JPS6360820B2 - - Google Patents

Info

Publication number
JPS6360820B2
JPS6360820B2 JP188183A JP188183A JPS6360820B2 JP S6360820 B2 JPS6360820 B2 JP S6360820B2 JP 188183 A JP188183 A JP 188183A JP 188183 A JP188183 A JP 188183A JP S6360820 B2 JPS6360820 B2 JP S6360820B2
Authority
JP
Japan
Prior art keywords
toughness
temperature
strength
treatment
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP188183A
Other languages
Japanese (ja)
Other versions
JPS59126762A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP188183A priority Critical patent/JPS59126762A/en
Publication of JPS59126762A publication Critical patent/JPS59126762A/en
Publication of JPS6360820B2 publication Critical patent/JPS6360820B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高強度、高靭性アルミニウム合金の製
造方法に関する。 アルミニウム合金のうちで最も高強度、高靭性
が得られる時効硬化型Al―Zn―Mg―Cu系合金
は、比強度(強度/比重)が優れていることか
ら、航空機用材料として使用されている。 従来において、高力合金として使用されている
7075合金は最高強度まで時効処理(T6処理)を
行なうと、破壊靭性や耐応力腐蝕割れ性が劣化す
る等の問題があるので、過時効処理を行なつて強
度を犠牲にして靭性を増加させたT73処理材が使
用されている。 最近になつて、この合金を改良した7050合金―
T736材あるいは7175合金―T736材が開発された
が、これらの合金処理材は靭性を改善する目的の
ために、第2相粒子の体積分率を減少させるため
不純物であるFeおよびSiの含有量を規制してい
る。 因に、Al―Zn―Mg―Cu系合金を鋳造すると、
凝固時にAl―Cu―Mg系、Al―Fe―Si系、Al―
Fe系あるいはAl―Fe―Cu系金属間化合物が生成
し、これら金属間化合物は均熱処理によつて大部
分は再固溶するが、一部未固溶のまま製品の中に
分布して靭性を低下させる原因となつている。そ
して、新しい材料といわれている7175合金は未固
溶晶出物として残存し易いFeおよびSiの含有量
を規制することにより靭性の改善を行なつたもの
である。 本発明者はこのような高力、高靭性アルミニウ
ム合金材料の基本的問題である第2相粒子に着目
し、そして、アルミニウム合金鋳造時に生成する
晶出物を如何にして微細化あるいは再固溶させて
体積分率を減少させるかを検討した結果、本発明
を完成したものであり、即ち、本発明は上記した
Al―Zn―Mg―Cu系合金の従来技術における
種々の問題点および本発明者の知見による研究の
結果なされたものであつて、Al―Zn―Mg―Cu
系合金における上記の各種晶出物を予備熱間加工
によつて分断微細化を図り、後工程の均熱処理時
の再固溶化を促進させることにより体積分率を減
少させることのできる高強度、高靭性アルミニウ
ム合金の製造方法を提供するものである。 本発明に係る高強度、高靭性アルミニウム合金
の製造方法の特徴とするところは、Zn5.0〜7.0wt
%、Mg1.5〜3.0wt%、Cu1.0〜3.0wt%、Ti0.001
〜0.1wt%を必須成分とし、Cr0.05〜0.25wt%、
Zr0.05〜0.20wt%の何れか1種を含有し、
Fe0.5wt%以下、Si0.4wt%以下に規制し、残部
実質的にAlからなるアルミニウム合金を常法に
より鋳造後、250〜360℃の温度で2時間以上の歪
取りおよび析出処理とを兼ねた熱処理を行なつて
から、300〜480℃の温度において40%以上の加工
率で熱間加工を行ない、450〜525℃の温度で4時
間以上均熱処理を行なつた後、さらに、300〜420
℃の温度において20%以上の加工率の熱間加工を
行ない、次いで、450〜525℃の温度で2〜8時間
の溶体化処理を行なうことにある。 本発明に係る高強度、高靭性アルミニウム合金
の製造方法を以下詳細に説明する。 即ち、Zn5〜7wt%、Mg1.5〜3.0wt%、Cu1.0
〜3.0wt%、Ti0.001〜0.1wt%を必須成分として
含有し、Cr0.05〜0.25wt%、Zr0.05〜0.20wt%の
何れか1種を含有し、Fe0.5wt%以下、Si0.4wt
%以下に規制し、残部実質的にAlからなるアル
ミニウム合金鋳塊を250〜360℃の温度で2時間以
上の熱処理を行ない歪取りおよび平衡相を析出さ
せ、40℃/時間以上の昇温速度で300〜480℃の温
度に加熱し、直ちにその温度で40%以上の加工率
で熱間加工をすることにより鋳造時の晶出物を破
断・微細化する。しかして、熱間加工前の粗大な
平衡相は加工時の転位の導入量を増大させ、晶出
物の破断分散化に効果がある。このことは、同一
熱間加工の場合、粗大な平衡相が存在すると存在
しない場合より加工時の導入転位量は多くなり、
そのため変形抵抗が増大し晶出物が破断し易くな
るからである。このようにして、分断微細化され
た晶出物はその後の均熱処理において比表面積
(表面積/体積)が増大しているため再固溶し易
くなる。そのため、通常の均熱処理(約460℃)
で行なうよりも晶出物は微細化し、固溶量が増大
する。さらに、予備加工前の析出処理によつて加
工時の導入転位量を増すことにより均熱時の再結
晶粒が微細化する効果がある。このことは再熱加
工後の溶体化処理によつて生成する再結晶粒(サ
ブ結晶粒)を微細化することに効果があり、製品
の靭性を向上させることができる。この析出処理
後熱間加工した材料をさらに450〜525℃の温度に
おいて4時間以上の均熱処理を行ない、材料中の
成分分布を一様にすると共に晶出物の再固溶化を
図る。その後、300〜420℃の温度で20%以上の加
工率で熱間加工を行ない所望の製品寸法として、
450〜525℃の温度において2〜8時間溶体化処理
し、水焼き入れし、100〜125℃の温度で予備時効
後、150〜180℃の温度で過時効処理を行なうので
ある。この最終時効によつて得られる析出物の寸
法、分布は時効温度、時間によつて変化すること
は勿論均熱処理条件にも依存する。即ち、均熱処
理時にAl―Cu―Mg系の晶出物が完全に固溶され
ていない場合、マトリツクス中のCu、Mg含有量
が低下し、時効析出物の密度は粗くなり、同一時
効時間では強度が低下する。そのため、最終時効
時間を短かくして強度を増加させると、析出物が
微細になり靭性が低下し、応力腐蝕割れが発生し
易くなるという問題が生じる。従つて、Al―Cu
―Mg系晶出物を完全に再固溶させることは高強
度、高靭性アルミニウム合金材料を得るために重
要な条件である。この点からアルミニウム合金鋳
塊を析出処理後予備加工し、均熱処理を行なうこ
とは極めて大切なことである。 本発明に係る高強度、高靭性アルミニウム合金
の製造方法において使用するアルミニウム合金の
