JPS6361412A - Substrate for magnetic disk - Google Patents

Substrate for magnetic disk

Info

Publication number
JPS6361412A
JPS6361412A JP18894287A JP18894287A JPS6361412A JP S6361412 A JPS6361412 A JP S6361412A JP 18894287 A JP18894287 A JP 18894287A JP 18894287 A JP18894287 A JP 18894287A JP S6361412 A JPS6361412 A JP S6361412A
Authority
JP
Japan
Prior art keywords
substrate
glass
film
less
surface roughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18894287A
Other languages
Japanese (ja)
Other versions
JPH0330208B2 (en
Inventor
Toshiaki Wada
和田 俊朗
Yoshiaki Katsuyama
勝山 義昭
Junichi Nakaoka
潤一 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP18894287A priority Critical patent/JPS6361412A/en
Publication of JPS6361412A publication Critical patent/JPS6361412A/en
Publication of JPH0330208B2 publication Critical patent/JPH0330208B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To improve the characteristics of a deposited magnetic film to be formed on the surface of a substrate and the reliability thereof by specifying the surface roughness and nonporousness of the substrate. CONSTITUTION:The substrate has a glass coating film having <=80Angstrom surface roughness, 0.3-200mum film thickness on the nonporous and distortionless surface and <=10<-6>/deg relative difference in coefft. of thermal expansion from the ceramic substrate at 20 deg.C - glass distortion point on the surface of an alumina ceramic material having fine pores of <=5mum and >=96% relative theoretical density. The temp. corresponding to about 10<14.5> poise viscosity of glass is determined as the distortion point.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無孔化、無歪表面層を有し、良好なる表面粗
度を有する記録ディスク用、特に磁気ディスク用基板に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a substrate for recording disks, particularly magnetic disks, which has a non-porous, non-strained surface layer and has good surface roughness.

[従来の技術及び解決すべき問題点] 一般に磁気記録ディスク用基板としては1次の様な特性
が要求される。
[Prior Art and Problems to be Solved] Generally, substrates for magnetic recording disks are required to have first-order characteristics.

(+) 0.3μm以下の低ヘッド浮上高さに伴い磁気
ヘッドの安定な浮上と記録特性の安定性を得るため研摩
後の表面粗度が良好なこと。
(+) Good surface roughness after polishing to ensure stable flying of the magnetic head and stability of recording characteristics due to the low head flying height of 0.3 μm or less.

(2)基板表面に形成される磁性薄膜の欠陥の要因とな
る突起や礼状へこみがないこと。
(2) There are no protrusions or dents that may cause defects in the magnetic thin film formed on the surface of the substrate.

(3)機械加工、研摩、或いは使用時の高速・回転に十
分耐える機械的強度を有すること。
(3) Must have sufficient mechanical strength to withstand machining, polishing, or high speed/rotation during use.

(4)耐食性、耐候性、且つ耐熱性を有すること。(4) It should have corrosion resistance, weather resistance, and heat resistance.

従来磁気ディスク用基板には八で合金が使用されている
が、A(合金基板では材料の結晶異方性、材料欠陥及び
材料中に存在する非金属介在物等のため機械加工や研摩
工程において、これらが基板表面に突起として残存した
り或いは、脱落して凹みを生じ十分な研)Yを行なって
も表面粗度は、せいぜい200人程度であり、突起や凹
み、うねりのある表面状態で高密度磁気記録用ディスク
用基板材としては十分でない。
Conventionally, alloys have been used for magnetic disk substrates, but alloy substrates have problems in machining and polishing processes due to material crystal anisotropy, material defects, and nonmetallic inclusions present in the material. , these may remain as protrusions on the surface of the substrate, or may fall off and cause dents. It is not sufficient as a substrate material for high-density magnetic recording disks.

磁気ディスク基板の加工の良否が、そのまま。The quality of the processing of the magnetic disk board is the same.

磁気ディスクのランアウト、加速度成分、媒体の信号エ
ラー等に影響する。
Affects magnetic disk runout, acceleration components, media signal errors, etc.

ところで、AJ金合金場合はメタル材の為。By the way, AJ gold alloy is a metal material.

ビッカース硬度も100程度(セラミックの場合600
以」二)であり1曲げ強度も1000kg/ cj (
セラミックの場合4000kg/c♂以」−)であって
、高密度記録になるに従ってスクラッチ、キズ、平坦度
Vickers hardness is around 100 (600 for ceramics)
2), and the bending strength is also 1000kg/cj (
In the case of ceramics, the weight is 4000 kg/c♂ or more), and as the recording density becomes higher, scratches, scratches, and flatness occur.

うねりなどの形状情度もきびしくなってきており、加工
は一層困難となってきている。砥粒加工の際も砥粒がう
め込まれやすく、欠陥となる。また、AI!合金基板の
場合2表面の耐食性、耐候性、汚染を防ぐ上で旋削工程
、ポリッシング工程、保管の際、清浄度、防錆、汚れ等
で製造工程上充分な配慮が必要となっている。
Shape considerations such as waviness are becoming more stringent, making processing even more difficult. During abrasive processing, the abrasive grains tend to become embedded, resulting in defects. Also, AI! In the case of alloy substrates, sufficient consideration must be given to cleanliness, rust prevention, dirt, etc. in the manufacturing process during the turning process, polishing process, and storage to prevent corrosion resistance, weather resistance, and contamination of the surface.

