JPS6361053A - Small, thin leaf metal-resin composition - Google Patents
Small, thin leaf metal-resin compositionInfo
- Publication number
- JPS6361053A JPS6361053A JP20546786A JP20546786A JPS6361053A JP S6361053 A JPS6361053 A JP S6361053A JP 20546786 A JP20546786 A JP 20546786A JP 20546786 A JP20546786 A JP 20546786A JP S6361053 A JPS6361053 A JP S6361053A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- small
- resin
- organic resin
- reaction product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims description 9
- 229910052751 metal Inorganic materials 0.000 claims abstract description 37
- 239000002184 metal Substances 0.000 claims abstract description 37
- 229920005989 resin Polymers 0.000 claims abstract description 31
- 239000011347 resin Substances 0.000 claims abstract description 31
- 150000001875 compounds Chemical class 0.000 claims abstract description 22
- BUZRAOJSFRKWPD-UHFFFAOYSA-N isocyanatosilane Chemical compound [SiH3]N=C=O BUZRAOJSFRKWPD-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 12
- 125000003700 epoxy group Chemical group 0.000 claims abstract description 10
- 239000002131 composite material Substances 0.000 claims description 12
- -1 polyethylene Polymers 0.000 abstract description 6
- 238000004381 surface treatment Methods 0.000 abstract description 6
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 125000000217 alkyl group Chemical group 0.000 abstract description 2
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 abstract description 2
- 239000004698 Polyethylene Substances 0.000 abstract 1
- 229920000573 polyethylene Polymers 0.000 abstract 1
- 239000000047 product Substances 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 8
- 239000000945 filler Substances 0.000 description 8
- 238000001746 injection moulding Methods 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 229930182556 Polyacetal Natural products 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000004898 kneading Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 229920006324 polyoxymethylene Polymers 0.000 description 6
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 5
- 239000000376 reactant Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000012756 surface treatment agent Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000012765 fibrous filler Substances 0.000 description 2
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 241000143060 Americamysis bahia Species 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 244000245420 ail Species 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229920001684 low density polyethylene Polymers 0.000 description 1
- 239000004702 low-density polyethylene Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- HAMGRBXTJNITHG-UHFFFAOYSA-N methyl isocyanate Chemical compound CN=C=O HAMGRBXTJNITHG-UHFFFAOYSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920006380 polyphenylene oxide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は射出成形に際し、高い寸法精度を有し、引張り
および曲げなどの機械的強度に優れた小薄片状金属−樹
脂組成物に関する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a metal-resin composition in the form of small flakes that has high dimensional accuracy and excellent mechanical strength such as tensile and bending during injection molding.
〈従来技術とその問題点〉
近年、有機樹脂の特性を向上させるために、ガラス繊維
、金属粉、金属繊維、小薄片状金属(すなわち金属フレ
ーク)なと種々のフィラーを混練した複合物質すなわち
、コンパウンドが利用されている。<Prior art and its problems> In recent years, in order to improve the properties of organic resins, composite materials have been developed that are made by kneading various fillers such as glass fiber, metal powder, metal fibers, small flakes of metal (i.e., metal flakes), etc. compound is used.
しかし、繊維状のフィラーを混練したコンパウンドを射
出成形した成形品において、前記繊維状フィラーが前記
コンパウンド中て配向を生じるため、前記成形品ゲート
方向(樹脂流動方向)とゲート直角方向(樹脂流動直角
方向)との寸法が異なり、寸法および形状粒度が低下す
るなどの問題がある。However, in a molded product made by injection molding a compound kneaded with a fibrous filler, the fibrous filler is oriented in the compound, so the molded product has a gate direction (resin flow direction) and a direction perpendicular to the gate (resin flow direction). There are problems such as the size and shape particle size are reduced due to the difference in size from the direction (direction).
