JPH0532785Y2 - - Google Patents

Info

Publication number
JPH0532785Y2
JPH0532785Y2 JP1985133902U JP13390285U JPH0532785Y2 JP H0532785 Y2 JPH0532785 Y2 JP H0532785Y2 JP 1985133902 U JP1985133902 U JP 1985133902U JP 13390285 U JP13390285 U JP 13390285U JP H0532785 Y2 JPH0532785 Y2 JP H0532785Y2
Authority
JP
Japan
Prior art keywords
region
scintillator
circumferential direction
light emission
pmt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1985133902U
Other languages
Japanese (ja)
Other versions
JPS6242085U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985133902U priority Critical patent/JPH0532785Y2/ja
Publication of JPS6242085U publication Critical patent/JPS6242085U/ja
Application granted granted Critical
Publication of JPH0532785Y2 publication Critical patent/JPH0532785Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 この考案は、RI(ラジオアイソトープ)の投与
された被検体の周囲に、放射線検出器がリング型
に配列される。リング型ECT(エミツシヨンコン
ピユータ断層撮影装置)に関する。
[Detailed description of the invention] Industrial application field In this invention, radiation detectors are arranged in a ring shape around a subject to whom RI (radioisotope) has been administered. Regarding ring-type ECT (emission computer tomography equipment).

従来の技術 従来のリング型ECT装置では、シンチレータ
と光電子増倍管(以下PMTと略す)とを組合せ
てなる多数の検出器が、1つの平面内でリング型
に配列され、その配列平面が断層像の得られるス
ライス位置とされている。
Conventional technology In a conventional ring-type ECT device, a large number of detectors each consisting of a combination of a scintillator and a photomultiplier tube (hereinafter abbreviated as PMT) are arranged in a ring shape within one plane, and the arrangement plane is a tomographic plane. This is the slice position where the image is obtained.

マルチスライスタイプのリング型ECT装置で
は、このような検出器のリング型配列が多層に並
べられ、各層の配列平面が、それぞれの層で断層
面を得るスライス位置とされる。
In a multi-slice type ring-shaped ECT device, such a ring-shaped array of detectors is arranged in multiple layers, and the array plane of each layer is used as a slice position for obtaining a tomographic plane in each layer.

考案が解決しようとする問題点 したがつて、従来のリング型ECT装置では、
マルチスライスタイプも含めて、撮影できる断層
像のスライス位置は決まつた位置のみであり、中
間的な任意のスライス位置での断層像は得られな
い。
Problems that the invention attempts to solve Therefore, with the conventional ring-type ECT device,
Including multi-slice types, the slice positions of tomographic images that can be taken are only at fixed positions, and tomographic images cannot be obtained at arbitrary intermediate slice positions.

この考案は、検出器のリンク型配列平面に関係
なく、任意のスライス面での断層像を得ることの
できるリング型ECT装置を提供することを目的
とする。
The purpose of this invention is to provide a ring-type ECT device that can obtain tomographic images at any slice plane, regardless of the plane in which the detectors are linked in a linked arrangement.

問題点を解決するための手段 この考案によるリング型ECT装置は、軸方向
に幅拡に形成された円筒型シンチレータと、この
円筒形シンチレータの外周面に、円周方向も軸方
向にも多数配列されるPMTと、各PMTの出力の
比較により円筒形シンチレータの円周方向に分割
された複数領域のどの領域で発光が生じたかの識
別を行なう領域識別回路と、発光が生じたと識別
された領域に応じて、その領域及びその領域に隣
接する領域内の各PMTの重み係数を発生する回
路と、上記領域及びその領域に隣接する領域内の
各PMT出力のみを用いて、これらに上記重み係
数を作用させて発光位置を計算する位置決め計算
回路とから構成される。
Means for Solving the Problems The ring-type ECT device according to this invention has a cylindrical scintillator whose width is widened in the axial direction, and a large number of scintillators arranged on the outer circumferential surface of the cylindrical scintillator both in the circumferential direction and in the axial direction. A region identification circuit that identifies in which region of the plurality of regions divided in the circumferential direction of the cylindrical scintillator light emission has occurred by comparing the output of each PMT, and Accordingly, using only a circuit that generates a weighting coefficient for each PMT in that region and a region adjacent to that region, and the output of each PMT in the above region and a region adjacent to that region, the above-mentioned weighting coefficient is applied to these. and a positioning calculation circuit that calculates the light emitting position.