Aで合金基板の改善のためその表面に硬度の高い膜を形
成することも知られている。−例として、AJ合金表面
にアルマイ!・層を形成し硬度を増加して研摩加工性を
向上するための方法がとられるが、アルマイト形成中に
Aで合金中の微量不純物(Fe、Mn、S i)が金属
間加工物として析出するため、アルマイト処理後その部
分が凹みの欠陥の発生要因となっている。母材合金の高
純度化を図ることは製造プロセス上至難に近く、さらに
A1合金の場合耐食性、 2Sf浄度の面でも取りあつ
かいが問題となっている。またA!合金表面へのスパッ
タリングやメッキによる薄膜媒体形成の場合、A72合
金と磁性膜の化学反応や拡散の問題が生じ、さらに工程
により磁性膜に熱処理を加える必要があるが、Aff1
合金基板は変形し品<。
It is also known to form a highly hard film on the surface of an alloy substrate in order to improve the alloy substrate. - For example, aluminium on the surface of AJ alloy!・A method is used to form a layer to increase hardness and improve polishing workability, but during alumite formation, trace impurities (Fe, Mn, Si) in the alloy precipitate as intermetallic workpieces. Therefore, after alumite treatment, that part becomes a cause of dent defects. Increasing the purity of the base alloy is nearly impossible in terms of the manufacturing process, and in the case of A1 alloy, there are also problems in its handling in terms of corrosion resistance and 2Sf purity. A again! When forming a thin film medium by sputtering or plating on the alloy surface, problems arise such as chemical reaction and diffusion between the A72 alloy and the magnetic film, and it is also necessary to heat-treat the magnetic film during the process.
The alloy substrate is a deformed product.

形状精度が悪くなると共に面振れ、加速度が上昇するた
め、熱処理を行なうことは困難である。
It is difficult to perform heat treatment because the shape accuracy deteriorates and surface runout and acceleration increase.

なお、A(基板上にS iO、A I! 203等の酸
化物をスパッタリングにより形成する方法もあるが、A
(基板とスパッタ形成後の密着力が弱いという欠点があ
る。
Note that there is also a method of forming oxides such as SiO, A I!203, etc. on the A (substrate) by sputtering;
(The drawback is that the adhesion to the substrate after sputtering is weak.

これらのle合金系ディスク基板に対し、今日アルミナ
系セラミック材料が、A℃合金材料に比べ、耐熱性、耐
摩耗性、耐候性、絶縁性、及び機械的強度のすぐれてい
ることにより各種分野に広範囲の用途に使用されるよう
になったが、基板表面に媒体処理の施される磁気ディス
ク用基板では媒体の薄膜化、高密度化に伴って、基板表
面の無孔化、無歪基板の必要性に迫られている。
In contrast to these LE alloy disk substrates, alumina ceramic materials are currently being used in various fields due to their superior heat resistance, wear resistance, weather resistance, insulation properties, and mechanical strength compared to A℃ alloy materials. Although it has come to be used in a wide range of applications, magnetic disk substrates whose surfaces are treated with media have become thinner and more dense, making the substrate surfaces non-porous and creating distortion-free substrates. It is forced by necessity.

一般にセラミック基板の製造方法としては単結晶法や、
金型成形、ラバープレス、ドクターブレード法等により
成形の後焼結する方法、さらに高密度化の為、ホットプ
レス法(HP)、熱間静水圧プレス法(HIP法)があ
るが、前者の単結晶化法では製造コストが高い上に大口
径基板の製造は困難であり、又、HIP法やHF’法に
より。
Generally, the manufacturing method for ceramic substrates is the single crystal method,
There are methods of sintering after molding using mold molding, rubber press, doctor blade method, etc., and hot press method (HP) and hot isostatic pressing method (HIP method) for higher density. With the single crystallization method, manufacturing costs are high and it is difficult to manufacture large diameter substrates, and with the HIP method and the HF' method.

高密度化された基板にあっても5μm以下の微細孔が基
板に存在するため磁気ディスク用基板に使用する場合は
表面微細欠陥によるドロップアウトの発生や、ヘッドク
ラッシュ等信頼性を損う問題があった。
Even in high-density substrates, there are micropores of 5 μm or less in the substrate, so when used for magnetic disk substrates, there are problems such as dropouts due to surface micro defects and head crashes that impair reliability. there were.

また一般にディスク基板等に適用しうる表面研厚法とし
ては、メカノケミカル研摩法は、St基板、GGG結晶
、フェライト等の表面物性を劣化させずに仕上げる方法
として公知であるが、メカノケミカル研摩法を微細孔の
存在するセラミックス材に適用する場合は、微細孔がセ
ラミック表面に露出した状態となり、薄膜媒体を有する
ディスク用基板としては不十分であり、又アルミナ系セ
ラミック材にメカノケミカル研摩法を適用すると各材質
或いは結晶面での化学侵食の速度が異なるため、微細孔
の露出と同時に結晶段差を生ずる虞れがあった。
In general, as a surface polishing method that can be applied to disk substrates, etc., mechanochemical polishing is known as a method for finishing St substrates, GGG crystals, ferrite, etc. without degrading their surface properties. When applied to ceramic materials with micropores, the micropores are exposed on the ceramic surface, making it unsatisfactory as a substrate for a disk with a thin film medium. When applied, since the rate of chemical erosion is different for each material or crystal plane, there is a risk that crystal steps may occur at the same time as micropores are exposed.

[解決すべき課届] 本発明は、上述の如き従来法の欠点を改良したセラミッ
ク材料を基材とする磁気ディスク用基板を提供すること
を目的とする。
[Problem to be Solved] An object of the present invention is to provide a magnetic disk substrate using a ceramic material as a base material, which improves the drawbacks of the conventional method as described above.

r本発明の解決手段及び作用効果〕 本発明はアルミナ系セラミック基板表面上に形成する被
管磁性膜の特性向上、信頼性を保護するために表面粗度
を80Å以下、好ましくは50Å以下、更には20Å以
下までの無孔化、且つ、無歪層に仕上げた基板を基本的
特徴とする。
rSolving Means and Effects of the Present Invention] The present invention provides surface roughness of 80 Å or less, preferably 50 Å or less, and further The basic feature is a substrate with no pores down to 20 Å or less and a strain-free layer.

