms or any organic residues that allow the compound of the formula to exist stably and do not interfere with the reaction with protein fibers, and are interconnected to form a ring. These organic residues include nitro, nitroso, cyano, isocyano, halogen, carboxyl, dithiocarboxyl, carbonyl, thiocarbonyl,
hydroxyl, amino, amide, alkoxyl,
Epoxy, sulfonyl, sulfanyl, imino,
Imide, phosphonyl, phosphinyl groups, and alkyl substituted or unsubstituted with these groups,
alkenyl, alkynyl, aralkyl, aryl, alkoxyl, aryloxyl, allyl,
It is a group such as allyloxyl). These include alkylene oxides, glycidyl ethers, glycidyl esters, epoxy acids and their esters and amides, glycidyl urethanes, glycidyl esters of sulfonic acid and phosphoric acid,
Included are epoxy silanes, epoxy alcohols, epoxy amines, halogenated epoxides, carbonyl epoxides, and the like. In addition, since this epoxy compound treatment method is carried out in the presence of the above-mentioned neutral or weakly basic salt aqueous solution, the protein fibers sufficiently expand, and as a result, the above-mentioned epoxy compound diffuses into the protein fiber structure. Since the reaction is carried out uniformly and quickly, the reaction proceeds uniformly. Therefore, as in the method of treating with carboxylic acid anhydride or chloride (Japanese Patent Publication No. 57-30185),
It is not the case that long chain compounds are inappropriate. These epoxy compounds can be used alone or in a mixture of two or more, but the number of epoxy groups in the epoxy compound molecule, the reactivity, and the interaction of the epoxy compounds should be considered, and the type of processed protein fiber It is important to select the appropriate reaction conditions depending on the intended use and to determine the appropriate reaction conditions. Such epoxy compounds can be used as they are, or may be dissolved in a suitable solvent. In other words, if it is water-soluble, it can be used directly as an aqueous solution, but if it is water-insoluble, it can be dissolved in a mixed solvent of water and a water-soluble solvent such as methanol, acetone, or dioxane.
Alternatively, it can be used as an emulsified dispersion by an appropriate method or dissolved in an appropriate non-aqueous solvent. The amount of the epoxy compound used varies depending on the type of protein fiber, tissue, etc., as well as the type of epoxy compound, but is 2 to 40%, preferably 6 to 20%, based on the weight of the protein fiber. In addition, in the treatment step with an epoxy compound in the present invention, protein fibers are impregnated in a formulation containing an epoxy compound as is known in the art, but protein fibers are coated with a spray or foam composition containing an epoxy compound and heat treated. It is. After drying,
As for heating methods other than dry heat treatment, all known heating methods such as steaming treatment and microwave irradiation treatment can be applied. The protein fiber structure or protein fiber-containing structure treated with an epoxy compound in this way is soaped and washed with water according to a conventional method, and then left as is or dried without being bleached in the next graft polymerization process. Furthermore, by using an aqueous solution in which a dye that does not cause any hindrance during transfer printing with disperse dyes is added at the same time as salt, it is possible to permanently modify protein fibers and dye them at the same time (Japanese Patent Publication No. 48-22874 , 49−3470). All known organic monomers that graft polymerize to protein fibers can be used to graft-polymerize protein fiber structures and structures containing protein fibers treated with epoxy compounds. Among the most useful ones, the general formula CH 2 = CR 1 CO 2 R 2 (wherein, R 1 represents H or halogen, an alkyl group, and R 2 represents hydroxyl, amino, halogen,
Groups such as alkyl, alkenyl, alkynyl, aralkyl, aryl, allyl, substituted or unsubstituted with groups such as alkoxyl, epoxy, carbonyl, carboalkoxyl, alkenyloxyl, alkanoyloxyl, thiocarbonyl, dithiocarboxyl, cyano, isocyano, nitro, etc. ester derivatives of acrylic acid and methacrylic acid represented by acrylic acid and methacrylic acid, such as methyl, ethyl, propyl, butyl, allyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, vinyl, propynyl, Examples include phenyl, benzyl, glycidyl, tetrahydrofurfuryl, hydroxyethyl, hydroxypalmityl, ethoxybutyl, methoxypropyl, ethylene glycol, and propylene glycol ester. Also, the general formula CH 2 = CR 1 CONR 2 R 3 (wherein, R 1 represents H or an alkyl group, and R 2 ,
R 3 is H or hydroxyl, epoxy, cyano,
Alkyl, allyl, substituted or unsubstituted with halogen, carbonyl, isocyano, nitro, alkoxyl, allyloxyl, aryloxyl, thiocarbonyl, dithiocarboxyl group, etc.
Also useful are acrylamide and methacrylamide represented by aryl, alkenyl, etc. groups such as N-propylacrylamide, N-ethylmethacrylamide, N,N-ethyl, propylacrylamide, N,N-dimethylmethacrylamide, N- Examples include methylcarbonylbutyl methacrylamide. Furthermore, the general formula CH 2 =CHOCOR 1 (wherein, R 1 is alkyl substituted with or unsubstituted with hydroxyl, amino, nitro, cyano, isocyano, carbonyl, halogen, epoxy, thiocarbonyl, dithiocarboxyl, alkanoyloxy group, etc.) , aryl, allyl, alkenyl, etc.), and the general formula CH 2 = CR 1 C 6 H 4 R 2 (wherein, R 1 is H or an alkyl group, and R 2 is H
or hydroxyl, alkoxyl, alkenyloxy, carbalkoxyl, nitro, halogen,
It includes styrene and styrene derivatives represented by groups such as cyano, amino, isocyano, carbonyl, thiocarbonyl, dithiocarboxyl, or alkyl, allyl, aryl groups substituted or unsubstituted with these groups, It is not limited to these. Note that these vinyl monomers may be used alone or in combination of two or more. Furthermore, it may be used together with other vinyl monomers, but in that case, it is preferable to use the vinyl monomer as the main component. In addition to known chemical initiation methods, energy irradiation methods such as ultraviolet rays, gamma rays, and electron beams can be used as the graft polymerization method. Legal is practical. The graft polymerization weight increase rate greatly affects dyeability and should be at least 15% of the fiber weight, preferably 30 to 10%, but depending on the type of vinyl monomer used, it may not be possible to increase the weight by 70% or more. It is preferable to set it appropriately because the texture of the fiber changes and the color fastness may even decrease. In addition, graft polymerization can be carried out by impregnating protein fibers with a monomer-containing solution, or by applying an appropriate heating method such as dry heat, steam heating, micro-heating, etc. after attaching the monomer-containing solution to protein fibers. A method of wave heating treatment can also be used. The graft polymerization