JPS6361174A - Multislice ring ect apparatus - Google Patents

Multislice ring ect apparatus

Info

Publication number
JPS6361174A
JPS6361174A JP61204963A JP20496386A JPS6361174A JP S6361174 A JPS6361174 A JP S6361174A JP 61204963 A JP61204963 A JP 61204963A JP 20496386 A JP20496386 A JP 20496386A JP S6361174 A JPS6361174 A JP S6361174A
Authority
JP
Japan
Prior art keywords
scintillator
output
scintillators
body axis
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61204963A
Other languages
Japanese (ja)
Other versions
JPH06105294B2 (en
Inventor
Junichi Oi
淳一 大井
Seiichi Yamamoto
誠一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP61204963A priority Critical patent/JPH06105294B2/en
Publication of JPS6361174A publication Critical patent/JPS6361174A/en
Publication of JPH06105294B2 publication Critical patent/JPH06105294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)
  • Nuclear Medicine (AREA)

Abstract

PURPOSE:To achieve cost reduction, by a method wherein a plurality of bar- shaped scintillators are covered with one photomultiplier tube (PMT) and formed into a long bar shape in a body axis direction and a position operation circuit is provided in a slice surface direction and the body axis direction. CONSTITUTION:A large number of PMTs 13 are two-dimensionally arranged to the outside surface of a cylindrical light guide 12 and constituted so that each of them covers a plurality of bar-shaped scintillators 11. In the positional discrimination in a slice surface direction, that is, in the discrimination of the scintillator 11 generating the emission of light, for example, when it is assumed that gamma-rays are incident on the #2 scintillator 11 to generate the emission of light from the #2 scintillator 11, the outputs of adders 31-32 respectively become negative, negative and positive. Herein, it can be discriminated that the emission of light is generated below a boundary (n) and above boundary P. Concretely '1' signals respectively generated at the non-reversal and reversal output terminals of comparators 42, 43 are inputted. Output is generated only from an AND circuit 52 and, as a result, output is generated only from FF62. In the positional discrimination in a body axis direction, an Anger system is used as is conventional.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、人体に投与されたRI(ラジオアイソトー
プ)の分布の断層像を多層にわたって撮影するマルチス
ライスリングECT装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a multi-slice ring ECT device that takes tomographic images of the distribution of RI (radioisotope) administered to a human body over multiple layers.

従来の技術 従来のリングECT装置では、1個のシンチレータと1
個の光電子増倍管(以下、PMTと略す)とを組み合せ
てなる検出器を多数、円形(または多角形)に配列して
いる。そのため、これをマルチスライス化する場合、上
記の検出器の円形配列を多層に積層するのが普通である
Prior art A conventional ring ECT device has one scintillator and one scintillator.
A large number of detectors each consisting of a combination of photomultiplier tubes (hereinafter abbreviated as PMT) are arranged in a circular (or polygonal) configuration. Therefore, when making this into a multi-slice, the circular array of the detectors described above is usually stacked in multiple layers.

発明が解決しようとする問題点 しかしながら、多数の検出器を円形(または多角形)に
配列したものを、さらに多層に積層するのでは、非常に
多くのシンチレータとPMTとが必要となり、非常に高
価なものとなる。またスライス面の位置は、多層にa層
された検出器円形配列の各層の位置で定まるため、被検
者の特定の断層面の画像を得たい場合、その位置に検出
器円形配列の1つの層の位置を合致させるよう、検出器
円形配列に対する被検者の正確な位置決め作業が必要と
なる。
Problems to be Solved by the Invention However, if a large number of detectors are arranged in a circular (or polygonal) manner and then stacked in multiple layers, a large number of scintillators and PMTs are required, which is very expensive. Become something. In addition, the position of the slice plane is determined by the position of each layer of the circular array of detectors arranged in multiple layers, so if you want to obtain an image of a specific tomographic plane of the subject, place one of the circular arrays of detectors at that position. Accurate positioning of the subject relative to the circular array of detectors is required to match the position of the layers.

この発明は、シンチレータとPMTの数が少なくてすみ
、低コストで製造でき、しかもスライス面の位置決め作
業がラフでよい、マルチスライスリングECT装置を提
供することを目的とする。
It is an object of the present invention to provide a multi-slice ring ECT device that requires a small number of scintillators and PMTs, can be manufactured at low cost, and requires only rough positioning of the slice plane.