また、金属系のフィラーを混練したコンパウンドにおい
ては、前記金属系フィラーと打機樹脂との密着性が悪い
ため、コンパウンドの機械的性質が低下し、実用に供し
得ないなどの問題がある。In addition, in compounds kneaded with metallic fillers, there is a problem that the mechanical properties of the compounds deteriorate due to poor adhesion between the metallic fillers and the punching machine resin, making them unsuitable for practical use.
たとえば、電磁波シールド性を目的として、特開昭58
−87142号公報には、金属フィラーとしてFe、
Cu、 Zn、 Niおよびこれらの合金のフレークを
ポリオレフィン樹脂に加えたコンパウンド、および特開
昭58−79050号公報ではA2フレークとポリフエ
ニレンエーテルースチレン樹脂とを混練するコンパウン
ドなどが開示されている。しかし、このように電磁波シ
ールドを目的とする場合には、20〜60voj2%の
金属系フィラーを含有させる必要があるため、金属系フ
ィラー特に金属フレークの表面処理を行わずに有機樹脂
に配合するものは樹脂本来の特徴である機械的性質か著
しく低下し、電磁波シールド性が得られたとしても実用
化の点では極めて問題がある。For example, for the purpose of electromagnetic shielding,
-87142 publication describes Fe as a metal filler,
A compound in which flakes of Cu, Zn, Ni, and their alloys are added to a polyolefin resin, and JP-A-58-79050 discloses a compound in which A2 flakes and polyphenylene ether styrene resin are kneaded. . However, when the purpose is electromagnetic shielding, it is necessary to contain 20 to 60 voj 2% of metal filler, so metal fillers, especially metal flakes, that are blended with organic resin without surface treatment. The mechanical properties, which are the original characteristics of the resin, are significantly degraded, and even if electromagnetic shielding properties are obtained, there are extremely problems in terms of practical use.
このため、従来、金属系フィラー特に金属フレークを用
いる場合などでは、有機樹脂との密着性を向上させるた
めに、前記金属フレークの表面をチタン系またはシラン
系カップリング剤で処理する方法などがよく知られてい
る。たとえば、金属フレークの表面処理方法として、特
開昭59−1604号公報には、金属フレークの鏡面反
射率を向上させるために、Nj、 Cu、 All、
Car、Sn、Ag、 Auおよびステンレス鋼など
のフレークを有機金属チタネートで処理する方法が開示
されている。また、特開昭59−223735号公報に
はAll、 Fe、 Gu、 Niおよびそわらの合金
のフレークを、シランカップリング剤で処理して、ポリ
オレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂等
の汎用樹脂に配合することにより、コンパウンドに導電
性を付与する方法が開示されている。For this reason, conventionally, when using metal fillers, especially metal flakes, it has been common practice to treat the surface of the metal flakes with a titanium-based or silane-based coupling agent in order to improve adhesion with organic resins. Are known. For example, as a surface treatment method for metal flakes, Japanese Patent Application Laid-Open No. 1604/1984 describes a method for treating the surface of metal flakes by using Nj, Cu, All,
A method of treating flakes such as Car, Sn, Ag, Au and stainless steel with organometallic titanates is disclosed. In addition, JP-A-59-223735 discloses that alloy flakes of All, Fe, Gu, Ni, and Sowara are treated with a silane coupling agent and blended into general-purpose resins such as polyolefin resins, polyamide resins, and polyester resins. A method of imparting conductivity to a compound is disclosed.
しかし、前記のシラン系またはチタン系カップリング剤
によって表面処理された金属フレークと有機樹脂とを混
練した複合材料を射出成形して得た成形品では、まだ、
引張り、曲げ強度および剛性等の機械的性質が不十分で
あり、実用の点で問題がある。However, molded products obtained by injection molding a composite material made by kneading metal flakes surface-treated with the above-mentioned silane-based or titanium-based coupling agent and an organic resin still have the following problems.
Mechanical properties such as tensile strength, bending strength, and rigidity are insufficient, and there are problems in practical use.