processing fluid contains surfactants to allow the processing fluid to penetrate quickly and smoothly into the fibers, additives to adjust the pH of the processing fluid, and other adjustments to adjust the viscosity of the processing fluid. Auxiliary agents such as adhesives, for example, thickeners, may be added as appropriate. The protein fibers to which the method of the present invention is applied may be thread-like, cloth-like, cotton-like, or paper-like, and can be applied alone or in blends or weaves of two or more types. Further, these fibers may be either unrefined or refined. The initiators used in the present invention include those known in the art, such as persulfates such as potassium, sodium and ammonium persulfates, inorganic and organic peroxides such as hydrogen peroxide, peracetic acid or benzoyl peroxide. , perborates, permanganates, etc., and these may be used alone or in combination, and reducing compounds such as sulfites, thiosulfates, and thiourea dioxide may be used in combination to achieve redox polymerization. You can also. When attaching a processing liquid containing a processing agent as described above to protein fibers, various methods can be used. For example, it may be immersed in the machining fluid and squeezed, or any suitable method may be used, such as spraying the machining fluid, patting, or rotating a roller whose lower part is immersed in the machining fluid and passing over it. is used. In addition, either a discontinuous type or a continuous type may be used.For cloth-like items, a continuous type may be used, for example, the cloth is immersed in the machining liquid while being guided by guide rolls installed in a tank containing the machining liquid. Productivity can be increased by stacking the liquid and finally squeezing it with a mangle, or by passing it over a pipe with many pores and removing the excess processing liquid by suctioning it under reduced pressure through the pores. can. In any case, it is necessary to operate the processing liquid so that it adheres to the protein fibers as uniformly as possible. When applying processing fluid, the amount of adhesion is 50 to 350% by weight, preferably 70 to 200% by weight, based on the protein fiber.
The weight% range is good, and the amount of monomer attached is 20 to 100% by weight, preferably 30 to 100% by weight based on the weight of the fiber.
It is preferably in the range of 80% by weight, and may be appropriately selected from within the above range depending on the type of protein fiber, the type of monomer, and the desired graft polymerization rate. Note that the present invention can of course be practiced even outside the above range. Dyes that can dye the modified protein fibers or structures containing protein fibers according to the invention also include CIDisperse Blue series, such as Blue 3, 58, 87, 95, 106, Yellow series, such as Yellow 3, 7. , 23, 54, 64, Orange series, e.g. Orange 1, 20, 21, Rad series, e.g. 11, 50,
60, Violet series, such as Violet 1, 28, 87, etc., but are not limited to these. Commercially available dry transfer printing dyes developed for polyester, dyes and transfer papers suitable for transfer paper and acrylic fibers can also be used. In view of the purpose of the present invention, known printing methods can be applied to dyeing, but the present invention is particularly useful when dyeing is performed using a sublimation transfer printing method, and dyeing can be carried out under pressure up to ~300 g/cm 2 or without pressure. , which can be performed by heating up to ~250°C.
It is also possible to use the well-known Nao Printer 2F, Mail and Kanegisa, or to perform steaming after transfer printing. The present invention will be explained in more detail with reference to Examples below. Unless otherwise specified, percentages and parts shown in Examples are percentages and parts by weight, and various measured values were determined according to the following methods. Graft weight increase rate (%) = (Weight of graft polymerized fiber - Weight of unprocessed fiber) ÷ Weight of unprocessed fiber x 100 Dyeability is measured at 600 nm using a Hitachi UV-VIS photoelectric colorimeter.
The color fastness indicated by the magnitude (1 to 5 levels) of the surface dye density determined from the surface reflectance measured in 1 was evaluated according to the following JIS standards. That is, dry cleaning is L0860−1974, contamination is L0848−
1974D, friction is L0849−1971 (Gakushin type). Example 1 Scoured and bleached 16-momme silk habutae was soaked in a 1N sodium thiosulfate aqueous solution, squeezed to about 100% with a two-roll mangle, and then mixed with 20 parts of ethylene glycol diglycidyl ether and carbon tetrachloride. Processing liquid consisting of 70 parts and 10 parts of impropanol (common ratio approx. 20
2 times) and treated at 75-76°C for 3 hours. After treatment, it was washed with boiling acetone, soapy water, water, and dried. The weight increase rate due to this treatment is 17%
It was hot. This epoxy-treated silk cloth was placed in an aqueous emulsion (20 times the conventional ratio) containing 40% styrene, 3% nonionic emulsifier, 3% ammonium persulfate, and 0.04% formic acid based on the silk fiber, and the epoxy-treated silk fabric was heated to 85% for 30 minutes. After gradually raising the temperature to ℃, graft polymerization was performed at the same temperature for 30 minutes. After cooling to around room temperature, it was washed with water, further washed with soapy water at 50°C and warm water, and then air-dried to obtain graft polymerized silk fibers. After graft polymerization processing, the silk fibers were layered with transfer paper (blue) manufactured by Nippon Thermo Printex Co., Ltd., and transferred using a transfer printing machine (Neo Printer 2F model) manufactured by Naomoto Kogyo Co., Ltd.
Thermal transfer was performed at 230°C for 30 seconds. For comparison,
Comparative Example 1-1 is a case in which the dye was thermally transferred to the same silk habutae under the same conditions without epoxy compound treatment or graft polymerization treatment, and silk fiber was treated with an epoxy compound with resorcin diglycidyl ether and graft polymerization treatment was performed. Comparative Example 1-2 shows a case in which the dye was thermally transferred under the same conditions without treating the silk fiber with an epoxy compound, and Comparative Example 1-2 is a case in which the silk fiber was graft-polymerized with styrene in the same manner as above without being treated with an epoxy compound and the dye was thermally transferred in the same manner. 3. Comparative Examples 1-4 were cases in which polyester taffeta was transfer-dyed using the same dye and under the same conditions, and the results were as shown in Table 1, which summarizes the dyeability and color fastness of the dyes.