即ち本発明の磁気ディスク用基板は、5μm以下の微細
孔を有する相対理論密度9696以上のアルミナ系セラ
ミック材料表面上に2表面粗度80Å以下1gつ無孔化
無歪表面の膜厚0.3μm〜200μm、前記セラミッ
ク基板との熱膨張係数の相対差が20°C〜ガラス歪点
において1O−6/deg、以下のガラスコーティング
膜を有することを特徴とする。
That is, the magnetic disk substrate of the present invention has two pore-free and strain-free surfaces with a surface roughness of 80 Å or less and a film thickness of 0.3 μm on the surface of an alumina ceramic material having a relative theoretical density of 9696 or more and having micropores of 5 μm or less. It is characterized by having a glass coating film with a relative difference in coefficient of thermal expansion of ~200 μm and the ceramic substrate of 1 O −6 /deg at a temperature of 20° C. to glass strain point.

歪点とはガラスの粘度約1014.5ポイズに相当する
温度を言う。
The strain point refers to the temperature corresponding to the viscosity of glass of approximately 1014.5 poise.

本発明で無歪表面とは表面加工流動層(Beilbyl
ayer)厚さ50Å以下(エリプソメータでΔIIJ
定)をいい、好ましくは20Å以下を言う。また、無孔
化とは表面に0.2μmをこえる孔が存在しないことを
いい、好ましくは0.1μmをこえる孔が存在しないこ
とをいう。
In the present invention, a strain-free surface is defined as a surface-treated fluidized bed (Beilbyl surface).
ayer) thickness 50 Å or less (ΔIIJ with ellipsometer)
20 Å or less, preferably 20 Å or less. Furthermore, "non-porous" means that there are no pores larger than 0.2 μm on the surface, preferably no pores larger than 0.1 μm.

本発明のコーティング膜に用いるガラスにはソーダ石灰
ガラス(Na  0−CaO−8in2系)、鉛ガラス
(KOP b OS t O2系〉。
The glasses used for the coating film of the present invention include soda lime glass (Na 0-CaO-8in2 type) and lead glass (KOP b OS t O2 type).

ホウケイ酸ガラス(N a  OB 203S i02
系)、アルミナケイ酸ガラス(CaO−MgO−AJ!
  O−3iO□系)等のケイ酸塩系ガラスが用いられ
るが、その軟化点は組成により様々であり、薄膜媒体形
成の時、被着磁性膜に200℃以上の熱処理を行なう必
要がある場合には軟化点の高いガラスを適宜使用すれば
よく、また熱処理温度が低い場合にはどのようなガラス
を使用してもよい。さらにガラスと基材との熱膨張係数
の差が大きいとそれらの相互間応力が増し。
Borosilicate glass (N a OB 203S i02
system), alumina silicate glass (CaO-MgO-AJ!
Silicate glasses such as O-3iO A glass having a high softening point may be used as appropriate, and any glass may be used if the heat treatment temperature is low. Furthermore, if the difference in thermal expansion coefficient between the glass and the base material is large, the stress between them will increase.

反りや破壊等の問題が生じるため、ガラスとセラミック
基材の熱膨張係数の相対差がI X 10−6/deg
、以下であることを必要とする。又ガラスコーティング
膜表面に圧縮応力がかかる方が良いため、ガラスの熱膨
張係数が基材の熱膨張係数よりも小であるのが好ましい
。なお熱膨張係数のt目射差はできるだけ小さく、かつ
基材およびガラスの20℃〜歪点における熱膨張係数の
温度変化は同一傾向を有するのが最も好ましい。
Because problems such as warping and destruction occur, the relative difference in thermal expansion coefficient between glass and ceramic base material is I x 10-6/deg.
, requires that: Further, since it is better to apply compressive stress to the surface of the glass coating film, it is preferable that the coefficient of thermal expansion of the glass is smaller than that of the base material. It is most preferable that the t-direction difference in the coefficient of thermal expansion is as small as possible, and that the temperature changes in the coefficient of thermal expansion from 20° C. to the strain point of the base material and the glass have the same tendency.

又本発明のガラスによるアルミナ系基板のコーティング
膜はグレージング法、スパッタ法、蒸着法、イオンブレ
ーティング法、金属のアルコキシド溶液等による化学合
成法等によって形成することができる。コーティング膜
の形成に当っては。
The coating film of the glass of the present invention on an alumina-based substrate can be formed by a glazing method, a sputtering method, a vapor deposition method, an ion blasting method, a chemical synthesis method using a metal alkoxide solution, or the like. When forming a coating film.

基板とガラスとの接着密度及びヌレ性を改善するために
S L O2膜を形成してから行なうとより効果的であ
る。
It is more effective to perform this after forming the S L O2 film in order to improve the adhesive density and wettability between the substrate and the glass.

[好適な実施の態様] 発明者は種々検討の結果、5μm以下(好ましくは3μ
m以下)の微細孔を表面に有する相対理論密度96%以
上のアルミナ系セラミック材表面に上部波膜との絶縁性
を保持する上で、0.5μm〜220μm厚の上記基板
との熱膨張係数(20℃〜歪点)の相対差が10−6/
 deg、以下であるガラスのコーティング膜を形成後
、前記薄膜表面を粒径0.1μm以下、純度99%以上
のS t O2。
[Preferred Embodiment] As a result of various studies, the inventor found that
In order to maintain insulation from the upper wave film on the surface of an alumina ceramic material having a relative theoretical density of 96% or more and having micropores on the surface of 0.5 μm to 220 μm thick, (20℃~strain point) relative difference is 10-6/
After forming a glass coating film having a particle size of 0.1 μm or less and a purity of 99% or more, the surface of the thin film was coated with S t O2 having a particle size of 0.1 μm or less and a purity of 99% or more.