含有成分、成分割合および熱処理条件について説
明する。 Znはその含有量が5.0wt%未満では充分な強度
が得られず、また、7.0wt%を越えて含有される
と靭性が低下し、応力腐蝕割れを起し易くなる。
よつて、Zn含有量は5.0〜7.0wt%とする。 Mgは含有量が1.5wt%未満では強度が得られ
ず、また、3.0wt%を越えて含有されると熱間加
工性が低下し、加工割れを生じ易くなる。よつ
て、Mg含有量は1.5〜3.0wt%とする。 Cuはその含有量が1.0wt%未満であると強度が
得られず、また、3.0wt%を越える含有量では靭
性が低下する。よつて、Cu含有量は1.0〜3.0wt%
とする。 Tiは含有量が0.001wt%未満では鋳造組織の微
細化が起らず、また、0.1wt%を起えると鋳造時
に巨大化合物を生成し製品の靭性が低下する。よ
つて、Ti含有量は0.001〜0.1wt%とする。 Crは含有量が0.05wt%未満では結晶粒微細化
に効果がなく、また、0.25wt%を越える含有量で
は鋳造時に巨大化合物を生成し易くなる。よつ
て、Cr含有量は0.05〜0.25wt%とする。 Zrは含有量が0.05wt%未満では結晶粒微細化
に効果がなく、また、0.20wt%を越える含有量で
は鋳造時に巨大化合物を生成し、靭性を低下させ
る。よつて、Zr含有量は0.05〜0.20とする。 FeおよびSiはFeは含有量が0.5wt%を越えると
鋳造時にAl―Fe―Cu系晶出物を生成し、マトリ
ツクスのCu含有量を低下させ時効硬化性が劣化
し、Siは含有量が0.4wt%を越えると均熱中に粗
大なMg―Si系析出物が生成し、製品強度が低下
する。よつて、Fe含有量は0.5wt%以下およびSi
含有量は0.4wt%以下に規制する。 上記した含有成分、成分割合のアルミニウム合
金鋳塊を250〜360℃の温度で歪取りと析出処理を
行なうが、250℃未満の温度では析出物が微細に
なり、熱間加工時に加工割れを起し易くなり、ま
た、360℃を越える温度では平衡相が再固溶し、
析出処理効果がみられなくなる。そして、この処
理時間は2時間以上とする必要があり、2時間未
満では粗大析出物量が少なく、予備加工時の晶出
物微細化が起らない。 次に、300〜480℃の温度において40%以上の加
工率で熱間加工を行なうのであるが、300℃未満
の温度では加工割れが生じるようになり、480℃
を越える温度では析出処理効果がなくなる。そし
て、加工率40%未満では晶出物が微細化せず、均
熱時の再結晶粒が微細化しないのである。 この予備加工後に、450〜525℃の温度で4時間
以上の均熱処理を行なうが、この場合、温度が
450℃未満ではAl―Cu―Mg系晶出物が再固溶せ
ず、525℃を越える温度では共晶溶融を起す。そ
して、均熱処理時間は4時間以上行なうことが必
要であり、4時間未満ではAl―Cu―Mg系晶出物
の再固溶が完全に起らずに、一部未固溶晶出物が
残存する。 さらに、300〜420℃の温度において20%以上の
加工率の熱間加工によつて、所望の製品寸法とす
る。 次いで、450〜525℃の温度において2〜8時間
の溶体化処理を行なうのであるが、温度が450℃
未満では溶体化処理中にAl―Cr―Mg系化合物が
析出し易くマトリツクス中のMg含有量を低下さ
せ、時効硬化性を劣化させ、525℃を越える温度
では溶融を起すようになる。そして、この溶体化
処理の時間は、2〜8時間とし、2時間未満では
時効硬化元素が完全に固溶せず、8時間を越える
と微細結晶粒が異常成長し、靭性を低下させる。 本発明に係る高強度、高靭性アルミニウム合金
の製造方法の実施例を説明する。 実施例 1 第1表に示す3種類のアルミニウム合金鋳塊
(300φ)を半連続鋳造法により鋳造し、第2表に
示す製造工程により鋳造品(100φ)を作成した。
The present invention relates to a method for manufacturing a high strength, high toughness aluminum alloy. Age-hardening Al-Zn-Mg-Cu alloys, which have the highest strength and toughness among aluminum alloys, are used as materials for aircraft because of their excellent specific strength (strength/specific gravity). . Traditionally used as a high-strength alloy
When 7075 alloy is aged to its maximum strength (T6 treatment), there are problems such as deterioration of fracture toughness and stress corrosion cracking resistance, so over-aging treatment is performed to increase toughness at the expense of strength. T73 treated wood is used. 7050 alloy, which is an improved version of this alloy, has recently been developed.
T736 material or 7175 alloy - T736 material was developed, but these alloy treated materials reduce the content of impurities Fe and Si to reduce the volume fraction of second phase particles for the purpose of improving toughness. is regulated. Incidentally, when casting Al-Zn-Mg-Cu alloy,
Al-Cu-Mg system, Al-Fe-Si system, Al-
Fe-based or Al-Fe-Cu based intermetallic compounds are generated, and most of these intermetallic compounds re-dissolve in the solid solution by soaking treatment, but some remain undissolved and are distributed in the product to improve toughness. It is the cause of the decline. The 7175 alloy, which is said to be a new material, has improved toughness by controlling the content of Fe and Si, which tend to remain as unsolid dissolved crystals. The present inventor focused on the second phase particles, which is a fundamental problem in high-strength, high-toughness aluminum alloy materials, and how to refine or redissolve crystallized substances produced during aluminum alloy casting. The present invention was completed as a result of examining whether the volume fraction could be reduced by