〈発明の目的〉
本発明の目的は、上述した従来の問題点を解消し、エポ
キシ基含有化合物とシリルイソシアネートとの反応物に
より小薄片状金属を表面処理し、各種有機樹脂との結合
力を強化し、引張り強さ、曲げ強度、剛性、耐街寮性お
よび耐摩耗性等の機械的性質を向上させた複合物質であ
る小薄片状金属−樹脂組成物を提供することにある。<Objective of the Invention> The object of the present invention is to solve the above-mentioned conventional problems, to treat the surface of small flaky metal with a reaction product of an epoxy group-containing compound and silyl isocyanate, and to improve the bonding strength with various organic resins. The object of the present invention is to provide a flaky metal-resin composition that is a composite material that is reinforced and has improved mechanical properties such as tensile strength, bending strength, stiffness, street resistance, and abrasion resistance.
〈発明の構成〉
本発明はあらかじめ、エポキシ基含有化合物とシリルイ
ソシアネートとの反応物により表面処理された、最大径
1〜40−、アスペクト比20〜100の小薄片状金属
を、有機樹脂に対して1〜90wtt含むよう複合させ
てなることを特徴とする小薄片状金属−樹脂組成物を提
供するものである。<Structure of the Invention> The present invention is characterized in that a small flaky metal having a maximum diameter of 1 to 40 and an aspect ratio of 20 to 100, whose surface has been previously treated with a reaction product of an epoxy group-containing compound and silyl isocyanate, is applied to an organic resin. The object of the present invention is to provide a small flake-like metal-resin composition, characterized in that the composite contains 1 to 90 wtt.
以下に本発明の詳細な説明する。The present invention will be explained in detail below.
本発明は寸法精度に優れ、機械的性質に優れた成形品を
得ることのできる複合物質であり、下記の特徴を有する
。The present invention is a composite material from which a molded article with excellent dimensional accuracy and mechanical properties can be obtained, and has the following characteristics.
■小薄片状金属は適度な大きさと厚さをもつので、射出
成形の際、有機樹脂中に、良好に分散し、適度に配向す
る。■Since the small flaky metal has an appropriate size and thickness, it is well dispersed and properly oriented in the organic resin during injection molding.
■小薄片状金属は有機樹脂との混練に先だってエポキシ
基含有化合物とシリルイソシアネートとの反応物によっ
て表面処理されるので有機樹脂との密着性が高い。(2) The surface of the small flaky metal is treated with a reaction product of an epoxy group-containing compound and silyl isocyanate prior to kneading with the organic resin, so it has high adhesion with the organic resin.
すなわち、本発明者らは有機樹脂との複合物質に混入す
る金属系フィラーとして、表面処理された小薄片状金属
を用いることにより、首記樹脂への良好な分散性のため
寸法精度の高いそして前記樹脂との高い密着性のため機
械的性質の優れた成形品を得ることを見い出し、本発明
を完成するに至ったものである。That is, the present inventors used surface-treated small flaky metal as a metal filler to be mixed into a composite material with an organic resin. It was discovered that a molded product with excellent mechanical properties could be obtained due to the high adhesion with the resin, and the present invention was completed.
本発明に用いられる小薄片状金属の金属材料はCu、
Ni、 Zn、 All、ステンレス、黄銅および青
銅またはこれらの合金等の耐食性を有する金属であれば
全て使用し得る。The metal material of the small flake metal used in the present invention is Cu,
Any metal having corrosion resistance such as Ni, Zn, All, stainless steel, brass, bronze, or alloys thereof can be used.
本発明に用いられる小薄片状金属の形状は最大粒径が1
〜40−1最大粒径と厚さの比で定義されるアスペクト
比が20〜100のものが好ましい。この理由は最大粒
径1−未満またはアスペクト比20未満ではたとえ、後
述する適当な表面処理を施して複合してもこの複合物質
は十分な機械的強度を得ることができないからである。The shape of the small flaky metal used in the present invention has a maximum particle size of 1
-40-1 It is preferable that the aspect ratio defined by the ratio of maximum grain size to thickness is 20 to 100. The reason for this is that if the maximum particle size is less than 1 or the aspect ratio is less than 20, the composite material cannot have sufficient mechanical strength even if it is composited with an appropriate surface treatment as described below.