作 用 円筒形シンチレータの外周面には円周方向も軸
方向にも多数のPMTが配列され、これら各PMT
の出力を領域識別回路で比較することにより、円
筒形シンチレータの円周方向に分割された複数領
域のどの領域で発光が生じたかの識別がなされ
る。そして、発光が生じたと識別された領域及び
その領域に隣接する領域内の各PMTの重み係数
を発生し、この領域及び隣接領域内の各PMT出
力のみを用いて、これらに上記重み係数を作用さ
せて発光位置を計算する。つまり、発光位置の計
算に用いるPMT出力として、発光が生じたと識
別された領域及びその隣接領域内のものを用い、
且つその領域内のPMT出力に作用させる重み係
数もその発光毎にその計算に必要なものだけが与
えられる。これにより、発光が生じたと識別され
た領域及びその隣接領域以外のPMT出力は位置
計算には使用しないこととなるので、位置計算へ
寄与度の低い信号は除かれ、それらに含まれてい
るノイズに影響されることがなくなり、円周方向
および軸方向の発光の位置決めを相当高い精度で
行なえ、任意の位置(軸方向位置)のスライスで
の断層像が得られる。しかも、領域分割は円筒形
シンチレータの円周方向でのものであるので,中
心対称の関係にあり、重み係数はどの領域で発光
が生じたと識別されても同じものを使用でき、構
成が簡単になる。
A large number of PMTs are arranged on the outer surface of the cylindrical scintillator in both the circumferential and axial directions.
The output of the area discrimination circuit is compared to identify which of the multiple areas divided in the circumferential direction of the cylindrical scintillator the light emission occurred in. Then, weighting coefficients are generated for each PMT in the area discriminated as having light emission and in the area adjacent to that area, and the light emission position is calculated by applying the weighting coefficients to only the PMT outputs in this area and the adjacent areas. In other words, the PMT outputs used to calculate the light emission position are those in the area discriminated as having light emission and its adjacent areas,
Moreover, the weighting coefficients acting on the PMT output within that region are given for each emission, and only those necessary for that calculation are given. As a result, PMT outputs other than the region identified as having an emission and its adjacent regions are not used for position calculation, so signals with low contribution to the position calculation are removed and are not affected by the noise contained in them, allowing the positioning of the emission in the circumferential and axial directions to be performed with a fairly high degree of accuracy, and a tomographic image in a slice at any position (axial position) can be obtained. Moreover, since the region division is in the circumferential direction of the cylindrical scintillator, there is a central symmetry relationship, and the same weighting coefficients can be used regardless of which region is identified as having an emission, simplifying the configuration.

実施例 第1図において、NaIなどからなるシンチレー
タ1は円筒形に形成されていて、その周囲にライ
トガイド2を介してPMT3が配列される。シン
チレータ1は、第2図に示すように軸方向に所定
の幅を持たされており、PMT3は円周方向にも、
軸方向にも多数配列される。シンチレータ1はこ
の実施例では円周方向に8つのブロツクA〜Hに
分割されており、この8つのブロツクA〜Hを円
周方向に連結することによつて円筒形のシンチレ
ータ1が形成される。
Embodiment In FIG. 1, a scintillator 1 made of NaI or the like is formed into a cylindrical shape, and PMTs 3 are arranged around it via a light guide 2. As shown in Fig. 2, the scintillator 1 has a predetermined width in the axial direction, and the PMT 3 also has a predetermined width in the circumferential direction.
A large number of them are also arranged in the axial direction. In this embodiment, the scintillator 1 is divided into eight blocks A to H in the circumferential direction, and the cylindrical scintillator 1 is formed by connecting these eight blocks A to H in the circumferential direction. .