This was done as a result of research based on various problems in the conventional technology of Al-Zn-Mg-Cu alloys and the knowledge of the present inventor.
By dividing and refining the above-mentioned various crystallized substances in the system alloy through preliminary hot working and promoting re-solid solution formation during the soaking treatment in the subsequent process, high strength can be achieved that can reduce the volume fraction. A method for manufacturing a high toughness aluminum alloy is provided. The feature of the manufacturing method of high strength and high toughness aluminum alloy according to the present invention is that Zn5.0 to 7.0wt
%, Mg1.5~3.0wt%, Cu1.0~3.0wt%, Ti0.001
~0.1wt% is an essential component, Cr0.05~0.25wt%,
Contains any one of Zr0.05 to 0.20wt%,
After casting an aluminum alloy with Fe 0.5wt% or less and Si 0.4wt% or less and the remainder essentially consisting of Al, it is subjected to strain relief and precipitation treatment at a temperature of 250 to 360℃ for 2 hours or more. After performing heat treatment, hot working is performed at a temperature of 300 to 480°C with a processing rate of 40% or more, and after performing soaking treatment at a temperature of 450 to 525°C for 4 hours or more, further 420
The method is to carry out hot working at a working rate of 20% or more at a temperature of 450 to 525 degrees Celsius, and then to perform a solution treatment for 2 to 8 hours at a temperature of 450 to 525 degrees Celsius. The method for producing a high-strength, high-toughness aluminum alloy according to the present invention will be described in detail below. That is, Zn5-7wt%, Mg1.5-3.0wt%, Cu1.0
Contains ~3.0wt%, Ti0.001~0.1wt% as essential components, contains any one of Cr0.05~0.25wt%, Zr0.05~0.20wt%, Fe0.5wt% or less, Si0 .4wt
% or less, and heat-treating an aluminum alloy ingot with the remainder essentially consisting of Al at a temperature of 250 to 360°C for 2 hours or more to relieve strain and precipitate an equilibrium phase, and at a heating rate of 40°C/hour or more. By heating the product to a temperature of 300 to 480°C and immediately hot working at that temperature at a processing rate of 40% or more, the crystallized material during casting is broken and made fine. Therefore, the coarse equilibrium phase before hot working increases the amount of dislocations introduced during working, and is effective in breaking and dispersing crystallized materials. This means that in the case of the same hot working, if a coarse equilibrium phase exists, the amount of dislocations introduced during working will be greater than if it does not exist.
This is because the deformation resistance increases and the crystallized material becomes more likely to break. In this way, the divided and finely divided crystallized material has an increased specific surface area (surface area/volume) in the subsequent soaking treatment, so that it becomes easy to be solid-dissolved again. Therefore, normal soaking treatment (approximately 460℃)