MgO,CeO、A、e  O又はF e 20 a微
粉の少なくとも1種を0.1〜20vt%純水中に懸濁
した懸濁液で0.05〜2kg/ca?の荷重にて研摩
加工することにより膜厚0.3μm〜200μm1表面
用度80Å以下(好ましくは50Å以下、さらに20Å
以下まで)且つ無孔化、無歪の表面層が得られ前記基板
表面上に形成される被着磁性膜の特性向上・信頼性の保
障が得られることを知見した。
A suspension of at least one of MgO, CeO, A, e O, or Fe 20 a fine powder suspended in 0.1 to 20 vt% pure water is 0.05 to 2 kg/ca? By polishing with a load of
It has been found that a pore-free and strain-free surface layer can be obtained, and that the properties and reliability of the magnetic film formed on the substrate surface can be improved and the reliability guaranteed.

本発明のアルミナ系セラミック材としてはA j!  
O、A 1 0   T iCT t O2系。
As the alumina ceramic material of the present invention, A j!
O, A 1 0 T iCT t O2 system.

A j!  OT  I  O2系、Aff1203−
Fe20 −TiC系等、Aで203を主成分とするア
ルミナ系セラミック材であって、金型成形、ラバープレ
ス、ドクターブレード法等により形成され、さらに熱間
成形法(HP法)、熱間静水圧プレス法(HIP法)に
て焼結処理して得られるものか好ましい。なおこれらの
アルミナ系セラミック材は、MgO,N i O,Cr
203等の公知の粒成長抑制剤、その他の焼結助剤を含
むことができ、アルミナ平均結晶粒径は5μm以下のも
のが好ましい。なおこのようなアルミナ系セラミック基
材は市販の密度9696以」二の一般品規格のものとし
て入手できる。
A j! OT I O2 series, Aff1203-
It is an alumina-based ceramic material mainly composed of 203 in A, such as Fe20-TiC system, and is formed by die molding, rubber press, doctor blade method, etc., and is also formed by hot forming method (HP method), hot static method, etc. Preferably, it is obtained by sintering using a hydraulic press method (HIP method). These alumina ceramic materials include MgO, N i O, Cr
It may contain a known grain growth inhibitor such as No. 203 and other sintering aids, and preferably has an average alumina grain size of 5 μm or less. Incidentally, such alumina ceramic base material is commercially available as a general product standard with a density of 9696 or higher.

本発明のアルミナ系セラミック基板において表面の微細
孔が5μm以上であると前記微細孔部にコーティング膜
を形成する時に気泡が発生又は残留し、膜形成時の精度
を悪くするため微細孔は5μm以下、好ましくは3μm
以下にする必要がある。又本発明におけるアルミナ系セ
ラミック基板上のガラスコーティング被膜の厚さは夫々
の用途により選択されるが、コーティング法としてグレ
ージング法を用いた場合は被膜厚さ】0μm未満ではコ
ーティングの厚みを一定に保つことが困難であり、且つ
被膜表面のメカノケミカル研摩法(M CP法)により
所要の表面粗度及び無孔化。
If the micropores on the surface of the alumina ceramic substrate of the present invention are 5 μm or more, air bubbles will occur or remain when forming a coating film in the micropores, impairing the accuracy during film formation, so the micropores should be 5 μm or less. , preferably 3 μm
It is necessary to do the following. In addition, the thickness of the glass coating film on the alumina ceramic substrate in the present invention is selected depending on each application, but if the glazing method is used as the coating method, the coating thickness should be kept constant at less than 0 μm. However, it is difficult to achieve the required surface roughness and porosity by mechanochemical polishing (MCP method) of the coating surface.

無歪化ができず、又220μmをこえると基材との膨張
係数の差より生じる応力により基材内に大きな歪みを発
生する虞れがあるので膜形成時の膜厚は10μm〜22
0μmにする必要がある。又コーティング法としてスパ
ッタ法を用いた場合は被膜厚さ 0.5μm未満ではコ
ーティングの厚みを一定に保つことが困難であり、且つ
被膜表面のメカノケミカル研19法(MCP法)により
所要の表面粗度及び無孔化、無歪化ができず、又220
μmをこえると基板との膨張係数の差より生じる応力に
より基材内に大きな歪みを発生する虞れがあるので膜形
成時の膜厚は0.5μm〜220μmにする必要かあり
、膜形成速度の点より好ましくは15μm〜25μn1
である。研摩後のコーティング膜の厚さは。
It is not possible to make the film strain-free, and if the thickness exceeds 220 μm, there is a risk of large distortion occurring in the base material due to stress caused by the difference in expansion coefficient with the base material, so the film thickness at the time of film formation is 10 μm to 22
It is necessary to set it to 0 μm. In addition, when sputtering is used as a coating method, it is difficult to maintain a constant coating thickness when the coating thickness is less than 0.5 μm, and the required surface roughness is achieved by mechanochemical polishing19 (MCP method) of the coating surface. It is impossible to make it hard, pore-free, and distortion-free, and 220
If the thickness exceeds μm, there is a risk that large distortions will occur in the base material due to stress caused by the difference in expansion coefficient with the substrate. From the point of view, preferably 15 μm to 25 μn1
It is. What is the thickness of the coating film after polishing?

同様な理由及び研摩精度を考慮してグレージング法を用
いた場合は3〜200μm7スバツク法を用いた場合は
 0.3〜200μm、好ましくは10〜20μmとさ
れる。
Considering the same reason and polishing accuracy, the thickness is 3 to 200 .mu.m when the glazing method is used.7 The thickness is 0.3 to 200 .mu.m when the subac method is used, preferably 10 to 20 .mu.m.