各PMT3の出力は、第3図に示すようにA/
D変換器4によりデジタル化された後乗算器5で
PMT3の各々についての重み係数f,gが掛け
られて位置決め計算回路6に送られる。A〜Hの
各ブロツク毎にPMT3の出力を加算する加算器
7が設けられ、各ブロツク毎の総和信号ΣA〜
ΣHが得られ、これらが領域識別回路8に送られ
て、大小比較によりどのブロツクで発光が生じた
かの識別がなされ、A/D変換器4を能動状態に
する信号Pと、発光が生じたと識別されたブロツ
クを表わす信号Qとが出力される。たとえばブロ
ツクBで発光が生じたと識別された場合は、P信
号をブロツクBとこのブロツクBに隣接している
ブロツクA,Cに属するA/D変換器4に送り、
これらのA/D変換器4のみを能動状態とする。
さらに、発光が生じたと識別されたブロツクBを
表わす信号QがROM9に送られ、そのブロツク
Bと隣接する2つのブロツクA,Cに属する
PMT3の各々に関しての重み係数が乗算器5の
各々に送られる、i番目のPMT3についての重
み係数を、円周方向(X方向とする)にfi,軸方
向(Y方向とする)にgiとし、A/D変換器4の
出力信号Piとしたとき、発光点の位置(X,Y)
は、 X=Σfi・Pi/(ΣA+ΣB+ΣC) Y=Σgi・Pi/(ΣA+ΣB+ΣC) により与えられる。この計算が位置決め計算回路
6で行なわれる。この場合、各ブロツクの総和信
号についても、ブロツクBとこれに隣接する2つ
のブロツクA,Cについてのものしか使われてい
ない。
The output of each PMT3 is A/
After being digitized by the D converter 4, the multiplier 5
The weight coefficients f and g for each PMT 3 are multiplied and sent to the positioning calculation circuit 6. An adder 7 is provided for adding the outputs of the PMT 3 for each block A to H, and a sum signal ΣA to each block is provided.
ΣH is obtained, and these are sent to the area identification circuit 8, which identifies in which block the light emission has occurred by comparing the sizes.The signal P that activates the A/D converter 4 is then sent to the area identification circuit 8, which identifies that the light emission has occurred. A signal Q representing the blocked block is output. For example, when it is determined that light emission has occurred in block B, a P signal is sent to the A/D converter 4 belonging to block B and blocks A and C adjacent to block B.
Only these A/D converters 4 are made active.
Furthermore, a signal Q representing the block B identified as having emitted light is sent to the ROM 9 and belongs to the two blocks A and C adjacent to that block B.
The weighting coefficient for each PMT3 is sent to each multiplier 5, and the weighting coefficient for the i-th PMT3 is set as fi in the circumferential direction (referred to as the X direction) and gi in the axial direction (referred to as the Y direction). , the position of the light emitting point (X, Y) when the output signal Pi of the A/D converter 4 is
is given by: X=Σfi·Pi/(ΣA+ΣB+ΣC) Y=Σgi·Pi/(ΣA+ΣB+ΣC) This calculation is performed by the positioning calculation circuit 6. In this case, only the sum signal for block B and the two blocks A and C adjacent thereto are used for the sum signal of each block.