また、最大粒径40戸超またはアスペクト比100超で
はこの形状の小薄片状金属が成形品に配向しすぎて寸法
精度、特にゲート方向(P51脂流動方向)とゲート直
角方向(流動直角方向)に異方性を生じ、真円性が低下
するなどの問題が生じるからである。In addition, if the maximum particle size exceeds 40 or the aspect ratio exceeds 100, the small flaky metal of this shape will be too oriented in the molded product, resulting in dimensional accuracy, especially in the gate direction (P51 fat flow direction) and the direction perpendicular to the gate (flow right angle direction). This is because problems such as anisotropy occurs and the roundness deteriorates.
次に本発明に用いられる小薄片状金属は有機樹脂に1〜
90wtJの割合で複合するのか好ましい。この理由は
1wt%未満の複合では十分な強度が得られず、90w
t’t;超の複合では寸法精度が低下するためである。Next, the small flaky metal used in the present invention is added to the organic resin.
It is preferable to combine at a ratio of 90 wtJ. The reason for this is that sufficient strength cannot be obtained with a composite of less than 1wt%, and 90w
This is because the dimensional accuracy decreases with a combination of more than t't;
本発明に用いられる有機樹脂としては熱可塑性樹脂てあ
れば結晶性、非結晶性に関わらずいかなるものでもよい
か、たとえば、低密度ポリエチレン、高密度ポリエチレ
ン、ポリプロピレン、ポリオレフィン、ポリスチレン、
ABS、ポリアミド、ポリアミドイミド、ポリエチレン
テレフタレート、ポリブチレンテレフタレート、ポリア
セタール、ポリカーボネート、ポリフェニレンオキシド
、ポリサルホン、ボッフェニレンサルホン、ボリアリレ
ート、ポリエーテルサルホン、ポリエーテルエーテルケ
トン、ポリエーテルイミドおよびポリオキシベンゾイル
等の樹脂が好ましい。The organic resin used in the present invention may be any thermoplastic resin, whether crystalline or amorphous, such as low density polyethylene, high density polyethylene, polypropylene, polyolefin, polystyrene,
ABS, polyamide, polyamideimide, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polycarbonate, polyphenylene oxide, polysulfone, bophenylene sulfone, polyarylate, polyether sulfone, polyether ether ketone, polyether imide and polyoxybenzoyl, etc. Resins are preferred.
本発明に用いられる小薄片状金属は有機樹脂との混練に
よる複合化に先だってエポキシ基含有化合物とシリルイ
ソシアネートとの反応物により表面処理される。この理
由はシリルイソシアネートか前記小薄片状金属表面と極
めて強い親和性あるいは反応性を有していることを応用
し、前記小薄片状金属表面と強く結合したシリルイソシ
アネートにさらに優れた疎水性を有し、かつ前記シリル
イソシアネートのNGO基と反応する基を有するエポキ
シ基含有化合物を結合させて、前記小薄片状金属表面を
高度に疎水化することができるからである。すなわち、
この反応物は表面処理剤として、小薄片状金属表面との
親和力が大きく、かつ複合しようとする有機樹脂と十分
に一体化するための有機基を有しているからである。The small flaky metal used in the present invention is surface-treated with a reaction product of an epoxy group-containing compound and silyl isocyanate prior to compounding by kneading with an organic resin. The reason for this is that silyl isocyanate has an extremely strong affinity or reactivity with the flaky metal surface. This is because, by bonding an epoxy group-containing compound having a group that reacts with the NGO group of the silyl isocyanate, the flaky metal surface can be made highly hydrophobic. That is,
This is because, as a surface treatment agent, this reactant has a high affinity with the flaky metal surface and has an organic group for sufficient integration with the organic resin to be composited.