【衚】 䞊衚から明らかなように、絹繊維そのたたでは
比范䟋−のごずく圓然のこずながらほずんど
染着しないし、゚ポキシ化合物凊理のみ比范䟋
−でも染着は䞍十分である。なお、グラフ
ト重合加工のみした比范䟋−は、染着は䞀応
十分であるが、染色堅牢床が劣悪である。これに
察しお゚ポキシ化合物凊理埌、グラフト重合した
実斜䟋は比范䟋−のポリ゚ステルの堎合ず
同等の高い染着性を瀺し、か぀十分に実甚性があ
る耐ドラむクリヌニング性ず耐摩擊堅牢床を有し
おいる。特に実斜䟋の堎合、転写玙の色もポリ
゚ステル織物の比范䟋−ず同様に退色しおお
り、染料の気盞拡散が容易に起こ぀おいるこずが
わかる。これに察しお比范䟋−、−、
−では転写玙の退色床が劣り、拡散が䞍十分で
あるこずが知られる。 実斜䟋  10チオシアン酞カリりム氎溶液を98含浞し
た粟緎絹糞21䞭双を、レゟルシンゞグリ
シゞル゚ヌテル15郚、パヌクロル゚チレン60郚、
゚タノヌル10郚、−ヘキサン15郚よりなる加工
液に浞積し俗比玄15倍、70〜75℃で時間凊
理した。凊理埌、実斜䟋ず同様に凊理したずこ
ろ、付加量は12であ぀た。該繊維に察しお゚ト
キシ゚チルメタクリレヌト35、ヒドロキシ゚チ
ルアクリレヌト、非むオン性乳化剀、過
酞化ベンゟむル、蟻酞0.06を含む氎性乳濁
液俗比20倍に該゚ポキシ凊理絹糞を入れ、30
分間で80℃、45分間で85℃ずし、この枩床でさら
に15分間凊理した埌、実斜䟋ず同様に凊理し
た。該グラフト重合加工糞は織垃ずした埌、実斜
䟋ず同様な染料転写玙で同様に熱転写を行぀
た。結果は衚に瀺したが、該織垃は実斜䟋ず
同皋床に良奜な染色性ず実甚的な堅牢床を有しお
いた。 実斜䟋  ビニルシクロヘキセンゞオキシド10郚、プニ
ルグリシゞル゚ヌテル10郚、長鎖アルコヌルの゚
チレンオキシド付加物からなる起泡剀1.3郚、
−オクタン郚、ポリ゚チレンオキシド系安定剀
0.5郚、非むオン性界面掻性剀15郚、シリコヌン
系湿最剀0.2郚に、濃床が1Nになるように臭化カ
リりム氎溶液を加えた凊理液を垂販のオヌクス型
混合機䞭で発泡させた。該泡状組成物を粟緎挂癜
した16匁付絹矜二重に、アプリケヌタを甚いお塗
垃し、150に圧搟含浞させ、そのたたガラス容
噚内に密閉し、2450MHz箱型オヌブンに入れ、
600Wで分マむクロ波凊理をした。その埌、実
斜䟋ず同様に凊理したずころ、付加率はで
あ぀た。該繊維に察しおメタクリルアミド10、
−ゞ−−ブチルメタクリルアミド30、
非むオン性乳化剀、30過酞化氎玠氎、
濃硫酞0.05を含む氎性乳濁液俗比20倍に、
該゚ポキシ凊理垃を入れ、実斜䟋ず同様に凊理
した埌、実斜䟋ず同様な染料転写玙で同様に熱
転写を行぀た。結果を衚に瀺した。同衚の結果
を比范するず、グラフト重合したビニル単量䜓の
疎氎性の差によ぀お染着性に倚少差があるが、比
范䟋−のポリ゚ステルタフタず遜色のない耐
ドラむクリヌニング性ず耐摩擊堅牢性を瀺しおい
る。 実斜䟋  グリセリントリグリシゞル゚ヌテル10郚、プ
ニルグリシゞル゚ヌテル10郚、トリクロル゚タン
60郚、ブタノヌル10郚、デカリン10郚ずからなる
゚ポキシ加工液ず、1Nの酢酞ナトリりム氎溶液
ずを甚い、実斜䟋ず同様な条件で゚リ蚕垃を凊
理したずころ、付加量は11であ぀た。該加工垃
に察しおブチルメタクリレヌト35ずヘキシルア
クリレヌトずをスチレンの代わりに添加した
実斜䟋ず同様のグラフト重合加工液を甚い、該
゚ポキシ凊理垃を実斜䟋ず同様に凊理した埌、
日本サヌモプリンテツクス瀟補、転写玙赀を
䜿甚しお実斜䟋ず同䞀条件で熱転写を行぀た。
さらに実斜䟋ず同様な染着性及び染色堅牢床詊
隓を行い、衚に瀺した。比范のため、同䞀゚リ
蚕垃を䞡加工ずも行わず、同䞀染料を熱転写した
堎合を比范䟋−、゚ポキシ化合物だけ熱転写
染色した堎合を−、グラフト重合加工だけし
た埌、染色した堎合を−、ポリ゚ステルタフ
タを䞡加工せず同䞀条件で染色したものを比范䟋
−ずしお同衚に瀺した。
[Table] As is clear from the table above, if the silk fiber is used as it is, as in Comparative Example 1-1, it will hardly be dyed, and even if it is treated only with an epoxy compound (Comparative Example 1-2), the dyeing will not be sufficient. be. In Comparative Example 1-3, which was only subjected to graft polymerization, the dyeing was sufficient, but the color fastness was poor. On the other hand, Example 1, which was graft-polymerized after being treated with an epoxy compound, showed high dyeing properties equivalent to those of the polyester of Comparative Examples 1-4, and had sufficiently practical dry cleaning resistance and abrasion resistance. degree. In particular, in the case of Example 1, the color of the transfer paper also faded as in Comparative Examples 1-4 of the polyester fabric, indicating that the vapor phase diffusion of the dye occurred easily. On the other hand, Comparative Examples 1-1, 1-2, 1
-3, it is known that the degree of fading of the transfer paper is poor and the diffusion is insufficient. Example 2 Scoured silk thread (21 medium/2 pairs) impregnated with 98% of 10% potassium thiocyanate aqueous solution was mixed with 15 parts of resorcin diglycidyl ether, 60 parts of perchlorethylene,
It was immersed in a processing solution consisting of 10 parts of ethanol and 15 parts of n-hexane (about 15 times the standard ratio) and treated at 70 to 75°C for 3 hours. After the treatment, the same treatment as in Example 1 was carried out, and the amount added was 12%. The epoxy-treated silk thread was added to an aqueous emulsion (20 times the common ratio) containing 35% ethoxyethyl methacrylate, 5% hydroxyethyl acrylate, 3% nonionic emulsifier, 3% benzoyl peroxide, and 0.06% formic acid based on the fiber. and 30
The temperature was increased to 80° C. for 45 minutes and 85° C. for 45 minutes, and after further treatment at this temperature for 15 minutes, the same treatment as in Example 1 was carried out. The graft polymerized yarn was made into a woven fabric, and then thermally transferred using the same dye transfer paper as in Example 1. The results are shown in Table 1, and the woven fabric had good dyeability and practical fastness comparable to those of Example 1. Example 3 10 parts of vinyl cyclohexene dioxide, 10 parts of phenyl glycidyl ether, 1.3 parts of a foaming agent consisting of an ethylene oxide adduct of a long-chain alcohol, n
- 5 parts octane, polyethylene oxide stabilizer
A treatment solution prepared by adding an aqueous potassium bromide solution to a concentration of 1N to 0.5 parts of a nonionic surfactant, 15 parts of a nonionic surfactant, and 0.2 parts of a silicone wetting agent was foamed in a commercially available Oakes mixer. The foam composition was applied to a scouring and bleached 16 monme silk habutae using an applicator, compressed and impregnated to 150%, sealed in a glass container as it was, and placed in a 2450 MHz box oven.
Microwave treatment was performed at 600W for 3 minutes. Thereafter, when it was treated in the same manner as in Example 1, the addition rate was 9%. 10% methacrylamide for the fiber;
N,N-di-n-butyl methacrylamide 30%,
3% nonionic emulsifier, 30% hydrogen peroxide 8%,
In an aqueous emulsion containing 0.05% concentrated sulfuric acid (20 times the standard ratio),
The epoxy-treated cloth was placed and treated in the same manner as in Example 2, and then thermal transfer was performed in the same manner as in Example 1 using the same dye transfer paper. The results are shown in Table 1. Comparing the results in the same table, although there are some differences in dyeability due to differences in hydrophobicity of the graft-polymerized vinyl monomer, dry cleaning resistance is comparable to that of the polyester taffeta of Comparative Example 1-4. Demonstrates abrasion resistance. Example 4 10 parts of glycerin triglycidyl ether, 10 parts of phenyl glycidyl ether, trichloroethane
When Eri silkworm cloth was treated under the same conditions as in Example 1 using an epoxy processing liquid consisting of 60 parts, butanol, 10 parts, and 10 parts of decalin, and a 1N aqueous sodium acetate solution, the amount added was 11%. Ta. After treating the epoxy-treated fabric in the same manner as in Example 1 using the same graft polymerization solution as in Example 1 in which 35% butyl methacrylate and 5% hexyl acrylate were added instead of styrene to the treated fabric. ,
Thermal transfer was performed under the same conditions as in Example 1 using transfer paper (red) manufactured by Nippon Thermo Printex Co., Ltd.
Furthermore, the same dyeability and color fastness tests as in Example 1 were conducted and the results are shown in Table 2. For comparison, Comparative Example 4-1 is a case in which the same silkworm fabric is heat-transferred with the same dye without both treatments; Comparative Example 4-2 is a case in which only an epoxy compound is heat-transfer-dyed; and Comparative Example 4-2 is a case in which dyeing is performed after only graft polymerization processing Comparative Example 4-3 is shown in the same table as Comparative Example 4-3, and polyester taffeta dyed under the same conditions without being processed.

