JPS6361399B2 - - Google Patents

Info

Publication number
JPS6361399B2
JPS6361399B2 JP16948380A JP16948380A JPS6361399B2 JP S6361399 B2 JPS6361399 B2 JP S6361399B2 JP 16948380 A JP16948380 A JP 16948380A JP 16948380 A JP16948380 A JP 16948380A JP S6361399 B2 JPS6361399 B2 JP S6361399B2
Authority
JP
Japan
Prior art keywords
anode material
electrolysis
plating
brightener
plating bath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16948380A
Other languages
Japanese (ja)
Other versions
JPS5794600A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16948380A priority Critical patent/JPS5794600A/en
Publication of JPS5794600A publication Critical patent/JPS5794600A/en
Publication of JPS6361399B2 publication Critical patent/JPS6361399B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は硫酸銅めつき浴に陽極物質を補給する
方法に関する。 従来、硫酸銅めつき浴は装飾用めつきあるいは
防食効果を高めるための中間めつきとして多用さ
れているが、近年添加剤の開発により、すぐれた
めつき物性が得られるようになり、電気回路とし
て高い信頼性が要求されるプリント回路のスルホ
ールめつきに実用化されつつある。 しかしながら、プリント回路基板のスルホール
めつきは、電子部品のハンダ付け、部品としての
稼動時の発生熱あるいは環境温度の変化等、種々
の熱変化の影響を受け、膨張係数の異なる材料よ
り構成されているスルホールめつき部にストレス
が発生し、熱の影響を繰返し受けることにより、
遂にはめつき層の破断に至る。第1図はプリント
回路基板のスルホールめつきを溶融共晶ハンダに
浸漬して熱衝撃を与える試験を繰返した場合のめ
つき層の破断により不良化の発生率を示したもの
で、浸漬を繰返すことにより不良発生率が急激に
増加している。 従つて、プリント回路基板のスルホールめつき
は、それが使用される機器の信頼性のためにも、
熱衝撃に対する高度の耐久性が要求される。 スルホールめつきの熱衝撃に対する耐久性は、
硫酸銅めつき浴の場合、光沢剤の添加によつて大
きく改善される。しかしながら、この効果も光沢
剤の添加濃度によつて影響を受ける。第1表は製
造者の異る3種の市販の光沢剤について、それぞ
れの処方に従つて最適濃度を100として、その濃
度を変化させた場合に得られるスルホールめつき
の熱衝撃に対する耐久性を、20回の熱衝撃試験の
繰返しの結果で定性的に示したものである。これ
らのスルホールめつきには外観上の変化は見られ
ておらず、熱衝撃に対する耐久性が影響を受けて
おり、特に光沢剤の過剰濃度の場合に大きな影響
があらわれる傾向がある。 ところが、これら市販の光沢剤はその内容が極
秘にされている場合が多く、従つてその浴中濃度
The present invention relates to a method of replenishing a copper sulfate plating bath with anode material. Conventionally, copper sulfate plating baths have been widely used as decorative plating or intermediate plating to enhance anticorrosion effects, but with the development of additives in recent years, it has become possible to obtain excellent plating properties, making it suitable for use in electrical circuits. It is being put into practical use for through-hole plating in printed circuits, which requires high reliability. However, through-hole plating of printed circuit boards is affected by various thermal changes such as soldering of electronic components, heat generated during operation of components, and changes in environmental temperature, and is made of materials with different coefficients of expansion. Stress occurs in the through-hole plating area, which is repeatedly exposed to the effects of heat.
Eventually, the fitted layer will break. Figure 1 shows the incidence of defects due to breakage of the plating layer when the through-hole plating of a printed circuit board is repeatedly immersed in molten eutectic solder and subjected to thermal shock tests, and the immersion is repeated. As a result, the rate of defective products is rapidly increasing. Therefore, through-hole plating of printed circuit boards is important for the reliability of the equipment in which it is used.
A high degree of durability against thermal shock is required. The durability of through-hole plating against thermal shock is
In the case of copper sulfate plating baths, the addition of brighteners provides a significant improvement. However, this effect is also influenced by the concentration of brightener added. Table 1 shows the durability against thermal shock of through-hole plating obtained by varying the optimum concentration of 100 according to the respective formulations for three types of commercially available brighteners from different manufacturers. This is qualitatively shown by the results of 20 repeated thermal shock tests. No change in appearance has been observed in these through-hole platings, but the durability against thermal shock is affected, and particularly in the case of an excessive concentration of brightener, this tends to be greatly affected. However, the contents of these commercially available brighteners are often kept strictly confidential, and therefore the concentration in the bath is unknown.