前記小薄片状金属に結合する表面処理剤としての反応物
の第1成分であるシリルイソシアネートはRn S i
(N G O) 4− nで表わされ、nは0,1.2
および3で、Rは炭素数1以上のアルキル基、アリル基
およびアルコキシル基なとである。Silyl isocyanate, which is the first component of the reactant as a surface treatment agent that binds to the flaky metal, is Rn Si
(NGO) 4- Represented by n, where n is 0, 1.2
and 3, R is an alkyl group, an allyl group, or an alkoxyl group having 1 or more carbon atoms.
表面処理剤としての前記反応物の第2成分であを含有し
、シリルイソシアネートと反応し、かつ有機樹脂との強
い結合力を有するものならいかなるものでもよいが、特
に不飽和結合を有するものが好ましい。その代表的なも
のとして、グリシジルアクリレート、グリシジルメタア
クリレートおよびエポキシ樹脂などを挙げることができ
る。Any second component of the above-mentioned reactant as a surface treatment agent may be used as long as it contains ashes, reacts with silyl isocyanate, and has a strong bonding force with the organic resin, but in particular, those having unsaturated bonds are suitable. preferable. Typical examples thereof include glycidyl acrylate, glycidyl methacrylate, and epoxy resin.
また、エポキシ基含有化合物とシリルイソシアネートと
の反応はエポキシ基含有化合物、1当量あたりシリルイ
ソシアネートを1モル以上反応させるのが好ましい。こ
の理由は1モル未満では効果を示す物質が得られないか
らである。さらに表面処理剤として得られた反応物によ
る小薄片状金属の表面処理は、金属重量に対して前記反
応物を固形分換算で0.5〜30%添加して室温以上の
温度で処理することか好ましい。この理由は0.5%未
満では効果が得にくく、30%超を添加しても効果が飽
和して役に立たないからである。Further, the reaction between the epoxy group-containing compound and the silyl isocyanate is preferably such that 1 mole or more of the silyl isocyanate is reacted per equivalent of the epoxy group-containing compound. The reason for this is that an effective substance cannot be obtained with less than 1 mol. Furthermore, the surface treatment of small flaky metals using the reactant obtained as a surface treatment agent is performed by adding the reactant in an amount of 0.5 to 30% in terms of solid content based on the weight of the metal, and performing the treatment at a temperature higher than room temperature. Or preferable. The reason for this is that if it is less than 0.5%, it is difficult to obtain the effect, and if it is added in excess of 30%, the effect is saturated and is useless.
〈実施例〉
次に本発明を実施例および比較例について具体的に説明
する。<Examples> Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
(実施例1)
エビクロルビドリンービスフェノール型エポキシ樹脂(
エポキシ当ti186)186gとメチルシリルトリイ
ソシアネート169gをトルエン645gと120℃で
、1時間反応させ、反応生成物(D)を得た。(Example 1) Shrimp chlorbidrin-bisphenol type epoxy resin (
186 g of epoxy 186) and 169 g of methylsilyl triisocyanate were reacted with 645 g of toluene at 120° C. for 1 hour to obtain a reaction product (D).
この反応生成物(D)を用いステンレスフレークに固形
物に換算して2%濃度て処理して表面処理物(A)を得
た。Using this reaction product (D), stainless steel flakes were treated at a concentration of 2% in terms of solid matter to obtain a surface-treated product (A).
この表面処理物(A)30wt%;とポリアセタール7
0wt!にとを混練したコンパウンドを用いて、射出成
形により試験片と肉厚1.5 mm、最大径26mmの
減速ギヤーを作成した。This surface treated product (A) 30wt%; and polyacetal 7
0wt! A test piece and a reduction gear with a wall thickness of 1.5 mm and a maximum diameter of 26 mm were made by injection molding using a compound made by kneading garlic.