又2本発明におけるMCP法の条件として純水中に懸濁
するSiO、MgO,CeO2又はA、Q。03微粉の
粒径は0.1μmをこえると被研摩コーティング膜表面
に庇が発生し2表面粗度を劣化するので好ましくない。
2. SiO, MgO, CeO2 or A, Q suspended in pure water as a condition of the MCP method in the present invention. If the particle size of the 03 fine powder exceeds 0.1 μm, eaves will occur on the surface of the coated film to be polished, which will deteriorate the surface roughness.

又、純水中への前記微粉の含有全は0.lvt%未満で
は研摩効果が少なく、又20wt%をこえると各微粉に
よる水和熱が発生し易く、或いはゲル化し易く、かつ、
活性が大となって表面状態が劣化するので0.1〜20
νt%とする。この純水とは、金属イオン、無機物、汚
濁物、特にを機汚濁物や浮遊物を含まない水でイオン交
換水、蒸溜水等でよい。
Further, the total content of the fine powder in pure water is 0. If it is less than lvt%, the polishing effect is small, and if it exceeds 20wt%, the heat of hydration due to each fine powder is likely to be generated or gelation is likely to occur, and
0.1 to 20 because the activity increases and the surface condition deteriorates.
Let it be νt%. This pure water is water that does not contain metal ions, inorganic substances, or pollutants, especially machine pollutants or suspended matter, and may be ion-exchanged water, distilled water, or the like.

ラップ盤としては、Snハンダ合金、Pb等の軟質金属
、或いは硬質クロス等が最適である。
As the lapping machine, Sn solder alloy, soft metal such as Pb, hard cloth, etc. are most suitable.

ラップ荷重は、  0.05kg/c♂未満では所要の
表面粗度が得られず、且つ加工能率が低く又、2kg/
cJをこえると、加工能率の点では好ましいが研摩精度
が劣化するので好ましくない。
If the lap load is less than 0.05 kg/c♂, the required surface roughness cannot be obtained, and the machining efficiency is low;
If it exceeds cJ, it is preferable from the point of view of processing efficiency, but it is not preferable because the polishing accuracy deteriorates.

なお9本発明の基板を両面記録用磁気ディスクに用いる
場合は、アルミナ系セラミック基板両面に、ガラスコー
ティング膜を形成し1両市間時にMCPすることにより
両面の薄膜中の内部応力は、相殺され、平坦度のすぐれ
、且つ表面11/i″及び無孔化、無歪のすぐれた基板
が得られる。
In addition, when the substrate of the present invention is used in a double-sided recording magnetic disk, by forming a glass coating film on both sides of the alumina-based ceramic substrate and applying MCP at one time, the internal stress in the thin film on both sides is canceled out. A substrate with excellent flatness, a surface of 11/i'', no pores, and no distortion can be obtained.

本発明のガラスコーティング膜形成アルミナ系セラミッ
ク基板の場合は、Af金合金比べ機械的強度も強く、砥
粒加工での形状精度の管理も比較的容易となる。さらに
、耐食性、耐候性に、特別配慮する必要もなく1表面の
汚染も、絶縁薄膜をさらにスパッタリングにより形成す
る際、スパッタクリーニングにより表面の清浄化が可能
である。
In the case of the alumina-based ceramic substrate on which the glass coating film is formed according to the present invention, the mechanical strength is stronger than that of the Af-gold alloy, and the control of shape accuracy during abrasive processing is relatively easy. Further, there is no need to pay special attention to corrosion resistance and weather resistance, and even if one surface is contaminated, the surface can be cleaned by sputter cleaning when an insulating thin film is further formed by sputtering.

また、A(合金を旋削加工した際2表面には加工変質層
か残留しているのに対して本発明のアルミナ系セラミッ
ク基板の場合は、メカノケミカルポリッシュ仕上げによ
り表面とバルクとの応力歪の差異は生じず、基板にコー
ティングされる媒体への歪の転写は生じない。
In addition, when turning A (alloy), a process-affected layer remains on the surface, whereas in the case of the alumina ceramic substrate of the present invention, the stress strain between the surface and bulk is reduced by mechanochemical polishing. No difference occurs and no strain transfer to the media coated on the substrate occurs.

即ち1本発明による基板のコーティング膜はガラスであ
るため、結晶状態はアモルファスの均一構造となってい
る。さらに本発明における研摩加工方法により表面加工
歪も生じないようにすることも可能となった。
Namely, since the coating film of the substrate according to the present invention is made of glass, the crystalline state is amorphous and has a uniform structure. Furthermore, the polishing method of the present invention makes it possible to prevent surface processing distortion from occurring.

このような磁気ディスク基板を用いることにより信頼性
の高い畠密度磁気ディスク記録媒体を製作することがで
きる。また、出発アルミナ系セラミック基材としては、
相対理論密度96%以上の規格のものを用いることがで
き量産上を利である。
By using such a magnetic disk substrate, a highly reliable Hatake density magnetic disk recording medium can be manufactured. In addition, as the starting alumina ceramic base material,
A material having a relative theoretical density of 96% or more can be used, which is advantageous in terms of mass production.

[実施例] 以下本発明を実施例により説明する。[Example] The present invention will be explained below with reference to Examples.