問題点を解決するための手段 この発明によるマルチスライスリングECT装置はミ円
筒状ライトガイドと、該円筒状ライトガイドの内側に、
長手方向が上記円筒状ライトガイドの軸方向となるよう
にして多数配列される細長い棒状のシンチレータと、上
記円筒状ライトガイドの外側面に2次元的に配列されて
おり、1個ずつが複数のシンチレータをカバーする、多
数個のPMTと、該PMTの両極性出力が重み付け加算
されることにより上記シンチレータのある境界の一方側
で発光したときと他方側で発光したときとで出力極性が
反転するようにされた、シンチレータ境界数に対応する
数の加算器を含むスライス面方向位置演算回路と、アン
ガー方式の体軸方向位置演算回路とを有する。
Means for Solving the Problems The multi-slice ring ECT device according to the present invention includes a cylindrical light guide and an inner side of the cylindrical light guide.
A large number of slender bar-shaped scintillators are arranged so that the longitudinal direction is the axial direction of the cylindrical light guide, and scintillators are arranged two-dimensionally on the outer surface of the cylindrical light guide, each of which has a plurality of scintillators. A large number of PMTs covering the scintillator and the bipolar outputs of the PMTs are weighted and added together, so that the output polarity is reversed when light is emitted on one side of a certain boundary of the scintillator and when light is emitted on the other side. The present invention has a slice plane direction position calculation circuit including a number of adders corresponding to the number of scintillator boundaries, and an Anger type body axis direction position calculation circuit.

作    用 スライス面方向位置演算回路により、どのシンチレータ
で発光が生じたか、つまりスライス面方向の放射線入射
位置が求められる。
The active slice plane direction position calculation circuit determines in which scintillator light emission occurs, that is, the radiation incident position in the slice plane direction.

また、体軸方向(スライス厚さ方向)の位置演算はアン
ガー方式でなされるため、スライス面の選択は任意であ
る。
Further, since the position calculation in the body axis direction (slice thickness direction) is performed by the Unger method, the selection of the slice plane is arbitrary.

1個のPMTは複数の棒状シンチレータをカバーしてい
るため、その数が少なくてよい、またシンチレータも、
体軸方向に長い棒状となっているため、数を少なくでき
る。そのため、安価となる。
One PMT covers multiple rod-shaped scintillators, so the number of scintillators can be small, and the scintillators can also be
Since they are long rod-shaped in the direction of the body axis, the number can be reduced. Therefore, it is inexpensive.

実施例 第1図および第2図に示すように、細長い棒状のシンチ
レータ11が、円筒形のライトガイド12の内側に多数
配列されている。この棒状シンチレータ11はたとえば
NaIクリスタルをアルミケースに封入したものからな
り、その長手方向は、円筒形ライトガイド12の軸方向
に向けられている。この円筒形ライトガイド12の外側
面には多数のPMT13が2次元的に配列されている。
Embodiment As shown in FIGS. 1 and 2, a large number of elongated rod-shaped scintillators 11 are arranged inside a cylindrical light guide 12. This rod-shaped scintillator 11 is made of, for example, a NaI crystal sealed in an aluminum case, and its longitudinal direction is oriented in the axial direction of the cylindrical light guide 12. A large number of PMTs 13 are two-dimensionally arranged on the outer surface of this cylindrical light guide 12.

各PMT13は、棒状シンチレータ11の数本(この実
施例では第3図に示すように4本)をカバーする。図示
していないが、このシンチレータ11の円筒状配列の内
側にコリメータが配置される。
Each PMT 13 covers several rod-shaped scintillators 11 (in this embodiment, four as shown in FIG. 3). Although not shown, a collimator is arranged inside the cylindrical array of scintillators 11.

スライス面方向(第1図の紙面に平行な方向。Slice plane direction (direction parallel to the plane of the paper in Figure 1).