(実施例2)
グリシジルメタアクリレートとアクリル酸の共重合体く
エポキシ当fi529)479gとメチルイソシアネー
ト153gとトルエン900gを120℃、1時間反応
させ反応生成物(E)を得た。この反応生成物(E)を
固形物換算で2wt、*濃度でステンレスフレークを処
理し、表面処理物(B)を得た。この表面処理物(B)
30wt%;とポリアセタール70wt%を混練してコ
ンパウンドを作成し、これを用いて射出成形し、試験片
と肉厚1.5 mm、最大径26tntnの減速ギヤー
を得た。(Example 2) 479 g of a copolymer of glycidyl methacrylate and acrylic acid (epoxy fi529), 153 g of methyl isocyanate, and 900 g of toluene were reacted at 120° C. for 1 hour to obtain a reaction product (E). Stainless steel flakes were treated with this reaction product (E) at a concentration of 2 wt (calculated as solid matter) to obtain a surface-treated product (B). This surface treated product (B)
A compound was prepared by kneading 30 wt%; and 70 wt% of polyacetal, and the compound was injection molded to obtain a test piece and a reduction gear with a wall thickness of 1.5 mm and a maximum diameter of 26 tntn.
(実施例3)
表面処理物(A)30wt%とABS樹脂70wtJを
混練し、以下実施例1と同様にして試験片と減速ギヤー
を得た。(Example 3) 30 wt% of the surface treated product (A) and 70 wtJ of ABS resin were kneaded, and the same procedure as in Example 1 was carried out to obtain a test piece and a reduction gear.
(実施例4)
表面処理物(B)30wt%とABS樹脂70wt%を
混練し、以下実施例2と同様の試験片と減速ギヤーを得
た。(Example 4) 30 wt% of the surface treated product (B) and 70 wt% of ABS resin were kneaded to obtain the same test piece and reduction gear as in Example 2.
(実施例5)
反応生成物(D)を用いて固形物換算で1%濃度でアル
ミフレークを処理し、表面処理物(C)を得た。この表
面処理物(C)30wL!にとポリカーボネート70w
t%;を混練し、以下実施例1と同様にして試験片と減
速ギヤーを得た。(Example 5) Aluminum flakes were treated with the reaction product (D) at a concentration of 1% in terms of solids to obtain a surface-treated product (C). This surface treated product (C) is 30wL! Nito polycarbonate 70w
t%; was kneaded, and the same procedure as in Example 1 was carried out to obtain a test piece and a reduction gear.
(比較例1)
ポリアセタールベレットを用い射出成形により試験片と
肉厚1.5 mm、最大径26mmの減速ギヤーを作成
した。(Comparative Example 1) A test piece and a reduction gear having a wall thickness of 1.5 mm and a maximum diameter of 26 mm were made by injection molding using a polyacetal pellet.
(比較例2)
ABS樹脂ベレットを用い射出成形により試験片と肉厚
1.5mm 、最大径26m+nの減速ギヤーを作成し
た。(Comparative Example 2) A test piece and a reduction gear with a wall thickness of 1.5 mm and a maximum diameter of 26 m+n were made by injection molding using an ABS resin pellet.
(比較例3)
ポリカーボネートベレットを用い射出成形により試験片
と肉厚1.5 mm、最大径26mmの減速ギヤーを作
成した。(Comparative Example 3) A test piece and a reduction gear having a wall thickness of 1.5 mm and a maximum diameter of 26 mm were made by injection molding using a polycarbonate pellet.
前記実施例1〜5および比較例1〜3で得られた試験片
を用いて以下に示す材料試験と、得られた減速ギヤーを
用いて寸法精度検査とを行ない、この試験結果を表1に
示す。The following material tests were carried out using the test pieces obtained in Examples 1 to 5 and Comparative Examples 1 to 3, and dimensional accuracy inspection was carried out using the obtained reduction gears, and the test results are shown in Table 1. show.
(a)材料試験
(1)引張り試験により各試験片の引張り強さおよび引
張り伸び(破断伸び)を求めた(ASTM D638
による)。(a) Material test (1) The tensile strength and tensile elongation (elongation at break) of each test piece were determined by a tensile test (ASTM D638
by).