実施例1 基板としてHIP処理された表面に5μm以下の微M 
孔ヲ*する’J法直径200mm x/!〆さ2 mt
nO)純度99.95%且つ相対理論密度97%、熱膨
張係数(20℃〜ガラス歪点) 77X 10−7/ 
deg、、平均結晶粒径4μmのAで203セラミツク
材を用い、前記基板の表面粗度を200Å以下に精密ラ
ップ法にて精密研摩した後、前記基板上に熱膨張係数(
20℃〜歪点) 74X LN7/ dcg、、軟化点
720℃、歪点510℃、粉末粒径200メツシユスル
ーでS iO272wt%、 Na  O13wt%、
 K20 8wt%、ZnO4vt%、 Ajj  O
3vt9.6.  Ti022wt%を組成とするガラ
スをペースト状にして約100μmの膜厚で塗布した後
、 1000℃で5分間保持し、空気中にてコーティン
グ膜を形成した。この時の昇温速度は500℃/Ilr
、冷却温度はガラス歪点までは500℃/11rであり
、ガラス歪点にて1時間保持し、歪取りを行なってから
徐冷した。この時表面の精度は5μm、気泡はほとんど
みられなかった。
Example 1 Fine M of 5 μm or less on the HIP-treated surface of the substrate
Hole *J method diameter 200mm x/! 〆sa 2 mt
nO) Purity 99.95% and relative theoretical density 97%, thermal expansion coefficient (20°C to glass strain point) 77X 10-7/
deg,, using A 203 ceramic material with an average crystal grain size of 4 μm, the substrate was precision polished to a surface roughness of 200 Å or less by a precision lapping method, and then the thermal expansion coefficient (
20℃~strain point) 74X LN7/dcg, softening point 720℃, strain point 510℃, powder particle size 200 mesh through, SiO272wt%, NaO13wt%,
K20 8wt%, ZnO4vt%, Ajj O
3vt9.6. Glass having a composition of 22 wt % Ti0 was made into a paste and applied to a film thickness of about 100 μm, and then held at 1000° C. for 5 minutes to form a coating film in air. The temperature increase rate at this time is 500℃/Ilr
The cooling temperature was 500° C./11r up to the glass strain point, and the glass was held at the glass strain point for 1 hour, and then slowly cooled after removing the strain. At this time, the surface accuracy was 5 μm, and almost no bubbles were observed.

次に形成されたコーティング膜面を粒径2000メツシ
ユスルーのGCC砥粒粉粒径6000メツシユスルーC
e O2砥拉を用いて前加工を行ないその後2粒径o、
otμmのS t O2微粉末を5wt%純水中に懸濁
した懸濁液中でラップ盤としてSn盤を用いラップ荷M
 O,5kg/cdにてMCPL、て表面粗度40人に
仕上げたその時の取代は3μmで平坦度は1μmであっ
た。
Next, apply GCC abrasive powder with a particle size of 2000 mesh through C to a particle size of 6000 mesh through C.
e Perform pre-processing using an O2 abrasive, then 2 grain sizes o,
A lapped M
The material was finished to a surface roughness of 40 using MCPL at O, 5 kg/cd, and the machining allowance at that time was 3 μm and the flatness was 1 μm.

第1図(A)に本発明におけるMCP後のガラスコーテ
ィング膜の表面状況を、同図(B)にコーティング前の
基板の表面状況を示す。
FIG. 1(A) shows the surface condition of the glass coating film after MCP in the present invention, and FIG. 1(B) shows the surface condition of the substrate before coating.

第1図における表面状況は触針径0.1μmRの薄膜段
差測定器(Talystep)にて測定した結果である
The surface condition in FIG. 1 is the result of measurement using a thin film step measuring device (Talystep) with a stylus diameter of 0.1 μmR.

第1図よりセラミック基板表面の微細孔は本発明による
ガラスコーティング膜のMCPにより表面層の無孔化が
得られ1表面粗度40人に仕上げられたことは明らかで
ある。
It is clear from FIG. 1 that the fine pores on the surface of the ceramic substrate were made non-porous by the MCP of the glass coating film according to the present invention, resulting in a surface roughness of 40.

膜と、基板の付着力を判定する方法として硬度計を用い
て打玉を50gより順次1000 gまで増大しガラス
コーティング膜が剥離するかを判定基準としたところ、
 1000gまで剥離はなく9強固な付着力を示した。
As a method to judge the adhesion between the film and the substrate, we used a hardness meter to increase the amount of balls hit from 50g to 1000g, and the criterion was whether the glass coating film peeled off.
There was no peeling up to 1,000 g, and strong adhesion was exhibited.

表面加工流動層厚さはエリプソメータで測定したところ
、20Å以下であった。
The thickness of the surface-treated fluidized bed was measured with an ellipsometer and was 20 Å or less.

実施例2 基板としてHIP処理された表面に3μm以下の微細孔
を有する寸法直径100+n+n X厚さ2 ++n+
、純度99純度9九、95 °C〜ガラス歪点) 78xlO  /deg.、  
A I!20385vt%のA R 2 O a  T
 t C系セラミック材(平均結晶粒径4μm)を用い
,前記基板の表面粗度を200Å以下に精密研摩後,前
記基板上に高周波スパッタ装置を用い,ターゲツト板と
して寸法直径350+n+n X厚さ6IIlfflの
純度99.9%のS t O 2を使用し,約0.1μ
m程度スパッタ膜を形成後,熱膨張係数(20℃〜歪点
) 77x to−7/ deg.、軟化点470℃,
歪点380℃でPb060wt%,Zn019vt%,
 B  O  12wt%,  S L 02 9vt
%を組成とするガラスを200メツシユスルーまで粉砕
後。
Example 2 Dimensions having micropores of 3 μm or less on the HIP-treated surface as a substrate: diameter 100+n+n x thickness 2 ++n+
, purity 99, purity 99, 95 °C ~ glass strain point) 78xlO /deg. ,
AI! 20385vt% A R 2 O a T
After precision polishing the surface roughness of the substrate to 200 Å or less using a C-based ceramic material (average crystal grain size 4 μm), a high frequency sputtering device was used on the substrate to form a target plate with dimensions of diameter 350+n+n x thickness 6IIffl. Using S t O 2 with a purity of 99.9%, approximately 0.1μ
After forming a sputtered film of about m, the coefficient of thermal expansion (20°C to strain point) is 77x to-7/deg. , softening point 470℃,
Pb060wt%, Zn019vt% at strain point 380℃,
B O 12wt%, S L 02 9vt
After crushing glass with a composition of % to 200 mesh through.