The crystallized material becomes finer than that in the case where the crystallized substance is formed, and the amount of solid solution increases. Furthermore, by increasing the amount of dislocations introduced during processing through precipitation treatment before preliminary processing, there is an effect of making recrystallized grains finer during soaking. This is effective in refining recrystallized grains (sub-crystal grains) generated by the solution treatment after reheat processing, and can improve the toughness of the product. After this precipitation treatment, the hot-worked material is further subjected to soaking treatment at a temperature of 450 to 525° C. for 4 hours or more to make the component distribution in the material uniform and to re-dissolve the crystallized substances. After that, hot processing is performed at a temperature of 300 to 420℃ with a processing rate of 20% or more to obtain the desired product dimensions.
Solution treatment is carried out at a temperature of 450 to 525°C for 2 to 8 hours, water quenching is carried out, pre-aging is carried out at a temperature of 100 to 125°C, and overaging treatment is carried out at a temperature of 150 to 180°C. The size and distribution of precipitates obtained by this final aging vary depending on the aging temperature and time, as well as depending on the soaking conditions. In other words, if the Al-Cu-Mg crystals are not completely dissolved during soaking, the Cu and Mg contents in the matrix will decrease, the density of the aged precipitates will become coarser, and the aging time will increase. Strength decreases. Therefore, if the final aging time is shortened to increase the strength, the problem arises that the precipitates become fine, the toughness decreases, and stress corrosion cracking becomes more likely to occur. Therefore, Al―Cu
-Complete re-dissolution of Mg-based crystallized substances is an important condition for obtaining high-strength, high-toughness aluminum alloy materials. From this point of view, it is extremely important to pre-process the aluminum alloy ingot after precipitation treatment and to perform soaking treatment. The components, component ratios, and heat treatment conditions of the aluminum alloy used in the method for producing a high-strength, high-toughness aluminum alloy according to the present invention will be explained. If the Zn content is less than 5.0 wt%, sufficient strength cannot be obtained, and if the Zn content exceeds 7.0 wt%, the toughness decreases and stress corrosion cracking is likely to occur.
Therefore, the Zn content is set to 5.0 to 7.0 wt%. If the Mg content is less than 1.5 wt%, strength cannot be obtained, and if the Mg content exceeds 3.0 wt%, hot workability decreases and processing cracks are likely to occur. Therefore, the Mg content is set to 1.5 to 3.0 wt%. If the Cu content is less than 1.0 wt%, strength cannot be obtained, and if the content exceeds 3.0 wt%, toughness decreases. Therefore, the Cu content is 1.0~3.0wt%