【衚】 衚から明らかなように、絹織垃そのたたでは
比范䟋−のごずくほずんど染着しない。゚ポ
キシ化合物凊理のは比范䟋−でも染着は
䞍十分である。なお、グラフト重合加工のみした
比范䟋−は、染着は比范的よいが染色堅牢床
が劣悪である。これに察しお実斜䟋は濃色に捺
染され、か぀耐ドラむクリヌニング性や耐摩擊堅
牢床もポリ゚ステルず同等の実甚性胜を有しおい
る。実斜䟋ず染料は異な぀おも、実斜䟋では
転写玙の退色が比范䟋−ず同様であるので、
染料の気盞拡散が容易に起こ぀おいるこずがわか
る。これに察しお比范䟋−、−、−
では転写玙の退色床も劣り、拡散が䞍十分である
こずが知られる。 実斜䟋  プロピレングリコヌルゞグリシゞル゚ヌテル20
郚ず氎玠化ビスプノヌルゞグリシゞル゚ヌテ
ル10郚、トル゚ン郚、炭玠数11〜15の鎖状第
アルコヌルの゚チレンオキシド付加物からなる噎
霧安定剀郚、䜎分子量ポリ゚チレンず非むオン
性界面掻性剀ずを含む乳濁液15郚に、濃床が
0.8Nになるよう硝酞ナトリりム氎溶液を加えた
凊理液を垂販のノズル振動匏噎霧機で噎霧させ
た。該霧状組成物を粟緎した兎毛垃に塗垃し、
160に圧搟含浞させた。以䞋、実斜䟋ず同様
に凊理した。付加量は15であ぀た。該垃に察し
おベンゞルメタクリレヌト35郚、ブチルアクリレ
ヌト郚ずを゚トキシ゚チルメタクリレヌトずヒ
ドロキシアクリレヌトずの代わりに甚いた実斜䟋
ず同様な凊理液䞭で、該゚ポキシ凊理垃を実斜
䟋ず同様に凊理した。次いで実斜䟋ず同様な
染料転写玙で同様に熱転写を行぀た。衚に瀺し
たように良奜な染着性ず十分な堅牢床が埗られ
た。 実斜䟋  プロピレングリコヌルゞグリシゞル゚ヌテル20
郚ずグリセリントリグリシゞル゚ヌテル郚ずを
レゟルシンゞグリシゞル゚ヌテルの代わりに甚
い、他は実斜䟋ず同様な凊理液でモヘダ垃を実
斜䟋ず同様に加工したずころ、付加量は16で
あ぀た。該垃に察しお−ブロモスチレン20郚、
スチレン10郚、ブトキシ゚チルメタクリレヌト10
郚ずをスチレンの代わりに甚いた実斜䟋ず同様
の凊理液で該゚ポキシ化合物凊理垃を、実斜䟋
ず同様に凊理した。次いで実斜䟋ず同様な染料
転写玙で同様に熱転写を行぀た。衚に瀺したよ
うな良奜な染着性ず十分な堅牢床が埗られた。 実斜䟋  −ゞグリシゞルアニリン郚ず、゚チレ
ングリコヌルゞグリシゞル゚ヌテル15郚、0.2郚
の非むオン性界面掻性剀、濃床が0.8Nになるよ
うに加えた塩化カリりム氎溶液からなる氎性乳濁
液に、矊毛モスリンを俗比20倍で浞積し、70℃で
時間尻した。以䞋、実斜䟋ず同様に凊理しお
付加量13の凊理垃を埗た。該垃に察しお−メ
チルスチレン35郚ずブトキシ゚チルアクリレヌト
郚ずをスチレンの代わりに甚い、実斜䟋ず同
様な凊理液䞭で該゚ポキシ凊理垃を実斜䟋ず同
様な条件で凊理した。次いでプナセツトブルヌ
C.I.Disperse Blue を含む染料転写玙で同
様に熱転写を行い、詊隓結果を衚に瀺した。な
お、䞡加工ずも行わない詊料を捺染した比范䟋
−、゚ポキシ凊理だけしお捺染した比范䟋−
、グラフト重合加工のみで捺染した比范䟋−
、ポリ゚ステルタフタを捺染した比范䟋−
も衚に瀺した。 実斜䟋はポリ゚ステルタフタを捺染した比范
䟋−ず同等の分散染料染着率ず、染色堅牢床
ずを瀺したが、゚ポキシ化合物凊理だけの比范䟋
−は染着量が䞍十分であり、グラフト重合加
工だけの比范䟋−は染着堅牢床が劣぀おお
り、いずれも実甚性に乏しい。
[Table] As is clear from Table 2, the silk woven fabric as it is is hardly dyed as in Comparative Example 4-1. Even with the epoxy compound treatment (Comparative Example 4-2), the dyeing was insufficient. In Comparative Example 4-3, which was only subjected to graft polymerization, the dyeing was relatively good, but the color fastness was poor. On the other hand, Example 4 is printed in a deep color and has practical performance equivalent to polyester in terms of dry cleaning resistance and abrasion fastness. Even though the dye was different from Example 1, the fading of the transfer paper in Example 4 was the same as in Comparative Example 4-4.
It can be seen that vapor phase diffusion of the dye occurs easily. On the other hand, Comparative Examples 4-1, 4-2, 4-3
It is known that the degree of color fading of the transfer paper is also poor and the diffusion is insufficient. Example 5 Propylene glycol diglycidyl ether 20
part, 10 parts of hydrogenated bisphenol A diglycidyl ether, 3 parts of toluene, and a chain-like secondary compound having 11 to 15 carbon atoms.
1 part of a spray stabilizer consisting of an ethylene oxide adduct of alcohol, 15 parts of an emulsion containing low molecular weight polyethylene and a nonionic surfactant at a concentration of
A treatment solution to which an aqueous sodium nitrate solution was added to give a concentration of 0.8N was sprayed using a commercially available nozzle vibrating sprayer. Applying the mist composition to a scoured rabbit blanket,
Press impregnated to 160%. Thereafter, the same treatment as in Example 3 was carried out. The amount added was 15%. The epoxy-treated fabric was treated in the same manner as in Example 2 in the same treatment solution as in Example 2, using 35 parts of benzyl methacrylate and 5 parts of butyl acrylate in place of ethoxyethyl methacrylate and hydroxyacrylate. Processed. Next, thermal transfer was performed in the same manner as in Example 4 using the same dye transfer paper. As shown in Table 2, good dyeability and sufficient fastness were obtained. Example 6 Propylene glycol diglycidyl ether 20
When a mohair cloth was processed in the same manner as in Example 2 using the same treatment solution as in Example 2 except that 1 part and 5 parts of glycerin triglycidyl ether were used in place of resorcin diglycidyl ether, the amount added was 16%. Ta. 20 parts of p-bromostyrene for the fabric;
10 parts styrene, 10 parts butoxyethyl methacrylate
The epoxy compound-treated fabric was treated with the same treatment solution as in Example 1 using styrene instead of
processed in the same way. Next, thermal transfer was performed in the same manner as in Example 4 using the same dye transfer paper. Good dyeability and sufficient fastness as shown in Table 2 were obtained. Example 7 Aqueous emulsion consisting of 5 parts of N,N-diglycidylaniline, 15 parts of ethylene glycol diglycidyl ether, 0.2 parts of a nonionic surfactant, and an aqueous potassium chloride solution added to a concentration of 0.8N. Wool muslin was immersed in the solution at a concentration 20 times that of ordinary wool, and kept at 70°C for 3 hours. Thereafter, the same treatment as in Example 1 was carried out to obtain a treated cloth with an addition amount of 13%. The epoxy-treated fabric was treated in the same treatment solution as in Example 1 under the same conditions as in Example 1, using 35 parts of p-methylstyrene and 5 parts of butoxyethyl acrylate in place of styrene. . Then, thermal transfer was performed in the same manner using dye transfer paper containing CIDisperse Blue 3, and the test results are shown in Table 3. In addition, Comparative Example 7, in which a sample was printed without both processing
-1. Comparative example 7, printed only with epoxy treatment -
2. Comparative example 7-, printed only by graft polymerization processing
3. Comparative example 7-4 of printing polyester taffeta
Also shown in Table 3. Example 7 showed the same disperse dye dyeing rate and color fastness as Comparative Example 7-4, which printed polyester taffeta, but Comparative Example 7-2, which was treated only with an epoxy compound, had insufficient dyeing amount. Comparative Example 7-3, which was only subjected to graft polymerization, had poor dye fastness, and both were poor in practicality.