【表】 の定量分析は極めて困難である。めつき浴中の光
沢剤を管理する一般的な方法としてはハルセル試
験があるが、この方法では光沢剤濃度の過少分の
管理については可能であるが、過剰分については
正確に管理できない欠点がある。 一方、めつき浴中の光沢剤濃度の変動は、通常
のめつきサイクルによる光沢剤の電解消耗による
ものの他に、電解によつて消費され減少した陽極
物質を補給した際に生ずるものがある。前者の電
解消耗による光沢剤の減少は、ゆるやかな定常的
消費であるため、この変化量については定期的な
スルホールめつきの析出状態あるいは得られたス
ルホールめつきの熱衝撃試験によつて、光沢剤濃
度の管理、即ち適正な光沢剤補給量の管理が可能
である。 しかしながら、後者の陽極物質の補給にともな
う光沢剤の消耗については、その変化が急激であ
り、適正な管理方法がなく、その結果めつき製品
にトラブルが発生し易い。第2表には、補給陽極
物質による光沢剤の消耗量を市販光沢剤3種につ
いて測定した結果を示す。 このような光沢剤の急激な消耗についての理論
は必ずしも明確ではないが、第2表の実験結果や
現象的な観察およびクロマトグラフイー、あるい
は原子吸光分光光度計による定性分析などによ
り、次のようなことが判明した。 まず現象的には、電解に供する前の陽極物質で
ある含リン銅の表面は、銅特有の半光沢色を呈し
ているが、電解を経たものは黒褐色の表面被膜、
いわゆるブラツクフイルムが生成している。新し
Quantitative analysis of [Table] is extremely difficult. A general method for controlling brighteners in plating baths is the Hull Cell test, but although this method allows for the control of under-concentrations of brighteners, it has the disadvantage that it cannot accurately control excess brightener concentrations. be. On the other hand, fluctuations in brightener concentration in the plating bath occur not only due to electrolytic consumption of the brightener during normal plating cycles but also due to replenishment of reduced anode material consumed by electrolysis. In the former case, the decrease in brightener due to electrolytic consumption is a slow steady consumption, so the amount of change can be determined by periodically determining the precipitation state of through-hole plating or by thermal shock testing of the obtained through-hole plating. In other words, it is possible to manage the appropriate amount of brightener replenishment. However, with regard to the latter case, the consumption of the brightener due to the replenishment of the anode material changes rapidly, and there is no proper management method, and as a result, troubles are likely to occur in plated products. Table 2 shows the results of measuring the amount of brightener consumption by supplementary anode material for three commercially available brighteners. The theory behind such rapid depletion of brighteners is not necessarily clear, but based on the experimental results in Table 2, phenomenological observations, chromatography, and qualitative analysis using an atomic absorption spectrophotometer, it is as follows. It turned out that. First, in terms of phenomena, the surface of phosphorous-containing copper, which is an anode material, before being subjected to electrolysis has a semi-glossy color characteristic of copper, but after electrolysis, it has a blackish brown surface coating.
A so-called black film is produced. new