shall be. If the Ti content is less than 0.001wt%, refinement of the casting structure will not occur, and if it is 0.1wt%, giant compounds will be generated during casting, resulting in a decrease in the toughness of the product. Therefore, the Ti content is set to 0.001 to 0.1 wt%. When the content of Cr is less than 0.05 wt%, it has no effect on grain refinement, and when the content exceeds 0.25 wt%, it tends to generate giant compounds during casting. Therefore, the Cr content is set to 0.05 to 0.25 wt%. If the content of Zr is less than 0.05 wt%, it has no effect on grain refinement, and if the content exceeds 0.20 wt%, giant compounds are generated during casting, reducing toughness. Therefore, the Zr content is set to 0.05 to 0.20. When the content of Fe and Si exceeds 0.5wt%, Al-Fe-Cu crystals are generated during casting, which lowers the Cu content of the matrix and deteriorates age hardenability. If it exceeds 0.4wt%, coarse Mg--Si precipitates will form during soaking, resulting in a decrease in product strength. Therefore, Fe content is less than 0.5wt% and Si
The content is regulated to 0.4wt% or less. Aluminum alloy ingots with the above-mentioned components and ratios are subjected to strain relief and precipitation treatment at a temperature of 250 to 360°C, but at temperatures below 250°C, the precipitates become fine and may cause processing cracks during hot working. In addition, at temperatures exceeding 360℃, the equilibrium phase re-dissolves into solid solution.
The effect of precipitation treatment is no longer observed. The treatment time must be 2 hours or more; if it is less than 2 hours, the amount of coarse precipitates will be small and the crystallized substances will not be refined during preliminary processing. Next, hot working is performed at a working rate of 40% or more at a temperature of 300 to 480°C, but at temperatures below 300°C, processing cracks occur;
At temperatures exceeding this temperature, the precipitation treatment effect disappears. If the processing rate is less than 40%, the crystallized substances will not be made finer, and the recrystallized grains will not be made finer during soaking. After this preliminary processing, a soaking treatment is performed at a temperature of 450 to 525℃ for 4 hours or more, but in this case, the temperature
At temperatures below 450°C, Al--Cu--Mg crystallized substances do not re-dissolve, and at temperatures above 525°C, eutectic melting occurs. It is necessary to perform the soaking treatment for 4 hours or more; if it is less than 4 hours, the Al-Cu-Mg crystallized material will not be completely re-dissolved and some undissolved crystallized material will remain. remain. Furthermore, desired product dimensions are obtained by hot working at a temperature of 300 to 420°C and a processing rate of 20% or more. Next, solution treatment is carried out for 2 to 8 hours at a temperature of 450 to 525°C.
If the temperature is lower than 525°C, Al--Cr--Mg compounds tend to precipitate during solution treatment, lowering the Mg content in the matrix and deteriorating age hardenability, and melting occurs at temperatures exceeding 525°C. The time for this solution treatment is 2 to 8 hours; if it is less than 2 hours, the age-hardening elements will not be completely dissolved, and if it exceeds 8 hours, fine crystal grains will grow abnormally, reducing the toughness. An example of the method for manufacturing a high-strength, high-toughness aluminum alloy according to the present invention will be described. Example 1 Three types of aluminum alloy ingots (300φ) shown in Table 1 were cast by a semi-continuous casting method, and cast products (100φ) were produced by the manufacturing process shown in Table 2.