(2)曲げ試験により各試験片の曲げ強度および曲げ弾
性率を求めた(ASTM D790による)。(2) The bending strength and bending elastic modulus of each test piece were determined by a bending test (according to ASTM D790).
(3)アイゾツト衝撃試験により各試験片の衝繋値を求
めた(ASTM D256による)。(3) The impact value of each test piece was determined by an Izot impact test (according to ASTM D256).
(bン寸法蹟度の検査
(4)収縮率 各変速ギヤーの成形品寸法と金型寸法
の比から求めた。(Inspection of dimensional deviation (4) Shrinkage rate It was determined from the ratio of the molded product size and mold size of each transmission gear.
(5)真円度 各変速ギヤーのゲート方向とゲート直
角方向の各直径の差
を求めた。(5) Roundness The difference between the diameters of each transmission gear in the gate direction and in the direction perpendicular to the gate was determined.
表1から明らかなように、有機樹脂としてポリアセター
ルを用いる場合、本発明の小薄片状金属−樹脂組成物で
ある実施例1および2はポリアセタールのみである比較
例1に比較して、引っ張り試験、曲げ試験および衝撃試
験からなる材料試験において優れた成績を示しているし
、収縮率および真円度からなる寸法精度検査においても
優れた成績を示している。As is clear from Table 1, when polyacetal is used as the organic resin, Examples 1 and 2, which are the small flaky metal-resin compositions of the present invention, are more effective in tensile tests than Comparative Example 1, which is made only of polyacetal. It has shown excellent results in material tests consisting of bending tests and impact tests, and has also shown excellent results in dimensional accuracy tests consisting of shrinkage rate and roundness.
また、有機樹脂として、ABS樹脂を用いた実施例3お
よび4は比較例2と比較しても、材料試験および寸法精
度検査のいずれにおいても優れた成績を示している。In addition, Examples 3 and 4 using ABS resin as the organic resin show excellent results in both the material test and the dimensional accuracy test, even when compared with Comparative Example 2.
また、有機樹脂としてポリカーボネートを用いた実施例
5は比較例3と比較しても、材料試験および寸法精度検
査のいずれにおいても優れた成績を示している。In addition, Example 5, which used polycarbonate as the organic resin, showed excellent results in both the material test and the dimensional accuracy test, even when compared with Comparative Example 3.
以上、本発明の実施例はいずれも良好な試験結果を示し
ており、寸法積度の高い、機械的性質に優れた複合物質
であることが解かる。As described above, all of the examples of the present invention show good test results, and it can be seen that they are composite materials with high dimensional bulk and excellent mechanical properties.
〈発明の効果〉
本発明によれば、寸法精度および機械的性質に優れた小
薄片状金属−樹脂組成物が得られる。<Effects of the Invention> According to the present invention, a small flaky metal-resin composition having excellent dimensional accuracy and mechanical properties can be obtained.
本発明の小薄片状金属−樹脂組成物は小薄片状金属の表
面と極めて強い親和力を持つシリルイソシアネートと前
記シリルイソシアネートとよく反応し、かつ有機樹脂と
強い結合力を有するエポキシ含有化合物との混合物によ
り表面処理された前記小薄片状金属と有機樹脂との複合
物質であるため、引張り強さ、曲げ強度、剛性、耐衝箪
性および耐摩耗性などの機械的性質が大巾に向上し、か
つ寸法精度および寸法安定性が大巾に向上した複合物質
となっている。このため、本発明の小薄片状金属−樹脂
組成物は機械的強度と寸法安定性が要求される歯車、カ
ムなどの機構部品などの材料として最適である。The flaky metal-resin composition of the present invention is a mixture of a silyl isocyanate that has an extremely strong affinity with the surface of the flaky metal and an epoxy-containing compound that reacts well with the silyl isocyanate and has a strong bonding force with an organic resin. Because it is a composite material of the above-mentioned flaky metal and organic resin that has been surface-treated by Moreover, it is a composite material with greatly improved dimensional accuracy and dimensional stability. Therefore, the flaky metal-resin composition of the present invention is most suitable as a material for mechanical parts such as gears and cams that require mechanical strength and dimensional stability.