【衚】 実斜䟋  ポリ゚ステル矊毛が5050の混玡サヌゞを
0.3Nのチオシアン化リチナヌム氎溶液に浞積し、
100に絞液した埌、゚ピクロルヒドリン郚、
ビニルシクロヘキサンオキシド郚、スチレンオ
キシド10郚、パヌクロル゚チレン40郚、ヘキサン
20郚、ブタノヌル10郚、メタノヌル10郚からなる
加工液に俗比15倍で浞積し、75℃で時間加熱を
し、以䞋実斜䟋ず同様に凊理した。付加量は12
でであ぀た。該垃に察しおオクチカルメタクリ
レヌト30郚、プノキシ゚チルメタクリレヌト10
郚ずを、スチレンの代わりに甚いた実斜䟋ず同
様の加工液で、該゚ポキシ凊理垃を実斜䟋ず同
様に凊理をした。次いで実斜䟋ず同䞀の転写玙
を甚い、同䞀条件で熱転写した。なお、同じサヌ
ゞを䜕ら加工せず捺染した堎合を比范䟋−、
゚ポキシ凊理だけしお捺染した堎合を比范䟋−
、グラフト重合加工だけしお捺染した堎合を比
范䟋−ずした。結果を衚に合わせ蚘した。
゚ポキシ化合物凊理だけの比范䟋−もかなり
濃色に染色されるが、これにグラフト重合加工を
行぀た本実斜䟋のほうが、染着性は䞀局増加し
おいる。たた、グラフト重合加工だけ行぀た比范
䟋−は、染着は濃色だが堅牢床が䞍十分であ
る。なお、比范䟋−は実斜䟋の比范䟋−
ずみなすこずもできる。 以䞊、実斜䟋及び比范䟋を調べれば明らかなよ
うに、たんぱく繊維が疎氎性の高い重合性有機単
量䜓を倧量にグラフト重合加工しお捺染染色しお
も、基質に匷固に染色しおいないので染色堅牢床
が䜎く、か぀ムラになりやすいのに鑑み、本発明
は䞀旊゚ポキシ化合物で圓該繊維を凊理するこず
によ぀お、防しわ性や防瞮性、耐光性、耐薬品性
を付䞎するずずもに、たんぱく繊維の芪氎性を枛
じお、捺染染色堅牢床やセツト性を向䞊させ、し
かる埌、グラフト重合しおさらに染着性を高め、
捺染染着性及び染色堅牢床を䞀段ず改善したので
ある。埓぀お、本発明によれば、たんぱく繊維及
びたんぱく繊維を含む垃垛などの構造物を分散染
料により昇華気盞染色し、ポリ゚ステルなど疎氎
性の高い合成繊維ず同等な染着性、染色堅牢床に
するこずができ、甚途拡倧に貢献する特城を有す
る。 発明の効果 このように本発明ではたんぱく繊維構造物又は
たんぱく繊維を含む構造物をたず゚ポキシ化合物
で凊理し、それら官胜性アミノ酞残基をヒドロキ
シアルキル化するこずによ぀お、適床な疎氎性を
均䞀に付䞎させる。その際、たんぱく繊維の特城
を損なうこずなく、防しわ性、耐光性、耐薬品性
などが恒久的に付䞎される。次いで疎氎性ビニル
単量䜓をグラフト重合するず、゚ポキシ化合物凊
理をしない堎合ず比范しお栌段に均䞀に繊維内に
グラフト重合䜓が沈積されるため、グラフト効率
が倧巟に増加すずずもに、倚量のビニル単量䜓を
グラフト重合させおも該グラフト重合繊維構造物
の物性の䜎䞋や、経時倉化による倉色や脆化も起
こらないこずが確認される。埓぀お分散染料で転
写捺染が濃色に、しかも堅牢に染色されるばかり
でなく、垯電性や耐光性なども著しく改良された
たんぱく繊維構造物もしくはたんぱく繊維を含む
構造物を埗るこずができる。
[Table] Example 8 50/50 polyester/wool blend serge
Immerse in 0.3N lithium thiocyanide aqueous solution,
After squeezing to 100%, add 5 parts of epichlorohydrin,
Vinyl cyclohexane oxide 5 parts, styrene oxide 10 parts, perchlorethylene 40 parts, hexane
The sample was immersed in a processing solution consisting of 20 parts of 20 parts, 10 parts of butanol, and 10 parts of methanol at 15 times the standard ratio, heated at 75°C for 2 hours, and treated in the same manner as in Example 1. Addition amount is 12
It was %. 30 parts of octical methacrylate, 10 parts of phenoxyethyl methacrylate for the cloth
The epoxy-treated fabric was treated in the same manner as in Example 1 using the same processing liquid as in Example 1 except that styrene was used instead of styrene. Next, thermal transfer was performed using the same transfer paper as in Example 7 under the same conditions. Comparative Example 8-1 is a case in which the same serge was printed without any processing.
Comparative Example 8 - Printing with only epoxy treatment
2. Comparative Example 8-3 was a case in which printing was performed only by graft polymerization. The results are also listed in Table 3.
Comparative Example 8-2, which was treated only with an epoxy compound, was also dyed in a considerably deep color, but in Example 8, which was subjected to graft polymerization, the dyeing property was further improved. Moreover, in Comparative Example 8-3, in which only graft polymerization was performed, the dyeing was deep, but the fastness was insufficient. Note that Comparative Example 7-4 is Comparative Example 8- of Example 8.
It can also be considered as 4. As is clear from examining the Examples and Comparative Examples above, even when protein fibers are subjected to graft polymerization processing with a large amount of highly hydrophobic polymerizable organic monomers and are printed and dyed, the substrate is not strongly dyed. Therefore, in view of the fact that the color fastness is low and it tends to become uneven, the present invention provides wrinkle resistance, shrink resistance, light fastness, and chemical resistance by treating the fiber with an epoxy compound. , reduce the hydrophilicity of protein fibers to improve printing color fastness and setting properties, and then perform graft polymerization to further improve dyeing properties.
This resulted in further improvements in print adhesion and color fastness. Therefore, according to the present invention, protein fibers and structures such as fabrics containing protein fibers are sublimated and vapor-phase dyed using disperse dyes to achieve dyeing properties and color fastness equivalent to highly hydrophobic synthetic fibers such as polyester. It has characteristics that contribute to the expansion of applications. Effects of the Invention As described above, in the present invention, a protein fiber structure or a protein fiber-containing structure is first treated with an epoxy compound, and the functional amino acid residues are hydroxyalkylated to uniformly achieve appropriate hydrophobicity. be given to At that time, wrinkle resistance, light resistance, chemical resistance, etc. are permanently imparted without impairing the characteristics of the protein fiber. Then, when a hydrophobic vinyl monomer is grafted, the graft polymer is deposited within the fiber much more uniformly than when no epoxy compound treatment is performed, so the grafting efficiency is greatly increased and a large amount of It is confirmed that even when the vinyl monomer is graft-polymerized, the physical properties of the graft-polymerized fiber structure do not deteriorate, nor does it change in color or become brittle due to changes over time. Therefore, it is possible to obtain a protein fiber structure or a protein fiber-containing structure which not only is dyed with a disperse dye in a deep and strong transfer print, but also has significantly improved chargeability and light resistance.