【表】 い陽極物質を添加する前のめつき液と、新しい陽
極物質を補給して電解を行なつた後のめつき液と
についてハルセル試験を行なうと、仕上り外観の
指標となる光沢範囲が顕著に狭くなり、明らかに
光沢剤成分がブラツクフイルム形成のために消耗
されたことが認められる。 一方、機器分析によれば、ブラツクフイルムの
成分中には銅およびリンの他に、有機物と考えら
れるいくつかの成分が検出され、これは光沢剤に
起因するものと推定される。 従来、陽極物質を補給する場合には、陽極物質
をトリクレン等の有機溶剤、あるいはアルカリ溶
液や界面活性剤で処理して、表面を脱脂した後、
硫酸等により酸化被膜を除去する清浄化処理を行
なつて、本めつき装置中に装着する方法が一般的
であるが、その結果光沢剤の定常的な補給量の管
理に変調を生じ、信頼性の高いスルホールめつき
が得られにくいという問題点があつたのである。 本発明は、このような陽極物質の補給に際して
生ずる問題点をなくし、定常的な光沢剤補給管理
に変調を生ぜしめない、陽極物質の補給方法を提
供するものである。 本発明は、硫酸銅めつき浴に陽極物質を補給す
る場合に、補給陽極物質を、塩素イオン濃度5〜
50mg/および本めつき浴に用いられる光沢剤の
存在下に、硫酸銅めつき浴中で予備電解して、新
しい陽極物質の表面に、銅、リンおよび有機物質
からなる合成被膜を生成付着せしめた後、本電解
に使用することを特徴とする、硫酸銅めつき浴に
おける陽極物質の補給方法である。 この予備電解は、本めつき装置中でダミー板を
用いて行なつてもよく、また、別の予備電解槽で
処理してから本めつき装置に装着してもよい。 本めつき装置で予備電解する場合には、補給す
る陽極物質は表面積を計算し、脱脂および酸化被
膜除去の清浄化処理を行なつた後、本めつき装置
のアノードバーに装着する。カソードバーにはダ
ミー板を取付けて、ダミー電解を行なう。この場
合、予備電解により補給陽極物質上でのブラツク
フイルム形成のために消費される光沢剤を、補給
陽極物質の表面積cm2当り0.005〜0.01mlをめつき
浴に補給する必要がある。この光沢剤の補給は予
備電解の前でも後でもよいが、その他に、予備電
解に要した積算電流量により、通常添加すべき光
沢剤が予備電解後に補給され、その以後は通常通
りに本めつき作業に供される。 本めつき装置での予備電解は、通常の電流密度
で行なつてもよく、その場合は電解時間は30〜60
分である。しかしながら、予備電解を0.1〜
0.5A/dm2の弱電流密度で行なうと、補給陽極
物質上のブラツクフイルム形成と共に、めつき浴
中の金属不純物も同時に除去することができる。
この場合の電解時間は12時間以上が望ましい。 予備電解槽を用いて補給陽極物質を処理する場
合には、電解液は通常使用される硫酸銅めつき浴
の組成であれば、広範囲の組成のものが使用し得
る。但し、このめつき浴中の塩素イオン濃度は5
〜50ml/であることが必要である。塩素イオン
が5mg/より少ないと、ブラツクフイルムの形
成に長時間を要し、また50mg/以上の塩素イオ
ン濃度では、陽極物質表面に灰白色の合成物質が
形成され、陽極物質が不活性化するおそれがあ
る。この塩素イオン濃度の制約は、本めつき装置
による予備電解においても同様であるが、本めつ
き装置のめつき浴は一般にこの塩素イオン濃度の
条件内にあるので特別の留意を要しない場合が多
い。 予備電解槽を用いる陽極物質処理の場合には、
本めつき装置のめつき浴に用いられる光沢剤と同
質の光沢剤が予備電解槽中に添加される。電解条
件は電流密度が0.5〜1A/dm2の陽極電解であ
り、電解時間は少なくとも10分以上が必要であ
る。予備電解により処理された陽極物質は、本め
つき装置に陽極として装着することにより、直ち
に本めつき作業を行なうことができる。 本発明の陽極物質補給方法は、めつき浴中の光
沢剤濃度の管理を容易にすることができるため、
プリント回路基板のスルホールめつきのみなら
ず、装飾あるいは防食を目的とする硫酸銅めつき
等すべての硫酸銅めつき浴においても実施可能で
ある。 以下、実施例によつて本発明を説明する。 実施例 1 清浄処理された球状の含リン銅陽極物質を第2
図に示す予備電解槽1を用いて陽極処理を行なつ
た。 電解液は、硫酸銅70g/、硫酸210g/、
塩素イオン30mg/であり、光沢剤は市販の2液
性光沢剤(商品名Cubath)を計7ml/添加し
た。 容量300の予備電解槽1のバレル槽2に陽極
物質3として球形の含リン銅を投入し、整流器1
2の(+)端子よりアノードバー受け4、アノー
ドバー5を経てアノード電極6へ電流が供給さ
れ、一方該整流器12の(−)端子は陰極(図示
せず)に接続されて陽極電解が開始される。浴温
は常温で、電流密度は1A/dm2とした。 9.5分間は静止の状態で陽極電解を行ない、次
いで通電状態のまま、駆動装置7を起動し、伝達
ギヤ8を経てプーリ9を動かし、Vベルト10に
よりバレル槽2のプーリ11に伝達されてバレル
槽2が回転される。約1分間バレル槽2の回転を
行なつた後、駆動を停止する。これを1サイクル
として、3サイクル行なつた。 陽極電解処理された陽極物質3の表面には、良
好なブラツクフイルムが離脱することなく形成さ
れており、これをそのまま本めつき装置のチタン
製アノードバスケツト中に装置して、無電解めつ
き処理したプリント回路基板のスルホールめつき
を行なつた。本めつき装置のめつき浴は、硫酸銅
80g/、硫酸190g/、塩素イオン25ml/、
および2液性光沢剤(商品名Cubath)5ml/
の液組成である。 得られたプリント回路基板のめつき仕上り外
観、スルホールめつきの析出状態および耐熱衝撃
性は良好であり、その後の通常のめつきサイクル
における光沢剤の管理も定常的な添加量で全く問
題がなかつた。 実施例 2 容量1000の本めつき装置のアノードバーに配
列したチタン製バスケツト16ケースに、表面積
総計が43000cm2のチツプ形状の含リン銅を清浄処
理して補給した。この本めつき浴組成は、硫酸銅
80g/、硫酸190g/、塩素イオン25mg/
に1液性光沢剤(商品名Cupracid GS818)を5
ml/添加したものである。 このめつき槽に1.8m2のめつき面積をもつるダ
ミー板をカソードバーに取付け、電流密度
0.2A/dm2で14時間の弱電解を行なつた。 ダミー電解後、ダミー電解に要した積算電流量
に対しての定常的な光沢剤添加量150mlと、補給
した陽極物質の表面積に対し0.005ml/cm2に相当
する光沢剤量215mlとの合計365mlの前記光沢剤を
本めつき浴中に添加し、その後は実施例1と同様
の通常のめつきサイクルを行なつた。得られため
つきの物性およびその後の光沢剤管理はすべて正
常かつ良好であつた。
[Table] When performing a Hull cell test on the plating solution before adding new anode material and the plating solution after replenishing new anode material and performing electrolysis, the gloss range, which is an indicator of the finished appearance, is determined. It becomes noticeably narrower, clearly indicating that the brightener component has been consumed due to black film formation. On the other hand, according to instrumental analysis, in addition to copper and phosphorus, several components considered to be organic substances were detected in the components of the black film, and this is presumed to be due to the brightener. Conventionally, when replenishing anode material, the anode material is treated with an organic solvent such as Trichloride, or an alkaline solution or a surfactant to degrease the surface, and then