ROM9に記憶しておくべき重み係数は、発光
点を含むブロツクとその両側のブロツクの、3つ
のブロツクに属するPMT3についてだけでよく、
シンチレータ1は円筒形で周方向のどの部分をと
つても同じであるから、どのブロツク内で発光が
生じたと識別された場合でもその重み係数を使う
ことができる。この重み係数は、シンチレータ1
の隣り合うブロツクでは、その接合面のため光学
的に不連続が生じることを考慮して決定される。
The weighting coefficients that need to be stored in ROM9 are only for PMT3 belonging to three blocks: the block containing the light emitting point and the blocks on both sides of it.
Since the scintillator 1 has a cylindrical shape and is the same at any part in the circumferential direction, the weighting coefficient can be used no matter which block it is identified that light emission has occurred. This weighting factor is the scintillator 1
This is determined by taking into consideration that optical discontinuities occur between adjacent blocks due to their joint surfaces.

このように能動状態とするA/D変換器4を選
択して、位置決め計算に参与するPMT3の出力
を限定し、発光点を含むブロツクとその両隣りの
ブロツクの領域でのみ位置計算を行なつているた
め、位置計算に関係の薄い信号が除かれ、雑音が
除かれることになつて精度を高めることができ
る。
By selecting the A/D converter 4 to be active in this way, the output of the PMT 3 that participates in positioning calculations is limited, and position calculations are performed only in the area of the block containing the light emitting point and the blocks on both sides thereof. Therefore, signals having little relevance to position calculation are removed, noise is removed, and accuracy can be improved.

また、このことは、シンチレータ1が上記のよ
うに分割されていず一体の円筒形で、接合面での
光学的不連続がない場合でも、同様である。すな
わち、一体のシンチレータの場合でも領域を限定
して位置決め計算することによつて同様の効果が
得られる。
Further, this is the same even when the scintillator 1 is not divided as described above but is integrally cylindrical, and there is no optical discontinuity at the bonding surface. That is, even in the case of an integrated scintillator, the same effect can be obtained by limiting the area and performing positioning calculations.

こうして、円周方向と軸方向の両方向で位置決
めがなされるので、軸方向位置が同じデータのみ
を用いて画像再構成処理を行なえば、任意の軸方
向位置のスライスでの断層像が得られることにな
る。
In this way, positioning is performed in both the circumferential direction and the axial direction, so if image reconstruction processing is performed using only data at the same axial position, a tomographic image at a slice at any axial position can be obtained. become.

考案の効果 この考案によれば、位置計算への寄与度の低い
領域のPMT出力は除き、それらに含まれている
ノイズの影響を排除して位置計算を行なうので、
円周方向および軸方向の発光位置を高い精度で求
めることができ、任意の位置(軸方向位置)のス
ライスでの断層像が得られる。しかも、領域分割
は円筒形シンチレータの円周方向で行なつている
ため、どの領域で発光が生じたと識別されても同
じ重み係数を使用でき、構成が簡単になる。
Effects of the invention According to this invention, position calculations are performed by excluding PMT outputs in areas that have a low contribution to position calculations and eliminating the influence of noise contained in them.
The light emitting position in the circumferential direction and the axial direction can be determined with high precision, and a tomographic image in a slice at an arbitrary position (axial position) can be obtained. Moreover, since the region division is performed in the circumferential direction of the cylindrical scintillator, the same weighting coefficient can be used no matter which region it is identified that light emission has occurred, which simplifies the configuration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの考案の一実施例の正面からの概略
図、第2図は側面からの概略図、第3図は回路構
成を示すブロツク図である。 1……シンチレータ、2……ライトガイド、3
……PMT、4……A/D変換器、5……乗算器、
6……位置決め計算回路、7……加算器、8……
領域識別回路、9……ROM。
FIG. 1 is a schematic front view of one embodiment of this invention, FIG. 2 is a schematic side view, and FIG. 3 is a block diagram showing the circuit configuration. 1...Scintillator, 2...Light guide, 3
...PMT, 4...A/D converter, 5...multiplier,
6...Positioning calculation circuit, 7...Adder, 8...
Area identification circuit, 9...ROM.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 軸方向に幅拡に形成された円筒形シンチレータ
と、この円筒形シンチレータの外周面に、円周方
向も軸方向にも多数配列される光電子増倍管と、
各光電子増倍管の出力の比較により円筒形シンチ
レータの円周方向に分割された複数領域のどの領
域で発光が生じたかの識別を行なう領域識別回路
と、発光が生じたと識別された領域に応じて、そ
の領域及びその領域に隣接する領域内の各光電子
増倍管の重み係数を発生する回路と、上記領域及
びその領域に隣接する領域内の各光電子増倍管出
力のみを用いて、これらに上記重み係数を作用さ
せて発光位置を計算する位置決め計算回路とを有
するリング型ECT装置。
A cylindrical scintillator whose width is widened in the axial direction, and a large number of photomultiplier tubes arranged both in the circumferential direction and in the axial direction on the outer peripheral surface of the cylindrical scintillator.
A region identification circuit that identifies which region of the plurality of regions divided in the circumferential direction of the cylindrical scintillator has generated light emission by comparing the outputs of each photomultiplier tube, and , using only a circuit that generates a weighting factor for each photomultiplier tube in that region and the region adjacent to that region, and the output of each photomultiplier tube in the region and the region adjacent to that region. A ring-type ECT device comprising a positioning calculation circuit that calculates a light emission position by applying the weighting coefficient.
JP1985133902U 1985-08-31 1985-08-31 Expired - Lifetime JPH0532785Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985133902U JPH0532785Y2 (en) 1985-08-31 1985-08-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985133902U JPH0532785Y2 (en) 1985-08-31 1985-08-31