Claims (1)

【特蚱請求の範囲】  たんぱく繊維及びたんぱく繊維を含む構造物
を゚ポキシ化合物で凊理した埌、疎氎性ビニル系
化合物でグラフト重合したこずを特城ずする、分
散染料可染型たんぱく繊維及びたんぱく繊維を含
む構造物。  ゚ポキシ化合物で凊理し、その埌、疎氎性ビ
ニル系化合物でグラフト重合しお埗た分散染料可
染型たんぱく繊維及び圓該たんぱく繊維を含む構
造物を、分散染料、油溶性染料、塩基性染料、ベ
ンゞン可溶性染料、媒染染料及び建染め染料から
なる矀から遞ばれる少なくずも皮の染料を甚い
お捺染するこずを特城ずするたんぱく繊維及びた
んぱく繊維を含む構造物の捺染方法。  䞊蚘たんぱく繊維が、家蚕、倩蚕、゚リ蚕、
柞蚕などの絹繊維よりなる特蚱請求の範囲第項
蚘茉の捺染方法。  䞊蚘たんぱく繊維が、矊毛、カシミダ、モヘ
ダ、兎毛などの獣毛繊維よりなる特蚱請求の範囲
第項蚘茉の捺染方法。  䞊蚘゚ポキシ化合物が、䞀般匏 䜆し匏䞭、R1R2R3R4は氎玠原子又は
匏化合物を安定に存圚せしめ、か぀たんぱく繊維
ずの反応を劚げない任意の有機残基で、盞互に連
結しお環を圢成しおもよいで衚される少なくず
も皮の化合物である特蚱請求の範囲第項〜第
項いずれか項蚘茉の捺染方法。  䞊蚘有機残基がニトロ、ニトロ゜、シアノ、
む゜シアノ、ハロゲン、カルボニル、カルボキシ
ル、チオカルボニル、ゞチオカルボキシル、ヒド
ロキシル、アミノ、アミド、アルコキシル、゚ポ
キシ、スルホニル、スルフアニル、むミノ、むミ
ド、ホスホニル、ホスフむニル基や、それらの基
を眮換した、あるいは眮換しないアルキル、アル
ケニル、アルキニル、アラリキル、アリヌル、ア
ルコキシル、アリヌルオキシ、アリル、アリルオ
キシ基からなる矀から遞ばれるものである特蚱請
求の範囲第項蚘茉の捺染方法。  䞊蚘゚ポキシ化合物による凊理を、アルカリ
金属又はアルカリ土金属の䞭から遞ばれた金属の
䞭性塩ないし匱塩基性塩の皮又はそれ以䞊の氎
溶液又は氎性溶液の共存䞋で実斜する特蚱請求の
範囲第項〜第項いずれか項蚘茉の捺染方
法。  䞊蚘゚ポキシ化合物による凊理が、䞊蚘構造
物に゚ポキシ化合物又ぱポキシ化合物を含有す
る液状、あるいは霧状、泡状組成物を含浞させ、
予備也燥するこずなく、也熱、蒞熱あるいはマむ
クロ波凊理するこずによ぀お実斜される特蚱請求
の範囲第項〜第項いずれか項蚘茉の捺染方
法。  䞊蚘ビニル系化合物が䞀般匏 CH2CR1C6H4R2 䜆し匏䞭、R1は又はアルキル基で、R2は
又はアルコキシル、゚ポキシ、カルボアルコキ
シル、アルケニルオキシ、ニトロ、ハロゲン、シ
アノ、む゜シアノ、アミノ、カルボニル、ヒドロ
キシル、ゞチオカルボキシル、チオカルボニルな
どの基を眮換した、あるいは眮換しないアルキ
ル、アルケニル、アルキニル、アラリキル、アリ
ヌル、アルコキシ、アリヌルオキシ、アリル、ア
リルオキシ、アルカノむルオキシなどの基であ
るで衚わされるスチレンの誘導䜓の䞭から遞ば
れた皮又はそれ以䞊からなる特蚱請求の範囲第
項〜第項いずれか項蚘茉の捺染方法。  䞊蚘ビニル系化合物が䞀般匏 CH2CR1CO2R2 䜆し匏䞭、R1は又はハロゲン、アルキル
基を瀺し、R2はヒドロキシル、アミノ、アルコ
キシル、゚ポキシ、ハロゲン、カルボニル、カル
ボアルコキシル、アルケニルオキシル、ニトロ、
シアノ、む゜シアノ、チオカルボニル、ゞチオカ
ルボキシル、アルカノむルオキシルなどの基を眮
換した、あるいは眮換しないアルキル、アルケニ
ル、アルキニル、アラリキル、アリヌル、アリル
などの基であるで衚わされるアクリル酞及びメ
タクリル酞の゚ステル類の䞭から遞ばれた皮又
はそれ以䞊からなる特蚱請求の範囲第項〜第
項いずれか項蚘茉の捺染方法。  䞊蚘ビニル系化合物が䞀般匏 CH2CHOCOR1 䜆し匏䞭、R1はヒドロキシル、アミノ、シ
アノ、む゜シアノ、ニトロ、ハロゲン、゚ポキ
シ、カルボニル、チオカルボニル、ゞチオカルボ
キシル、アルカノむルオキシなどの基を眮換し
た、あるいは眮換しないアルキル、アリル、アリ
ヌル、アルケニル、アルキニルなどの基である
で衚わされるビニルアルコヌル誘導䜓の䞭から遞
ばれた皮又はそれ以䞊からなる特蚱請求の範囲
第項〜第項いずれか項蚘茉の捺染方法。  䞊蚘ビニル系化合物が䞀般匏 CH2CR1CONR2R3 䜆し匏䞭、R1は又はアルキル基を瀺し、
R2R3は又はヒドロキシル、゚ポキシ、シア
ノ、む゜シアノ、ニトロ、ハロゲン、カルボニ
ル、チオカルボニル、ゞチオカルボキシル、アル
コキシル、アリルオキシル、アリヌルオキシルな
どの基を眮換した、又は眮換しないアルキル、ア
リル、アリヌル、アルケニルなどの基であるで
衚わされるアクリルアミドやメタクリルアミドの
䞭から遞ばれた皮又はそれ以䞊からなる特蚱請
求の範囲第項〜第項いずれか項蚘茉の捺染
方法。  䞊蚘ビニル系化合物が、 CH2CR1C6H4R2、 CH2CR1CO2R2、 CH2CHOCOR1及び CH2CR1CONR2R3 で衚される化合物からなる矀から遞ばれる少なく
ずも皮の化合物である特蚱請求の範囲第項〜
第項いずれか項蚘茉の捺染方法。  グラフト重合が、脱酞玠系䞭で行われる特
蚱請求の範囲第項〜第項蚘茉の捺染方法。  グラフト重合が、ビニル系化合物の氎溶液
もしくは氎性分散液を䞊蚘構造物に含浞させお実
斜される特蚱請求の範囲第項〜第項いずれ
か項項蚘茉の捺染方法。  グラフト重合が、重合觊媒の䜿甚もしくは
゚ネルギヌ照射により行われる特蚱請求の範囲第
項〜第項いずれか項蚘茉の捺染方法。  グラフト重合が、ビニル化合物又はビニル
化合物を含有する液状あるいは霧状、泡状組成物
を䞊蚘構造物に含浞させ、予備也燥するこずな
く、也熱、蒞熱あるいはマむクロ波凊理するこず
によ぀お実斜される特蚱請求の範囲第項〜第
項いずれか項蚘茉の捺染方法。  䞊蚘捺染法が、昇華転写捺染法であるこず
を特城ずする特蚱請求の範囲第項〜第項い
ずれか項蚘茉の捺染方法。
[Scope of Claims] 1 Disperse dye-dyable protein fibers and protein fibers are characterized in that protein fibers and structures containing protein fibers are treated with an epoxy compound and then graft-polymerized with a hydrophobic vinyl compound. Containing structures. 2. Disperse dyeable protein fibers obtained by treatment with an epoxy compound and then graft polymerization with a hydrophobic vinyl compound and structures containing the protein fibers are treated with disperse dyes, oil-soluble dyes, basic dyes, benzene, etc. A method for printing protein fibers and structures containing protein fibers, the method comprising printing using at least one dye selected from the group consisting of soluble dyes, mordant dyes, and vat dyes. 3 The protein fibers mentioned above are domestic silkworms, natural silkworms, Eri silkworms,
The printing method according to claim 2, which is made of silk fibers such as citrus silkworm. 4. The printing method according to claim 2, wherein the protein fiber is an animal hair fiber such as wool, cashmere, mohair, or rabbit hair. 5 The above epoxy compound has the general formula (However, in the formula, R 1 , R 2 , R 3 , and R 4 are hydrogen atoms or arbitrary organic residues that allow the compound of the formula to exist stably and do not interfere with the reaction with protein fibers, and are interconnected to form a ring. The textile printing method according to any one of claims 2 to 4, wherein the printing method is at least one compound represented by: 6 The above organic residue is nitro, nitroso, cyano,
isocyano, halogen, carbonyl, carboxyl, thiocarbonyl, dithiocarboxyl, hydroxyl, amino, amido, alkoxyl, epoxy, sulfonyl, sulfanyl, imino, imido, phosphonyl, phosphinyl groups, and alkyl substituted or unsubstituted for these groups; The printing method according to claim 5, wherein the printing method is selected from the group consisting of alkenyl, alkynyl, aralkyl, aryl, alkoxyl, aryloxy, allyl, and allyloxy groups. 7. A patent claim in which the treatment with the epoxy compound is carried out in the coexistence of an aqueous solution or an aqueous solution of one or more neutral salts or weakly basic salts of metals selected from alkali metals or alkaline earth metals. The textile printing method according to any one of the ranges 2 to 6. 8 The treatment with the epoxy compound impregnates the structure with the epoxy compound or a liquid, mist, or foam composition containing the epoxy compound,