The common method is to perform a cleaning process to remove the oxide film using sulfuric acid, etc., and then install it in the final plating equipment, but this results in irregularities in the management of the regular supply amount of brightener, resulting in poor reliability. The problem was that it was difficult to obtain a high-quality through-hole plating. The present invention provides a method for replenishing anode material that eliminates the problems encountered in replenishing anode material and does not cause any disturbance in regular brightener replenishment management. In the present invention, when replenishing an anode material to a copper sulfate plating bath, the replenishment anode material has a chloride ion concentration of 5 to 5.
Pre-electrolyze in a copper sulfate plating bath in the presence of 50mg/brightener used in the main plating bath to form and deposit a synthetic film consisting of copper, phosphorus and organic substances on the surface of the new anode material. This is a method for replenishing anode material in a copper sulfate plating bath, which is then used for the main electrolysis. This preliminary electrolysis may be performed using a dummy plate in the main plating apparatus, or the plate may be treated in a separate preliminary electrolytic cell and then installed in the main plating apparatus. When performing preliminary electrolysis in the main plating apparatus, the surface area of the anode material to be replenished is calculated, and after being subjected to cleaning treatment such as degreasing and removal of oxide film, it is attached to the anode bar of the main plating apparatus. Attach a dummy plate to the cathode bar and perform dummy electrolysis. In this case, it is necessary to replenish the plating bath with 0.005 to 0.01 ml per cm 2 of surface area of the replenishing anode material, which is consumed by the pre-electrolysis to form a black film on the replenishing anode material. This brightener may be replenished before or after the preliminary electrolysis, but in addition, depending on the cumulative amount of current required for the preliminary electrolysis, the brightener that should normally be added is replenished after the preliminary electrolysis, and after that, the main electrolysis can be carried out as usual. Used for pounding work. Preliminary electrolysis in the main plating device may be carried out at a normal current density, in which case the electrolysis time is 30 to 60 minutes.
It's a minute. However, the preliminary electrolysis is 0.1~
When carried out at a low current density of 0.5 A/dm 2 , metal impurities in the plating bath can be removed simultaneously with the formation of a black film on the supplementary anode material.
In this case, the electrolysis time is preferably 12 hours or more. When processing supplementary anode material using a pre-electrolytic cell, the electrolyte can have a wide range of compositions as long as it is the composition of commonly used copper sulfate plating baths. However, the chlorine ion concentration in this plating bath is 5
It is necessary that the amount is ~50ml/. If the chloride ion concentration is less than 5mg/, it will take a long time to form a black film, and if the chloride ion concentration is more than 50mg/, a gray-white synthetic substance will be formed on the surface of the anode material, which may deactivate the anode material. There is. This restriction on chlorine ion concentration is the same in preliminary electrolysis using the main plating device, but since the plating bath of the main plating device generally falls within this chlorine ion concentration condition, special considerations may not be necessary. many. In the case of anodic material treatment using a preliminary electrolyzer,
A brightening agent of the same quality as the brightening agent used in the plating bath of the main plating apparatus is added to the preliminary electrolytic bath. The electrolysis conditions are anodic electrolysis with a current density of 0.5 to 1 A/dm 2 , and the electrolysis time is required to be at least 10 minutes. By installing the anode material treated by preliminary electrolysis as an anode in the main plating device, the main plating operation can be performed immediately. The anode material replenishment method of the present invention makes it possible to easily manage the brightener concentration in the plating bath.