Publications (2)

Publication Number Publication Date
JPS6242085U JPS6242085U (en) 1987-03-13
JPH0532785Y2 true JPH0532785Y2 (en) 1993-08-20

Family

ID=31034638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985133902U Expired - Lifetime JPH0532785Y2 (en) 1985-08-31 1985-08-31

Country Status (1)

Country Link
JP (1) JPH0532785Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876788A (en) * 1981-10-31 1983-05-09 Shimadzu Corp Scintillation camera
JPS6052786A (en) * 1983-08-31 1985-03-26 Shimadzu Corp Nuclear medicine imaging device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5876788A (en) * 1981-10-31 1983-05-09 Shimadzu Corp Scintillation camera
JPS6052786A (en) * 1983-08-31 1985-03-26 Shimadzu Corp Nuclear medicine imaging device

Also Published As

Publication number Publication date
JPS6242085U (en) 1987-03-13

Similar Documents

Publication Publication Date Title
US4823016A (en) Scintillation detector for three-dimensionally measuring the gamma-ray absorption position and a positron CT apparatus utilizing the scintillation detector
US4095107A (en) Transaxial radionuclide emission camera apparatus and method
CA1221178A (en) Positron emission tomography camera
US4559597A (en) Three-dimensional time-of-flight positron emission camera system
US8766180B2 (en) High performance computing for three dimensional proton computed tomography (HPC-PCT)
US4755680A (en) Radiation imaging apparatus and methods
US7817827B2 (en) Enhanced planar single photon emission imaging
JP2001330671A (en) Pet system
Kang et al. Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector
US10228472B2 (en) Radiation position detection method, radiation position detector, and pet apparatus
JP7109168B2 (en) Radiation position detection method, radiation position detector and PET device
JPH0532785Y2 (en)
McAfee et al. Longitudinal tomographic radioisotopic imaging with a scintillation camera: theoretical considerations of a new method
JPS6052786A (en) Nuclear medicine imaging device
JPH0141950B2 (en)
JPH0546512B2 (en)
JP4788823B2 (en) Nuclear medicine diagnostic equipment
JPS6361174A (en) Multislice ring ect apparatus
US12007513B2 (en) Method and apparatus for improved photosensor light collection in a radiation detector
JPH0564753B2 (en)
JPH0627821B2 (en) Positron CT system
Sung et al. Development of a depth-of-interaction detector using alignment difference of scintillation pixels between layers
JP2532871B2 (en) Scintillation camera
JPH0551110B2 (en)
JPS6271874A (en) Ring type spect device