ペースト状にして30μmの膜厚を塗布し大気中にて8
00℃で10分間保持しコーティングを行なった。この
時昇温速度は500℃/Hrで400°Cにて1時間保
持後,同様の500℃/Hrの昇温速度にて800℃ま
で昇温し,10分間保持した。冷却速度は,歪点までは
500℃/)Irで冷却し,歪点にて1時間保持した後
徐冷した。形成したコーティング膜を粒径0.05μm
のC e O 2微粉末を2vt%純水中に懸濁した懸
濁液中でラップ盤として硬質クロスを使用しラップ荷重
1kg/c4にてMCPにより表面粗度を40人に仕上
げたそのときの取代は20μmであった。
Make it into a paste and apply it to a film thickness of 30μm and leave it in the air for 8 hours.
The coating was carried out by holding at 00°C for 10 minutes. At this time, the temperature was raised at a rate of 500°C/Hr, and the temperature was maintained at 400°C for 1 hour, and then the temperature was raised to 800°C at the same rate of 500°C/Hr, and held for 10 minutes. The cooling rate was 500° C./)Ir until the strain point was reached, and the sample was held at the strain point for 1 hour and then slowly cooled. The formed coating film has a particle size of 0.05 μm.
A hard cloth was used as a lapping machine in a suspension of C e O 2 fine powder suspended in 2vt% pure water, and the surface roughness was finished to 40 by MCP at a lapping load of 1 kg/c4. The machining allowance was 20 μm.

第2図(A)に本実施例のMCP後のガラスコーティン
グ膜の表面状況を同図(B)にコーティングの基材の表
面状況を示す。なお表面状況は実施例1と同一の薄膜段
差測定器を使用した。
FIG. 2(A) shows the surface condition of the glass coating film after MCP of this example, and FIG. 2(B) shows the surface condition of the coating substrate. Note that the same thin film step measuring device as in Example 1 was used to measure the surface condition.

第2図よりセラミック基板表面の微細孔は本発明による
ガラスコーティング膜のM C Pにより表面層の無孔
化が得られ1表面粗度40人に仕上げられたことは明ら
かである。
It is clear from FIG. 2 that the fine pores on the surface of the ceramic substrate were made non-porous by the MCP of the glass coating film according to the present invention, and a surface roughness of 40 was achieved.

表面加工流動層(Bellby 1ayer)厚さは2
0Å以下であった。
Surface treatment fluidized bed (Bellby 1ayer) thickness is 2
It was 0 Å or less.

実施例3 基材としてHIP処理された表面に5μm以下の微細孔
を有する寸法直径200mm x厚さ2 +n+n,相
対理論相対理論密度9彰 10  /deg.、 A A203[15wt%のA
(203−TiC系セラミック材(アルミナ平均結晶粒
径4μm,TiC平均結晶粒径2μm)を用い,前記基
板の表面粗度を200Å以下に精密ラップ法にて精密研
摩した後、前記基材上に高周波スパッタ装置を用い、タ
ーゲツト板として熱膨張係数74×IO″″7/ dc
g、 (20〜510℃)2寸法直径350mm xr
vさ6mmのS i O272wt%、  N a 2
 0 12wt 96゜K2O6wt%、 Z n O
4vt%、−A j! 20 a 3 vt%。
Example 3 Base material having micropores of 5 μm or less on the HIP-treated surface Dimensions: diameter 200 mm x thickness 2 + n + n, relative theoretical density 9 ko 10 /deg. , A A203 [15 wt% A
(Using a 203-TiC ceramic material (alumina average crystal grain size 4 μm, TiC average crystal grain size 2 μm), the surface roughness of the substrate was precision polished to 200 Å or less by a precision lapping method, and then Using a high frequency sputtering device, the target plate has a thermal expansion coefficient of 74 x IO''''7/dc.
g, (20-510℃) 2 dimensions diameter 350mm xr
S i O2 72 wt%, N a 2 with a v length of 6 mm
0 12wt 96゜K2O6wt%, Z n O
4vt%, -A j! 20 a3 vt%.

T iO23wt%を組成とするガラスを使用してスパ
ッタAr圧1 x 10−5mbar到達排気の後スパ
ッタリングを行なった。基板面の洗浄の為、正スパッタ
前に表面層を500人程度逆スパッタクリーニングで除
去した。
Sputtering was performed using glass having a composition of 23 wt% TiO after evacuation to reach an Ar pressure of 1 x 10-5 mbar. To clean the substrate surface, approximately 500 surface layers were removed by reverse sputter cleaning before forward sputtering.

正スパッタの投入パワーは3kWである。基板側に負の
バイアス(−100V)を印加した。バイアス効果によ
り、セラミックボア部のステップカバレージが図られ、
ボア部にも、ガラスが付着される。なおスパッタ膜面の
表面粗度は500人程度であった。従来の酸化物のスパ
ッタ法ではスパッタ速度が遅く、膜付けに時間を要した
が電極間距離を40mmとして投入パワーを大きくした
ことにより、スパッタレートは500人/m1nで、2
0.czm形成するのに400分を要した。
The input power for normal sputtering was 3 kW. A negative bias (-100V) was applied to the substrate side. The bias effect provides step coverage of the ceramic bore,
Glass is also attached to the bore. Note that the surface roughness of the sputtered film surface was about 500. In the conventional oxide sputtering method, the sputtering speed was slow and it took a long time to form a film, but by setting the distance between the electrodes to 40 mm and increasing the input power, the sputtering rate was 500 sputtering/m1n, which was 2.
0. It took 400 minutes to form czm.