It can be applied not only to through-hole plating of printed circuit boards, but also to all types of copper sulfate plating baths, such as copper sulfate plating for decoration or corrosion prevention purposes. The present invention will be explained below with reference to Examples. Example 1 A cleaned spherical phosphorus-containing copper anode material was
Anodizing was carried out using the preliminary electrolytic cell 1 shown in the figure. The electrolyte is copper sulfate 70g/, sulfuric acid 210g/,
The concentration of chloride ions was 30 mg/g, and a total of 7 ml/g of a commercially available two-component brightener (trade name: Cubath) was added as the brightener. A spherical phosphorous-containing copper is put into the barrel tank 2 of the preliminary electrolytic tank 1 with a capacity of 300 as the anode material 3, and the rectifier 1
Current is supplied from the (+) terminal of 2 to the anode electrode 6 via the anode bar receiver 4 and anode bar 5, while the (-) terminal of the rectifier 12 is connected to a cathode (not shown) to start anodic electrolysis. be done. The bath temperature was room temperature, and the current density was 1 A/dm 2 . Anodic electrolysis is performed in a stationary state for 9.5 minutes, and then the drive device 7 is started while the power is still on, and the pulley 9 is moved via the transmission gear 8, and the transmission is transmitted to the pulley 11 of the barrel tank 2 by the V belt 10, and the barrel is moved. Tank 2 is rotated. After rotating the barrel tank 2 for about 1 minute, the drive is stopped. This was regarded as one cycle, and three cycles were performed. A good black film is formed on the surface of the anodic electrolytically treated anode material 3 without detaching, and this film is placed in the titanium anode basket of the main plating device and subjected to electroless plating treatment. Through-hole plating was performed on printed circuit boards. The plating bath of the main plating device is copper sulfate.
80g/, sulfuric acid 190g/, chlorine ion 25ml/,
and 2-component brightener (trade name Cubath) 5ml/
The liquid composition is The plated appearance, precipitation state of through-hole plating, and thermal shock resistance of the obtained printed circuit board were good, and there were no problems in controlling the brightener in the subsequent regular plating cycle as long as it was added in a constant amount. . Example 2 Sixteen titanium basket cases arranged on the anode bar of a final plating device with a capacity of 1000 were supplied with cleaned and replenished phosphorus-containing copper in the form of chips with a total surface area of 43000 cm 2 . The composition of this plating bath is copper sulfate.
80g/, sulfuric acid 190g/, chloride ion 25mg/
Add one-component brightener (trade name Cupracid GS818) to
ml/added. A dummy plate with a plating area of 1.8 m 2 was attached to the cathode bar in this plating tank, and the current density
Weak electrolysis was performed at 0.2 A/dm 2 for 14 hours. After dummy electrolysis, the total amount of brightener added is 150ml for the cumulative amount of current required for dummy electrolysis, and the brightener amount is 215ml, which corresponds to 0.005ml/cm 2 for the surface area of the supplied anode material, totaling 365ml. of the above brighteners were added to the main plating bath, followed by a normal plating cycle as in Example 1. The physical properties of the resulting stain and subsequent brightener management were all normal and good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はスルホールめつきの耐熱衝撃性の試験
結果を示し、第2図は本発明の予備電解槽の1例
を示す。図示された要部と符号との対応は次のと
おりである。 1……予備電解槽、2……バレル槽、3……陽
極物質、4……アノードバー受け、5……アノー
ドバー、6……アノード電極、7……駆動装置、
8……ギヤー、9,11……プーリ、10……V
ベルト、12……整流器。
FIG. 1 shows the test results of thermal shock resistance of through-hole plating, and FIG. 2 shows an example of the preliminary electrolytic cell of the present invention. The correspondence between the main parts illustrated and the symbols is as follows. 1... Preliminary electrolytic cell, 2... Barrel tank, 3... Anode material, 4... Anode bar receiver, 5... Anode bar, 6... Anode electrode, 7... Drive device,
8... Gear, 9, 11... Pulley, 10... V
Belt, 12... rectifier.