【表】【table】

【表】 各鍛造材を500℃×3時間を溶体化処理した後、
18℃の水中に焼入れ、110℃の温度で6時間予備
時効後、175℃の温度で7時間の過時効処理を行
なつた。その時の各材料の強度と靭性を第3表に
示す。なお、靭性についてはASTME―399に従
つて試験を行なつた(L―T)。引張性質はL―
T方向の値を示す。〇は本発明に係る高強度、高
靭性アルミニウム合金の製造方法により作成され
た材料であり、無印は比較材料である。
[Table] After solution treatment of each forged material at 500℃ x 3 hours,
It was quenched in water at 18°C, pre-aged at 110°C for 6 hours, and then over-aged at 175°C for 7 hours. Table 3 shows the strength and toughness of each material at that time. The toughness was tested according to ASTME-399 (L-T). Tensile property is L-
Indicates the value in the T direction. ○ indicates a material produced by the method for producing a high-strength, high-toughness aluminum alloy according to the present invention, and no mark indicates a comparative material.

【表】【table】

【表】 この第3表より明らかであるが、Fe含有量が
増加すると、高強度、高靭性が得られないことが
わかり、また、析出処理(300℃×16時間)した
後、40%以上の高加工率で熱間加工を行なえば高
靭性材料が得られることがわかる。 実施例 2 Fe0.09wt%、Si0.05wt%、Cu2.15wt%、
Mg1.93wt%、Zn6.24wt%、Zr0.15wt%、
Ti0.04wt%を含むアルミニウム合金鋳塊(210φ)
を第4表に示す製造工程により押出し加工し、
480℃の温度で4時間溶体化処理した後、60℃の
水中焼入れを行ない、120℃の温度で24時間予備
時効後175℃の温度に10時間保持して時効処理を
行なつた。この時の強度および靭性値を第5表に
示す。
[Table] It is clear from this Table 3 that when the Fe content increases, high strength and high toughness cannot be obtained. It can be seen that a high toughness material can be obtained by hot working at a high working rate of . Example 2 Fe0.09wt%, Si0.05wt%, Cu2.15wt%,
Mg1.93wt%, Zn6.24wt%, Zr0.15wt%,
Aluminum alloy ingot (210φ) containing Ti0.04wt%
is extruded according to the manufacturing process shown in Table 4,
After solution treatment at a temperature of 480°C for 4 hours, quenching in water at 60°C was performed, pre-aging at a temperature of 120°C for 24 hours, and then aging treatment by holding at a temperature of 175°C for 10 hours. The strength and toughness values at this time are shown in Table 5.

【表】【table】

【表】【table】

【表】 なお、引張性質はLT方向の値を示し、破壊靭
性値はL―T方向の測定値を示す。この実施例か
ら明らかであるが、Zrを含むアルミニウム合金
であつても、析出処理を行なうことにより高強
度、高靭性のものが得られる。 以上説明したように、本発明に係る高強度、高
靭性アルミニウム合金の製造方法は上記の構成を
有しているものであるから、Al―Zn―Mg―Cu
系アルミニウム合金を高強度および高靭性を有す
る優れたものとすることができる効果を奏するも
のである。
[Table] The tensile properties show the values in the LT direction, and the fracture toughness values show the measured values in the LT direction. As is clear from this example, even if the aluminum alloy contains Zr, high strength and high toughness can be obtained by performing precipitation treatment. As explained above, since the method for producing a high-strength, high-toughness aluminum alloy according to the present invention has the above structure, Al-Zn-Mg-Cu
This has the effect of making the aluminum alloy superior in terms of high strength and toughness.

Claims (1)