円周方向)の位置弁別つまりどのシンチレータ11で発
光が生じたかの弁別は第3図のような回路により行なわ
れる。シンチレータ11がスライス面方向に#1、#2
、#3、#4、・・・と配列され、それらの境界がm 
* n 、P *・・・であり、PMT13がスライス
面方向にA、 B、 C1・・・と配列されているもの
とする。このA、 B、 C1・・・の各PMT13の
出力をA、B、C1・・・とし、これらの両極性出力を
重み付け抵抗21〜27を介して加算器31.3z、3
3、・・・に入力する。仮に、加算器31の出力が境界
m上で発光が生じたとき0ポルトそれより上(第3図で
)側で発光が生じたとき正になり下側で発光が生じたと
き負になるように、また、加算器32の出力が境界n上
で発光が生じたときOポルトそれより上側で発光が生じ
たとき正になり下側で発光が生じたとき負になるように
、加算器33の出力が境界p上で発光が生じたときOポ
ルト、それより上側で発光が生じたとき正になり下側で
発光が生じたとき負になるように、重み付け抵抗21〜
27の各個を定める。そして、コンパレータ41.42
.43、・・・は加算器31の出力が正であるか負であ
るかを判別し、正のとき、その非反転出力端子からrQ
」を1反転出力端子からrlJをそれぞれ出力し、負の
とき、その非反転出力端子から「1」を、反転出力端子
から「0」をそれぞれ出力する。これら、コンパレータ
41.42.43、・・・の隣接するものの非反転出力
端子と反転出力端子とをAND回路51.52、・・・
の各々の入力に接続し、このAND回路51.52、・
・・の出力をそれぞれフリップフロップ61.62・・
・に入力する。
Position discrimination (in the circumferential direction), that is, discrimination as to which scintillator 11 emits light, is performed by a circuit as shown in FIG. The scintillator 11 is #1 and #2 in the slice plane direction.
, #3, #4,... and their boundary is m
*n, P*..., and the PMTs 13 are arranged as A, B, C1... in the slice plane direction. The outputs of each PMT 13 of A, B, C1... are designated as A, B, C1..., and these bipolar outputs are sent to adders 31.3z, 3 via weighting resistors 21 to 27.
3. Input in... Suppose that the output of the adder 31 becomes positive when light emission occurs on the boundary m, and becomes positive when light emission occurs above 0 port (in Fig. 3), and becomes negative when light emission occurs below it. In addition, the output of the adder 32 is set so that when light emission occurs on the boundary n, the output of the adder 32 becomes positive when light emission occurs above the boundary n, and becomes negative when light emission occurs below it. The weighting resistors 21 to 21 are set so that the output becomes positive when light emission occurs on the boundary p, positive when light emission occurs above it, and negative when light emission occurs below it.
Define each of the 27 items. And comparator 41.42
.. 43, . . . determine whether the output of the adder 31 is positive or negative, and when it is positive, rQ
'' and rlJ are output from the inverted output terminal, and when negative, ``1'' is output from the non-inverted output terminal, and ``0'' is output from the inverted output terminal. The non-inverting output terminal and the inverting output terminal of the adjacent comparators 41, 42, 43, .
are connected to the respective inputs of the AND circuits 51, 52, .
The outputs of... are respectively connected to flip-flops 61, 62...
・Enter in.

この回路では、棒状シンチレータ11の境界の数だけ加
算器31.32、・・・およびコンパレータ41.42
、・・・が必要であり、加算器31.32、・・・の出
力信号の符号が反転した場所が発光位置つまり放射線の
入射位置と識別することが基本になっている。
In this circuit, the number of adders 31, 32, . . .
, . . . are necessary, and the point where the sign of the output signal of the adders 31, 32, .

たとえば、#2のシンチレータ11にγ線が入射してこ
の#2のシンチレータ11で発光が生じたとすると、加
算器31の出力は負、加算器32の出力は負、加算器3
3の出力が正になる。そこで、境界nより下方、境界゛
Pより上方で発光が生じたこと、つまり#2のシンチレ
ータ11にγ線入射したことを識別できる。具体的には
、コンパレータ42の非反転出力端子に生じた「l」信
号と、コンパレータ43の反転出力端子に生じた「1」
信号とが入力されているAND回路52のみから出力が
生じ、その結果フリップフロップ62からのみ信号が生
じて、#2のシンチレータ11で発光が生じたことが判
別される。
For example, if gamma rays are incident on the #2 scintillator 11 and light emission occurs in the #2 scintillator 11, the output of the adder 31 is negative, the output of the adder 32 is negative, and the output of the adder 32 is negative.
The output of 3 becomes positive. Therefore, it can be determined that light emission has occurred below the boundary n and above the boundary P, that is, that the γ rays have entered the #2 scintillator 11. Specifically, the “l” signal generated at the non-inverting output terminal of the comparator 42 and the “1” signal generated at the inverting output terminal of the comparator 43
An output is generated only from the AND circuit 52 to which the signal is input, and as a result, a signal is generated only from the flip-flop 62, and it is determined that light emission has occurred in the #2 scintillator 11.