Claims (1)

【特許請求の範囲】 1 硫酸銅めつき浴に陽極物質を補給する場合
に、補給陽極物質を塩素イオン濃度5〜50mg/
および本めつき浴に用いられる光沢剤の存在下
に、硫酸銅めつき浴中で予備電解して、新しい陽
極物質の表面に、銅、リンおよび有機物質からな
る合成被膜を生成付着せしめた後、本電解に使用
することを特徴とする、硫酸銅めつき浴における
陽極物質の補給方法。 2 予備電解を本めつき浴中で残存する陽極物質
と共にダミー電解する、特許請求の範囲第1項に
記載の方法。 3 予備電解に当つて、補給陽極物質の表面積cm2
当り0.01〜0.005mlの光沢剤を補給する、特許請
求の範囲第2項に記載の方法。 4 予備電解を0.1〜0.5A/dm2の電流密度で行
なう、特許請求の範囲第1項ないし第3項のいず
れかに記載の方法。
[Claims] 1. When replenishing anode material to a copper sulfate plating bath, the replenishment anode material has a chloride ion concentration of 5 to 50 mg/
After pre-electrolysis in a copper sulfate plating bath in the presence of the brightening agent used in the main plating bath, a synthetic coating consisting of copper, phosphorus and organic substances is formed and deposited on the surface of the new anode material. , a method for replenishing anode material in a copper sulfate plating bath, characterized in that it is used in this electrolysis. 2. The method according to claim 1, wherein the preliminary electrolysis is performed as a dummy electrolysis together with the remaining anode material in the main plating bath. 3 For preliminary electrolysis, the surface area of the supplementary anode material cm 2
3. The method according to claim 2, wherein 0.01 to 0.005 ml of brightener is supplied per glass. 4. The method according to any one of claims 1 to 3, wherein the preliminary electrolysis is performed at a current density of 0.1 to 0.5 A/ dm2 .
JP16948380A 1980-12-03 1980-12-03 Method for replenishing anode material in copper sulfate plating bath Granted JPS5794600A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16948380A JPS5794600A (en) 1980-12-03 1980-12-03 Method for replenishing anode material in copper sulfate plating bath