The textile printing method according to any one of claims 2 to 7, which is carried out by dry heat, steam or microwave treatment without pre-drying. 9 The above vinyl compound has the general formula CH 2 = CR 1 C 6 H 4 R 2 (wherein, R 1 is H or an alkyl group, and R 2 is H or alkoxyl, epoxy, carbalkoxyl, alkenyloxy, nitro, Alkyl, alkenyl, alkynyl, aralkyl, aryl, alkoxy, aryloxy, allyl, allyloxy, alkanoyloxy, substituted or unsubstituted with groups such as halogen, cyano, isocyano, amino, carbonyl, hydroxyl, dithiocarboxyl, thiocarbonyl, etc. The textile printing method according to any one of claims 2 to 8, comprising one or more styrene derivatives represented by the following groups. 10 The above vinyl compound has the general formula CH 2 = CR 1 CO 2 R 2 (wherein, R 1 represents H, halogen, or an alkyl group, and R 2 represents hydroxyl, amino, alkoxyl, epoxy, halogen, carbonyl, or carbonyl group). Alkoxyl, alkenyloxyl, nitro,
Acrylic acid and methacrylic acid esters represented by alkyl, alkenyl, alkynyl, aralkyl, aryl, allyl, etc., substituted or unsubstituted with groups such as cyano, isocyano, thiocarbonyl, dithiocarboxyl, alkanoyloxyl, etc. Claims 2 to 8 consist of one or more types selected from
The printing method described in any one of the paragraphs. 11 The above vinyl compound has the general formula CH 2 =CHOCOR 1 (wherein R 1 is substituted with a group such as hydroxyl, amino, cyano, isocyano, nitro, halogen, epoxy, carbonyl, thiocarbonyl, dithiocarboxyl, alkanoyloxy, etc.) (substituted or unsubstituted alkyl, allyl, aryl, alkenyl, alkynyl, etc.)
The textile printing method according to any one of claims 2 to 8, comprising one or more types selected from vinyl alcohol derivatives represented by the following. 12 The above vinyl compound has the general formula CH 2 = CR 1 CONR 2 R 3 (wherein, R 1 represents H or an alkyl group,
R 2 and R 3 are H or alkyl, allyl, aryl substituted or unsubstituted with groups such as hydroxyl, epoxy, cyano, isocyano, nitro, halogen, carbonyl, thiocarbonyl, dithiocarboxyl, alkoxyl, allyloxyl, aryloxyl, etc. The textile printing method according to any one of claims 2 to 8, comprising one or more selected from acrylamide and methacrylamide represented by groups such as , alkenyl, etc. 13 The above vinyl compound is from a compound represented by CH 2 = CR 1 C 6 H 4 R 2 , CH 2 = CR 1 CO 2 R 2 , CH 2 = CHOCOR 1 and CH 2 = CR 1 CONR 2 R 3 At least one compound selected from the group consisting of:
The printing method according to any one of Section 8. 14. The textile printing method according to claims 2 to 13, wherein the graft polymerization is carried out in a deoxidizing system. 15. The textile printing method according to any one of claims 2 to 13, wherein the graft polymerization is carried out by impregnating the structure with an aqueous solution or dispersion of a vinyl compound. 16. The textile printing method according to any one of claims 2 to 15, wherein the graft polymerization is carried out using a polymerization catalyst or by energy irradiation. 17 Graft polymerization is carried out by impregnating the above structure with a vinyl compound or a liquid, mist, or foam composition containing a vinyl compound and subjecting it to dry heat, steam, or microwave treatment without pre-drying. Claims 2 to 1
The printing method described in any one of Section 6. 18. The textile printing method according to any one of claims 2 to 17, wherein the textile printing method is a sublimation transfer textile printing method.
JP61095395A 1986-04-23 1986-04-23 Production of disperse dye dyeable protein fiber and structure containing said protein fiber and method for printing the same Granted JPS62250276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61095395A JPS62250276A (en) 1986-04-23 1986-04-23 Production of disperse dye dyeable protein fiber and structure containing said protein fiber and method for printing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61095395A JPS62250276A (en) 1986-04-23 1986-04-23 Production of disperse dye dyeable protein fiber and structure containing said protein fiber and method for printing the same