他方、体軸方向(第1図の紙面に直角な方向、シンチレ
ータ11の円筒形配列の軸方向)の位置弁別つまり1つ
のシンチレータ11の長手方向のどの位置で発光が生じ
たかの弁別は、従来より知られているアンガー方式が用
いられる。たとえば第2図に示すようにPMT13が体
軸方向には3列に配列されているとして、その各列つま
り左端列、中央列、右端列(第2図において)のPMT
13のエネルギ信号の出力和をそれぞれP、Q。
On the other hand, position discrimination in the body axis direction (direction perpendicular to the paper plane of FIG. 1, axial direction of the cylindrical array of scintillators 11), that is, discrimination of the position in the longitudinal direction of one scintillator 11 at which light emission has occurred, has been conventionally performed. The known Unger method is used. For example, suppose that the PMTs 13 are arranged in three rows in the body axis direction as shown in FIG.
The output sums of the 13 energy signals are P and Q, respectively.

Rとすると、 (P−R)/ (P+Q+R) により体軸方向の位置が求められる。If it is R, (P-R)/(P+Q+R) The position in the body axis direction can be determined by

以上によりスライス面方向および体軸方向の位置信号が
得られ、これにコリメータの位置情報が加えられて、画
像処理が行なわれることにより、有効視野内の任意位置
のスライス面での断層像が再構成される。したがって、
画像を得たいスライス面が体軸方向の有効視野(シンチ
レータ11の円筒形配列の軸方向の幅)内に入るように
ラフに設定すればよいので、測定前にスライス面の位置
を厳密に設定する必要がなくなる。
Through the above steps, position signals in the slice plane direction and body axis direction are obtained, and by adding the collimator position information to this and performing image processing, a tomographic image on the slice plane at any position within the effective field of view is reconstructed. configured. therefore,
It is only necessary to set the slice plane roughly so that the slice plane for which you want to obtain an image falls within the effective field of view in the body axis direction (the width in the axial direction of the cylindrical array of scintillators 11), so the position of the slice plane can be precisely set before measurement. There is no need to do so.

なお、上記では棒状シンチレータ11を円筒形に配列し
たが、平面状に配列すればガンマカメラの検出器として
適用可能である。
In addition, although the rod-shaped scintillators 11 are arranged in a cylindrical shape in the above, if they are arranged in a planar shape, they can be applied as a detector for a gamma camera.

発明の効果 この発明のマルチスライスリングECTIIIによれば
、同じ有効視野を得たい場合に、1個のシンチレータと
1個のPMTの組合せによる検出器を用いる場合に比較
して、シンチレータおよびPMTの数を大幅に少なくで
きるので、マルチスライスリングECT装置を低価格で
製造できる。また、任意のスライス面での断層像が得ら
れるので、被検者を位置決めする際に厳密さが要求され
ず、容易である。
Effects of the Invention According to the multi-slice ring ECTIII of the present invention, the number of scintillators and PMTs can be reduced compared to the case where a detector with a combination of one scintillator and one PMT is used to obtain the same effective field of view. can be significantly reduced, so a multi-slice ring ECT device can be manufactured at low cost. Furthermore, since a tomographic image can be obtained on any slice plane, precision is not required when positioning the subject, and it is easy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の正面より見た模式図、第
2図は同実施例の一部切り欠いた側面図、第3図は同実
施例のスライス面方向位置弁別回路を示すブロック図で
ある。 11・・・棒状シンチレータ 12・・・円筒状ライトガイド 13・・・PMT 21〜27・・・重み付け抵抗 31〜33・・・加算器 41〜43・・・コンパレータ 51.52・・・AND回路
FIG. 1 is a schematic front view of an embodiment of the present invention, FIG. 2 is a partially cutaway side view of the same embodiment, and FIG. 3 is a slice plane direction position discrimination circuit of the same embodiment. It is a block diagram. 11... Rod-shaped scintillator 12... Cylindrical light guide 13... PMT 21-27... Weighting resistors 31-33... Adders 41-43... Comparators 51, 52... AND circuit

Claims (1)