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16948380A JPS5794600A (en) 1980-12-03 1980-12-03 Method for replenishing anode material in copper sulfate plating bath

Publications (2)

Publication Number Publication Date
JPS5794600A JPS5794600A (en) 1982-06-12
JPS6361399B2 true JPS6361399B2 (en) 1988-11-29

Family

ID=15887368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16948380A Granted JPS5794600A (en) 1980-12-03 1980-12-03 Method for replenishing anode material in copper sulfate plating bath

Country Status (1)

Country Link
JP (1) JPS5794600A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503375B1 (en) 2000-02-11 2003-01-07 Applied Materials, Inc Electroplating apparatus using a perforated phosphorus doped consumable anode
JP6491289B2 (en) * 2017-09-06 2019-03-27 電気興業株式会社 Method for producing metal product

Also Published As

Publication number Publication date
JPS5794600A (en) 1982-06-12

Similar Documents

Publication Publication Date Title
US4479852A (en) Method for determination of concentration of organic additive in plating bath
JP4221064B2 (en) Electrodeposition method of copper layer
US5252196A (en) Copper electroplating solutions and processes
US5223118A (en) Method for analyzing organic additives in an electroplating bath
Di Bari Nickel plating
US8440555B2 (en) Method for analyzing electrolytic copper plating solution
US8894835B2 (en) Method of inspecting a metal coating and a method for analytical control of a deposition electrolyte serving to deposit said metal coating
Sadiku-Agboola et al. Influence of operation parameters on metal deposition in bright nickel-plating process
JPH04358091A (en) Composition of electric plating solution
US4419192A (en) Method for galvanic deposition of copper
TWI275790B (en) Analysis method
US3691027A (en) Method of producing corrosion resistant chromium plated articles
JPS6361399B2 (en)
US4624857A (en) Method for automatic control of galvanic deposition of copper coatings in galvanic acid copper baths
JP6011874B2 (en) Method for evaluating inhibitors contained in plating solution
Lee et al. Evaluating and monitoring nucleation and growth in copper foil
US2690997A (en) Electrodeposition of copper
Evans et al. Studies in the Discontinuities in Electrodeposited Metallic Coatings: Part I.
US3649478A (en) Plating method utilizing silver-coated anode leads
Luke Tin‐lead Composition—Its Control and Effect on Solderability
Chomakova et al. Microthrowing power of electrolytes for the deposition of nickel-iron alloys. I. Components determining the levelling effect of nickel-iron plating electrolytes
Missel Gold Plating of Printed Circuit Boards and Wire: Plating Techniques for Ultrasonic Bonding
Luke Electroplating Copper for Printed Circuit Manufacture
KR20230050875A (en) Acidic zincate composition for aluminum or aluminum alloy and zincate treatment method using the same
Plating et al. Nickel Electroplating