【特許請求の範囲】[Claims] 1 Zn5.0〜7.0wt%、Mg1.5〜3.0wt%、Cu1.0〜
3.0wt%、Ti0.001〜0.1wt%を必須成分とし、
Cr0.05〜0.25wt%、Zr0.05〜0.20wt%の何れか1
種を含有し、Fe0.5wt%以下、Si0.4wt%以下に
規制し、残部実質的にAlからなるアルミニウム
合金を常法により鋳造後、250〜360℃の温度で2
時間以上の歪取りおよび析出処理とを兼ねた熱処
理を行なつてから、300〜480℃の温度において40
%以上の加工率で熱間加工を行ない、450〜525℃
の温度で4時間以上均熱処理を行なつた後、さら
に、300〜420℃の温度において20%以上の加工率
の熱間加工を行ない、次いで、450〜525℃の温度
で2〜8時間の溶体化処理を行なうことを特徴と
する高強度、高靭性アルミニウム合金の製造方
法。
1 Zn5.0~7.0wt%, Mg1.5~3.0wt%, Cu1.0~
3.0wt%, Ti0.001~0.1wt% are essential components,
Any one of Cr0.05~0.25wt%, Zr0.05~0.20wt%
An aluminum alloy containing seeds, regulated to 0.5wt% or less of Fe, 0.4wt% or less of Si, and the remainder consisting essentially of Al is cast by a conventional method and then heated at a temperature of 250 to 360℃.
After heat treatment that also serves as strain relief and precipitation treatment for more than an hour, the
Hot processing is carried out at a processing rate of 450 to 525℃.
After soaking for 4 hours or more at a temperature of A method for producing a high-strength, high-toughness aluminum alloy, which comprises performing solution treatment.
JP188183A 1983-01-10 1983-01-10 Production of aluminum alloy having high strength and high toughness Granted JPS59126762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP188183A JPS59126762A (en) 1983-01-10 1983-01-10 Production of aluminum alloy having high strength and high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP188183A JPS59126762A (en) 1983-01-10 1983-01-10 Production of aluminum alloy having high strength and high toughness

Publications (2)

Publication Number Publication Date
JPS59126762A JPS59126762A (en) 1984-07-21
JPS6360820B2 true JPS6360820B2 (en) 1988-11-25

Family

ID=11513902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP188183A Granted JPS59126762A (en) 1983-01-10 1983-01-10 Production of aluminum alloy having high strength and high toughness

Country Status (1)

Country Link
JP (1) JPS59126762A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6263641A (en) * 1985-09-14 1987-03-20 Showa Alum Corp High-strength aluminum-alloy extruded material excellent in low-cycle fatigue characteristics
DE112004003147B4 (en) 2003-04-10 2022-11-17 Novelis Koblenz Gmbh Al-Zn-Mg-Cu alloy
JP5741561B2 (en) 2012-12-04 2015-07-01 日本軽金属株式会社 Pellicle frame and manufacturing method thereof
CN111020314A (en) * 2013-09-30 2020-04-17 苹果公司 Aluminum alloy with high strength and attractive appearance
CN106367641B (en) * 2016-08-27 2018-03-02 来安县科来兴实业有限责任公司 A kind of EMUs gear-box high-strength aluminum alloy and preparation method thereof
US11345980B2 (en) 2018-08-09 2022-05-31 Apple Inc. Recycled aluminum alloys from manufacturing scrap with cosmetic appeal
CN112760532A (en) * 2020-12-25 2021-05-07 广西南南铝加工有限公司 Aluminum alloy section for loading, unloading and transferring platform and preparation method thereof
CN112981288B (en) * 2021-05-12 2021-08-20 中国航发北京航空材料研究院 Annealing method of aluminum alloy ingot

Also Published As

Publication number Publication date
JPS59126762A (en) 1984-07-21

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
US4336075A (en) Aluminum alloy products and method of making same
EP0247181B1 (en) Aluminum-lithium alloys and method of making the same
US4021271A (en) Ultrafine grain Al-Mg alloy product
AU594081B2 (en) A1-Mg-Si Extrusion alloy and method
US5582659A (en) Aluminum alloy for forging, process for casting the same and process for heat treating the same
US5061327A (en) Method of producing unrecrystallized aluminum products by heat treating and further working
US4431467A (en) Aging process for 7000 series aluminum base alloys
JPH0372147B2 (en)
JP3766357B2 (en) Aluminum alloy forging material for strength member and forging material
JPH0713281B2 (en) Method for manufacturing aluminum-based alloy processed products
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
US4921548A (en) Aluminum-lithium alloys and method of making same
JPS6360820B2 (en)
US5810949A (en) Method for treating an aluminum alloy product to improve formability and surface finish characteristics
US5223050A (en) Al-Mg-Si extrusion alloy
JPH11286758A (en) Production of forged product using aluminum casting material
US4915747A (en) Aluminum-lithium alloys and process therefor
JP3145904B2 (en) Aluminum alloy sheet excellent in high speed superplastic forming and its forming method
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JPH0447019B2 (en)
EP0266741B1 (en) Aluminium-lithium alloys and method of producing these
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
KR910006016B1 (en) Memorial alloy based cu and the making method
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production