次に形成されたスパッタ膜面を粒径0.01μmのS 
iO2微粉末を5wt%純水中に懸濁した懸濁液中でラ
ップ盤としてSn盤を用いラップ荷重0.5kg/c−
にてMCPして表面粗度40人に仕上げたその時の取代
は3μmで平坦度は1μmであった。
Next, the surface of the sputtered film was coated with S of grain size 0.01 μm.
In a suspension of iO2 fine powder suspended in 5wt% pure water, an Sn disc was used as a lapping machine and the lapping load was 0.5 kg/c-
MCP was carried out to give a surface roughness of 40. At that time, the machining allowance was 3 μm and the flatness was 1 μm.

本実施例により得られたMCP後のスパッタ被膜の表面
状況、スパッタ前の基板の表面状況は。
The surface condition of the sputtered film after MCP and the surface condition of the substrate before sputtering obtained in this example are as follows.

夫々第3図(A)、 (B)に示す。なお表面状況は実
施例1と同一の薄膜段差II定器を使用した。
These are shown in FIGS. 3(A) and 3(B), respectively. For the surface condition, the same thin film step II measuring device as in Example 1 was used.

以上の通り9本発明は基板欠陥に起因した製品の歩留低
下を防止すると共に、無孔化基板面に形成される被着磁
性膜の特性保障、信頼性向上に−a効である。
As described above, the present invention prevents a decrease in product yield due to substrate defects, and is also effective in ensuring the characteristics and improving the reliability of the magnetized film formed on the surface of the non-porous substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図2第2図及び第3図の各(A)、 (B)は。 夫々本発明の実施例1,2及び3の表面状況の測定結果
を示すグラフである。いずれについても(A)は研摩後
のガラスコーティング膜表面、(B)はコーティング前
のアルミナ基材表面を示す。
1, 2, 2 and 3 (A) and (B). 3 is a graph showing the measurement results of the surface conditions of Examples 1, 2, and 3 of the present invention, respectively. In each case, (A) shows the surface of the glass coating film after polishing, and (B) shows the surface of the alumina base material before coating.

Claims (1)

【特許請求の範囲】[Claims] 5μm以下の微細孔を有する相対理論密度96%以上の
アルミナ系セラミック材料表面上に、表面粗度80Å以
下、且つ無孔化無歪表面の膜厚0.3μm〜200μm
、前記基板との熱膨張係数の相対差が10^−^6/d
eg.以下であるガラスのコーティング膜を有すること
を特徴とする記録ディスク用基板。
On the surface of an alumina-based ceramic material having micropores of 5 μm or less and a relative theoretical density of 96% or more, a surface roughness of 80 Å or less and a film thickness of 0.3 μm to 200 μm on a non-porous and unstrained surface.
, the relative difference in thermal expansion coefficient with the substrate is 10^-^6/d
eg. A recording disk substrate characterized by having a glass coating film as follows.
JP18894287A 1987-07-30 1987-07-30 Substrate for magnetic disk Granted JPS6361412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18894287A JPS6361412A (en) 1987-07-30 1987-07-30 Substrate for magnetic disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18894287A JPS6361412A (en) 1987-07-30 1987-07-30 Substrate for magnetic disk

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59169409A Division JPS6148123A (en) 1984-08-15 1984-08-15 Substrate for magnetic disk and its production

Publications (2)

Publication Number Publication Date
JPS6361412A true JPS6361412A (en) 1988-03-17
JPH0330208B2 JPH0330208B2 (en) 1991-04-26

Family

ID=16232605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18894287A Granted JPS6361412A (en) 1987-07-30 1987-07-30 Substrate for magnetic disk

Country Status (1)

Country Link
JP (1) JPS6361412A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838107A (en) * 1971-09-13 1973-06-05
JPS4842705A (en) * 1971-09-29 1973-06-21

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4838107A (en) * 1971-09-13 1973-06-05
JPS4842705A (en) * 1971-09-29 1973-06-21

Also Published As

Publication number Publication date
JPH0330208B2 (en) 1991-04-26

Similar Documents

Publication Publication Date Title
JPH044655B2 (en)
JPH0330209B2 (en)
KR100188901B1 (en) A glass-ceramic substrate for a magnetic disk
JP2886872B2 (en) Magnetic disk substrate and magnetic disk
JP2002358626A (en) Glass substrate for information recording medium and magnetic information recording medium using the same
JPS60138730A (en) Substrate for magnetic disc
JPS62120629A (en) Magnetic disk and its production
CN110431627B (en) Magnetic disk substrate and magnetic disk
JP4218839B2 (en) Glass substrate for information recording medium and magnetic information recording medium using the same
JPS6288137A (en) Production of substrate for magnetic disk
JP2006099949A (en) Glass substrate for magnetic recording medium and magnetic recording medium
WO2006106627A1 (en) Process for producing glass substrate for magnetic disk and process for producing magnetic disk
JP2000207733A (en) Magnetic disc, production thereof and magnetic recorder employing the same
JPH044656B2 (en)
JPS6361412A (en) Substrate for magnetic disk
JP3512703B2 (en) Method of manufacturing glass substrate for magnetic recording medium and method of manufacturing magnetic recording medium
JPS61131229A (en) Substrate for magnetic disk and its manufacture
JPH10241134A (en) Glass substrate for information-recording medium and magnetic recording medium using the same
JPH0352128B2 (en)
JPS6398836A (en) Manufacture of substrate for magnetic disk
JPS60229224A (en) Substrate for magnetic disk and its production
JP2998952B2 (en) Glass substrate for recording medium and method for producing recording medium
JPS61132576A (en) Substrate for magnetic disc and manufacture
JP3564631B2 (en) A method for manufacturing a glass substrate for an information recording medium, a method for manufacturing an information recording medium, a method for manufacturing a glass substrate for a magnetic disk, and a method for manufacturing a magnetic disk.
JP2016532235A (en) Glass substrate for magnetic disk and magnetic disk for heat-assisted magnetic recording