Publications (2)

Publication Number Publication Date
JPS62250276A JPS62250276A (en) 1987-10-31
JPS6361428B2 true JPS6361428B2 (en) 1988-11-29

Family

ID=14136462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61095395A Granted JPS62250276A (en) 1986-04-23 1986-04-23 Production of disperse dye dyeable protein fiber and structure containing said protein fiber and method for printing the same

Country Status (1)

Country Link
JP (1) JPS62250276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635715B2 (en) * 1989-02-27 1994-05-11 朝日染色株匏䌚瀟 High-fastness dyeing method for protein fiber products

Also Published As

Publication number Publication date
JPS62250276A (en) 1987-10-31

Similar Documents

Publication Publication Date Title
US4260389A (en) Finishing process
US4455147A (en) Transfer printing
WO2014063028A1 (en) Process for coloring textile materials
CN1148480C (en) Method for treating fibrous cellulosic materials
JPH02142810A (en) Water-soluble or water-dispersible copolymer, and its manufacture and use
US4810254A (en) Wet-fastness properties of sulphur dyestuffs dyeings on cellulose treated with poly-di-allyl-ammonium salt
EP0232519B1 (en) Copolymer, process for its preparation and its use
US4374176A (en) Modifier for fibers or fibrous structures and modified fibers or fibrous structures
JPS6361428B2 (en)
CN1863961A (en) Imbibing solutions, method of pretreating substrates with imbibing/coating solutions in preparation for digital printing, and substrates produced therefrom
US2973239A (en) Color fixing agents
JPS6361427B2 (en)
JPS6220317B2 (en)
JPS5912793B2 (en) Method for improving the fastness of dyed products
JPH04211407A (en) Polymerized quaternary diallylammonium compound
JPH0340940A (en) Method for dyeing or printing glass fiber
JPS5818480A (en) Treatment of polyester fiber
DE899638C (en) Method for sizing fiber material
JPS6327471B2 (en)
JPH04316687A (en) Coloring of cellulosic fiber structure containing protein fiber
JPS6014158B2 (en) Vat dye dyeing method for textile structures
JPH05195449A (en) Chlorine fastness improved for dyed cellulose-based textile product and treatment using the same
JP3528014B2 (en) Melange dyeing method for fabric
JPS6035466B2 (en) Dry transfer printing method
JPS6170083A (en) Manufacture of artificial leather dyeable in deep color