Claims (1)
ートとの反応物により表面処理された、最大径1〜40
μm、アスペクト比20〜100の小薄片状金属を、有
機樹脂に対して1〜90wt%含むよう複合させてなる
ことを特徴とする小薄片状金属−樹脂組成物。The maximum diameter is 1 to 40, which has been surface-treated in advance with a reaction product of an epoxy group-containing compound and silyl isocyanate.
1. A small flaky metal-resin composition comprising a composite of small flaky metal having an aspect ratio of 20 to 100 and containing 1 to 90 wt% based on an organic resin.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20546786A JPS6361053A (en) | 1986-09-01 | 1986-09-01 | Small, thin leaf metal-resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20546786A JPS6361053A (en) | 1986-09-01 | 1986-09-01 | Small, thin leaf metal-resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6361053A true JPS6361053A (en) | 1988-03-17 |
Family
ID=16507345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20546786A Pending JPS6361053A (en) | 1986-09-01 | 1986-09-01 | Small, thin leaf metal-resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6361053A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126019A1 (en) * | 2010-04-08 | 2011-10-13 | 日産化学工業株式会社 | Composition forming heat-cured film having photo-alignment properties |
-
1986
- 1986-09-01 JP JP20546786A patent/JPS6361053A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011126019A1 (en) * | 2010-04-08 | 2011-10-13 | 日産化学工業株式会社 | Composition forming heat-cured film having photo-alignment properties |
US9238705B2 (en) | 2010-04-08 | 2016-01-19 | Nissan Chemical Industries, Ltd. | Composition for forming thermoset film having photo-alignment properties |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR910008563B1 (en) | Thermoplastic resin molding composition | |
DE3885069T2 (en) | Oxidation-resistant compositions for use with rare earth magnets. | |
EP1708038A3 (en) | Fine powder of hydrophobic metal oxide, method for producing it, and toner composition for electrophotography | |
JPH0819320B2 (en) | Reinforcing resin composition for molding | |
JP2004519549A (en) | Polymer resin for ion beam or ion implantation treatment to impart conductivity to the surface | |
JPS6361053A (en) | Small, thin leaf metal-resin composition | |
JPH0668084B2 (en) | Manufacturing method of surface hydrophobic metal material | |
DE69520898T2 (en) | Polyester mixture and relay component molded from it | |
JPS6191254A (en) | Wrist watch case | |
JP3432606B2 (en) | Stabilized polycarbonate resin composition | |
JPS61254662A (en) | Resin composition | |
JPS6233888A (en) | Flexible composite material | |
JPS63261899A (en) | Thermoplastic resin compound | |
JPS5874739A (en) | Tetrafluoroethylene resin powder composition for molding | |
JPS62187735A (en) | Composition for outer trim of timepiece | |
JPS61254661A (en) | Surface part composition for clock | |
JP2561435B2 (en) | Manufacturing method of surface hydrophobic metal material | |
JP3103149B2 (en) | High specific gravity polyamide resin | |
JPS61176661A (en) | Metallic powder-containing polymer composition | |
KR101140932B1 (en) | Surface treating composition for corrosion resistance improvement of steel reinforcement | |
JPH0759666B2 (en) | Polyarylene sulfide resin composition | |
JP4895496B2 (en) | Polyacetal resin composition | |
Gulieva et al. | Properties of Metal-Containing Nanocomposites Based on Isotactic Polypropylene and Nitrile Butadiene Rubber | |
JP2006137781A (en) | Coupling agent-treated calcium carbonate | |
JPH02292365A (en) | Glass-filled aromatic sulfide/sulfone polymer composition and its manufacture |