【特許請求の範囲】[Claims] (1)円筒状ライトガイドと、該円筒状ライトガイドの
内側に、長手方向が上記円筒状ライトガイドの軸方向と
なるようにして多数配列される細長い棒状のシンチレー
タと、上記円筒状ライトガイドの外側面に2次元的に配
列されており、1個ずつが複数のシンチレータをカバー
する、多数個の光電子増倍管と、該光電子増倍管の両極
性出力が重み付け加算されることにより上記シンチレー
タのある境界の一方側で発光したときと他方側で発光し
たときとで出力極性が反転するようにされた、シンチレ
ータ境界数に対応する数の加算器を含むスライス面方向
位置演算回路と、アンガー方式の体軸方向位置演算回路
とを有するマルチスライスリングECT装置。
(1) A cylindrical light guide, a large number of elongated bar-shaped scintillators arranged inside the cylindrical light guide with the longitudinal direction thereof being in the axial direction of the cylindrical light guide, and A large number of photomultiplier tubes are arranged two-dimensionally on the outer surface, each covering a plurality of scintillators, and the bipolar outputs of the photomultiplier tubes are weighted and added to form the scintillator. A slice surface direction position calculation circuit including a number of adders corresponding to the number of scintillator boundaries, whose output polarity is inverted when light is emitted on one side of a certain boundary and when light is emitted on the other side; A multi-slice ring ECT device having a body axial position calculation circuit according to the method.
JP61204963A 1986-08-30 1986-08-30 Multi-slice ring ECT device Expired - Fee Related JPH06105294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61204963A JPH06105294B2 (en) 1986-08-30 1986-08-30 Multi-slice ring ECT device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204963A JPH06105294B2 (en) 1986-08-30 1986-08-30 Multi-slice ring ECT device

Publications (2)

Publication Number Publication Date
JPS6361174A true JPS6361174A (en) 1988-03-17
JPH06105294B2 JPH06105294B2 (en) 1994-12-21

Family

ID=16499201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204963A Expired - Fee Related JPH06105294B2 (en) 1986-08-30 1986-08-30 Multi-slice ring ECT device

Country Status (1)

Country Link
JP (1) JPH06105294B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021373A (en) * 2007-07-11 2009-01-29 Ntt Electornics Corp Flexible wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021373A (en) * 2007-07-11 2009-01-29 Ntt Electornics Corp Flexible wiring board

Also Published As

Publication number Publication date
JPH06105294B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
US4559597A (en) Three-dimensional time-of-flight positron emission camera system
US3978337A (en) Three-dimensional time-of-flight gamma camera system
US4823016A (en) Scintillation detector for three-dimensionally measuring the gamma-ray absorption position and a positron CT apparatus utilizing the scintillation detector
US4755680A (en) Radiation imaging apparatus and methods
US4672207A (en) Readout system for multi-crystal gamma cameras
CN1272638C (en) PET device and image generating method for PET device
US7087905B2 (en) Radiation three-dimensional position detector
US4531058A (en) Positron source position sensing detector and electronics
ATE128557T1 (en) HIGH RESOLUTION GAMMA RADIATION DETECTOR FOR POSITRONEMISSION TOMOGRAPHY (PET) AND SINGLE PHOTONEMISSION COMPUTER TOMOGRAPHY (SPECT).
MacDonald et al. Parallax correction in PET using depth of interaction information
LaBella et al. Sub‐2 mm depth of interaction localization in PET detectors with prismatoid light guide arrays and single‐ended readout using convolutional neural networks
Burnham et al. Cylindrical PET detector design
US3329814A (en) Stereo positron camera for determining the spatial distribution of radioactive material in a test body
JP7109168B2 (en) Radiation position detection method, radiation position detector and PET device
JP2018105648A (en) Radiation position detecting method, radiation position detector, and pet device
JPS6361174A (en) Multislice ring ect apparatus
US4075482A (en) Gamma-radiation tomography system
JPH07104072A (en) Ect device
JPH0544991B2 (en)
JP2001330673A (en) Pet system
JPH0524068Y2 (en)
Murayama et al. Eiichi Tanaka, Ph. D.(1927–2021): pioneer of the gamma camera and PET in nuclear medicine physics
JP2560355B2 (en) Positron ring type ECT device
JPH0532785Y2 (en)
JPS639881A (en) Radiation detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees