JPS6360787B2 - - Google Patents

Info

Publication number
JPS6360787B2
JPS6360787B2 JP3745481A JP3745481A JPS6360787B2 JP S6360787 B2 JPS6360787 B2 JP S6360787B2 JP 3745481 A JP3745481 A JP 3745481A JP 3745481 A JP3745481 A JP 3745481A JP S6360787 B2 JPS6360787 B2 JP S6360787B2
Authority
JP
Japan
Prior art keywords
reaction
secondary amine
butadiene polymer
butadiene
maleic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3745481A
Other languages
Japanese (ja)
Other versions
JPS57151640A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP3745481A priority Critical patent/JPS57151640A/en
Publication of JPS57151640A publication Critical patent/JPS57151640A/en
Publication of JPS6360787B2 publication Critical patent/JPS6360787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気的諸特性にすぐれ、かつ打抜加工
性が極めて良好な硬化物特に電気部品を配置、保
持するに適する積層板を製造するのに用いられる
フエノール樹脂組成物に関するものである。 近年、通信機や電子機器などの技術革新によつ
て積層板の電気的、物理的特性の高度化が要求さ
れるようになつた。また、積層板は加工設備の自
動化、省力化等の観点から常温または常温付近の
比較的低温での打抜特性の優れたものが要求され
ている。 これらの要求に対して従来からフエノール樹脂
に熱可塑性のポリマーや可塑剤を添加したり、長
鎖炭化水素を置換基としたフエノール誘導体を原
料としたり、ゴムを混和するなどの方法が試みら
れてきた。 しかし、これらの方法は十分な可撓性が得られ
なかつたり、電気的、物理的特性を低下させた
り、作業性を悪化させたりして十分満足のいく結
果が得られていない。 また、フエノール類を酸触媒の存在下に乾性油
や液状ポリブタジエンと反応させた後、ホルムア
ルデヒドと反応させ、可撓性を有する積層板用フ
エノール樹脂を製造する方法も提案されている。
しかしながら、非共役二重結合を有する乾性油や
液状ジオレフイン重合体に対するフエノール類の
付加は比較的遅く、かつ二重結合部分の環化、重
合などの副反応が併発する。従つてフエノールを
多量に付加しようとすると、これら副反応もまた
活発に起り高分子量化してワニス化する際に極性
溶剤に溶け難かつたり、フエノール樹脂との相溶
性が悪かつたり、紙または布への浸透性が悪かつ
たりする。これらの欠点によつて良好な特性を有
する積層板は得られ難い。 共役二重結合を有する乾性油、たとえば桐油で
変性したフエノール樹脂は、前述した欠点が比較
的少なく、すぐれた可撓性を付与できるが、天然
油であるために価格変動が大きいこと、電子技術
の発達によつて要求される物理的、電気的諸特性
のレベルアツプには最早対応しきれない段階にき
ているなどの理由から、新しい可撓性付与剤が望
まれている。 本発明は(A),(a)共役および/または非共役二重
結合を有する乾性油の無水マレイン酸付加物に一
般式 (式中R1およびR2は互いに同一又は相異なる
炭素数1〜20の有機残基を表わす)で表わされる
ジアミン化合物をイミド化反応させることによつ
て得られる二級アミン基を有する乾性油および(b)
数平均分子量が300〜10000のブタジエン重合体お
よび/または共重合体の無水マレイン酸付加物に
一般式 (式中R1およびR2は互いに同一または相異な
る炭素数1〜20の有機残基)で表わされるジアミ
ン化合物をイミド化反応させることによつて得ら
れる二級アミンを有するブタジエン重合体およ
び/または共重合体の(a)および(b)のうちから選ば
れた1種または2種と(B)フエノール類およびホル
ムアルデヒドをアルカリ触媒の存在下で反応させ
て得られるレゾール型フエノール樹脂を必須成分
として含有する硬化性フエノール樹脂組成物に関
するものである。 本発明のフエノール樹脂組成物の一成分である
二級アミンを有する乾性油について説明する。共
役および/または非共役二重結合を有する乾性油
としては、リノレン酸、リノール酸、エレオステ
アリン酸を主成分とするあまに油、えの油、大豆
油、桐油、脱水ひまし油等が挙げられる。 本発明における乾性油の無水マレイン酸付加物
は上記乾性油と無水マレイン酸を50〜300℃の温
度で反応させる従来公知の方法で製造できる。 共役二重結合を有する乾性油の場合には、デイ
ールスアルダー機構により無水マレイン酸が付加
するので50〜150℃の比較的低温でマレイン化反
応を行うことが可能である。 一方、非共役二重結合を有する乾性油の場合に
は150〜300℃の如き、幾分高温で行なうのが良
い。また有機過酸化物を少量添加するか、空気を
吹込んだ乾性油を用いることによつて反応温度を
幾分低くすることもできる。 無水マレイン酸付加反応に際して通常はゲル化
防止剤は不要であるが、反応条件によつてはフエ
ニレンジアミン酸、ピロガロール類、ナフトール
類等を少量添加してゲル化反応を防止することも
できる。 無水マレイン酸の付加量は乾性油100gに対し
て0.05〜1.0モル好ましくは0.1〜0.5モルである。 本発明においては、共役二重結合を有する乾性
油のみならず従来は一般的な用途の実用化に難の
あつた非共役二重結合を有する乾性油をも利用す
ることができる。何故ならば、非共役二重結合を
有する乾性油のマレイン化反応は容易であり、高
分子量化などの副反応が比較的少ない状態で無水
マレイン酸付加が可能であるからである。 乾性油の無水マレイン酸付加物は次の一般式 (式中R1およびR2は互いに同一又は相異なる
炭素数1〜20の有機残基を表わす)で示されるジ
アミン化合物と反応させる。この反応方法につい
てはたとえば特開昭53−63439に記載されている
方法に準じて行うことができる。この反応は無水
コハク酸基またはその半エステル化物と一級アミ
ンとのイミド化反応である。使用される上記ジア
ミン化合物は無水コハク酸基に対して当量用いる
ことが好ましいが、過剰のジアミン化合物を用い
て反応終了後末反応ジアミン化合物を留去するこ
とも可能である。 ここで言うジアミンとはR1,R2が炭化水素残
基のものが代表的なものであるが、該炭化水素残
基の水素の一部がヒドロキシル基で置換されてい
るものも有効に使用できる。 このジアミンに代表例は、H2N(CH2oNH
(CH2nH(m、nは1〜12)、H2N(CH2oNH
(CH2nOH(m、nは1〜12)であり、たとえば
メチルアミノエチルアミン、エチルアミノエチル
アミン、メチルアミノプロピルアミン、エチルア
ミノプロピルアミン、ブチルアミノプロピルアミ
ン、β―ヒドロキシエチルアミノエチルアミン、
β―ヒドロキシエチルアミノプロピルアミンなど
がその一例である。 本反応はジアミン化合物の反応によるゲル化反
応を防ぐためにジアミン化合物を添加するに先立
つて、アルコール類を加えて無水コハク酸基を半
エステル化しておく方法が推奨される。 イミド化反応は通常50〜300℃、好ましくは100
〜200℃の温度で実施される。該イミド化反応は
溶剤の存在下でも非存在下でも行なうことができ
る。溶剤を使用する場合にはベンゼン、トルエ
ン、キシレン、シクロヘキサンなどの炭化水素系
溶媒、ブチルセロソルブ、エチルセロソルブ、n
―ブタノールなどのアルコール系溶媒、ジグライ
ムなどのエーテル系溶媒を用いることができるが
アルコール系溶媒を用いて半エステル化反応をイ
ミド化反応に先立つて行なわせる方法が特に好ま
しい。 上記イミド化反応によつて二級アミン基は通常
次の如き構造で乾性油に付加する。 (式中R3は共役および/または非共役二重結
合を有する乾性油残基、R1およびR2は互いに同
一又は相異なる炭素数1〜20の有機残基) 次に本発明に用いられる二級アミンを含有する
ブタジエン重合体について説明する。本発明の二
級アミンを含有するブタジエン重合体は数平均分
子量が300〜10000のブタジエン単独重合体もしく
はブタジエン単位が50%以上であるブタジエン共
重合体に無水マレイン酸を反応させ、得られたマ
レイン化ブタジエン重合体に一般式 (式中R1およびR2は互いに同一又は相異なる
炭素数1〜20の有機残基を表わす)で示されるジ
アミン化合物を作用させることにより合成でき
る。まず本発明で用いられる原料ブタジエン重合
体は例えば炭化水素系溶媒中でリチウム、ナトリ
ウムなどのアルカリ金属またはそれらの有機金属
化合物を触媒としてブタジエンを単独重合させた
もの、あるいはブタジエンとスチレン等のビニル
モノマーとを共重合させたもの、ブタジエンとイ
ソプレン等のジオレフインとを共重合させたもの
などが好ましく用いられる。またナフタレン、ア
ントラセンの如き多環芳香族化合物を活性化剤と
してテトラヒドロフランのような極性溶媒中でナ
トリウムのようなアルカリ金属を触媒としてブタ
ジエンを単独または共重合させたものも好ましく
用いられる。さらに配位アニオン重合触媒を用い
ることによつて得られるブタジエン重合体または
共重合体、ラジカル開始剤でブタジエン等をテロ
メリゼーシヨンさせることによつて得られた重合
体も同様に用いることができる。 本発明で言うブタジエン重合体の数平均分子量
の範囲は300〜10000好ましくは500〜5000である。
分子量が低すぎる重合体では架橋点間の分子量が
あまりに小さくなりすぎるために可撓性が出ない
ばかりか、硬化物の強度、耐熱性、耐薬品性など
の性能が低下する。分子量が大きすぎる場合は粘
度が著しく高くなるために作業性が低下し、均一
な硬化物を得るのが困難となる。 本発明に用いられるブタジエン重合体中のミク
ロ構造は特に制限がなく、1,2―結合の多い重
合体でも1,4―結合の多い重合体でも用いるこ
とができる。 本発明のブタジエン重合体又は共重合体もしく
はその混合物の無水マレイン酸付加物は、前記し
たブタジエン重合体又は共重合体と無水マレイン
酸を100〜300℃の温度で反応させる従来公知の方
法で製造できる。また付加反応を行う際にフエニ
レンジアミン類、ピロガロール類、ナフトール類
等のゲル化防止剤を少量添加して、ゲル化反応を
抑制する方法が好ましく採用できる。またこの反
応における無水マレイン酸の付加物はブタジエン
重合体又は共重合体100gに対し0.05〜1.0モル、
好ましくは0.1〜0.5モルである。 ブタジエン重合体の無水マレイン酸付加物は次
の一般式 で示されるジアミン化合物と反応させる。このジ
アミンは先に記載した乾性油の無水マレイン化物
に反応させる際に使用するジアミンと同様のもの
である。この反応方法についてはたとえば特開昭
53−63439に記載される方法に準じて行うことが
できる。この反応は無水コハク酸基またはその半
エステル化物と一級アミンとのイミド化反応であ
る。 使用される上記ジアミン化合物は無水コハク酸
基に対して当量用いられることが好ましいが、過
剰のジアミン化合物を用いて反応後、未反応ジア
ミン化合物を留去することも可能である。 本反応はジアミン化合物の反応によるゲル化反
応を防ぐためにジアミン化合物を添加するに先立
つて、アルコール類を加えて無水コハク酸基を半
エステル化しておく方法が推奨される。 イミド化反応は通常50〜300℃、好ましくは100
〜200℃の温度で実施される。該イミド化合物は
溶剤の存在下でも非存在下でも行なうことができ
る。溶剤を使用する場合には、ベンゼントルエ
ン、キシレン、シクロヘキサンなどの炭化水素系
溶媒、ブチルセロソルブ、エチルセロソルブ、n
―ブタノール等のアルコール系溶媒、ジグライム
などのエーテル系溶媒を用いることができるが、
アルコール系溶媒を用いて半エステル化反応をイ
ミド化反応に先立つて行なわせる方法が特に好ま
しい。 上記イミド化反応によつて二級アミン基は通常
次の如き構造でブタジエン重合体に付加してい
る。 (式中R4は数平均分子量が300〜10000のブタ
ジエン重合体および/または共重合体、R1およ
びR2は互いに同一または相異なる炭素数1〜20
を有する炭素残基)。 前記した二級アミン基を有する乾性油と前記ブ
タジエン重合体および/または共重合体の合成に
おいては同様の原料および反応条件を用いること
ができるのでもし(a)の二級アミン基を有する乾性
油および(b)の二級アミン基を有するブタジエン重
合体の両者の混合物を用いることを意図する場合
は原料の乾性油とブタジエン重合体および/また
は共重合体を混合してから無水マレイン酸を反応
させ、さらに二級アミンをもつジアミン類と反応
させることも可能である。 本発明の熱硬化性樹脂組成物のもう一方の構成
物であるフエノール―ホルムアルデヒド樹脂は、
フエノール類とアルデヒド類とを塩基性触媒で縮
合することによつて得られる。 フエノール類としてはフエノールの他にクレゾ
ール、キシレノール、レゾルシン、ビスフエノー
ル等が単独あるいは混合して用いられる。アルデ
ヒド類としてはホルムアルデヒドの他に分解して
ホルムアルデヒドを発生するパラホルムアルデヒ
ド等の使用も可能である。 フエノール樹脂縮合に用いる塩基性触媒として
は、アルカリ金属類やアルカリ土金属類の水酸化
物やアンモニア、アミン等が好ましく用いられ
る。 二級アミンを有する乾性油および/または二級
アミンを有するブタジエン重合体とフエノール―
ホルムアルデヒド樹脂は、それぞれ別々に合成し
たものを混合して用いることもできるし、二級ア
ミンを有する乾性油および/または二級アミンを
有するブタジエン重合体の存在下に、フエノール
類とホルムアルデヒドを縮合させることもまた可
能である。 二級アミンを有する乾性油およびび/または二
級アミンを有するブタジエン重合体とフエノール
―ホルムアルデヒド樹脂の混合比率は、広い範囲
にわたつて変えることができ、混合比率によつて
種種の特性を有する硬化物が得られる。 二級アミンを有する乾性油または二級アミンを
有するブタジエン重合体をそれぞれ単独でフエノ
ール―ホルムアルデヒド樹脂と配合する場合に
は、二級アミンを有する乾性油または二級アミン
を有するブタジエン重合体とフエノール―ホルム
アルデヒド樹脂の量が重量比で5:95〜80:20、
さらには20:80〜60:40の範囲が好ましい特性を
兼ね備えた硬化物を得るために好ましく採用され
る。また二級アミンを有する乾性油と二級アミン
を有するブタジエン重合体とを同時に使用する場
合には、両者の合計量対フエノール―ホルムアル
デヒド樹脂の量が重量比で5:95〜80:20、さら
には20:80〜60:40の範囲が好ましい特性を兼ね
備えた硬化物を得るために好ましく採用される。
ここで、二級アミンを有する乾性油と二級アミン
を有するブタジエン重合体の使用割合はたとえば
5:95〜95:5で用いることができる。 本願の熱硬化性樹脂組成物は特に触媒を添加す
ることなく100〜250℃の温度で硬化することがで
きる。 この熱硬化性樹脂を用いて電気部品を配置・保
持するに適する積層板たとえば、配線プリント
板、シヤーシー板を得るにはたとえば以下のよう
に行なうことが好ましい。すなわち上記熱硬化性
樹脂組成物に含有される二級アミンを有する乾性
油および/または二級アミンを有するブタジエン
重合体、およびフエノール―ホルムアルデヒド樹
脂をメタノール、エタノール、ブタノール等のア
ルコール類、アセトン、メチルエチルケトン等の
ケトン類、ベンゼン、トルエン、キシレン等の芳
香族炭化水素類などの溶媒の一種または二種以上
に溶解しワニスを調合する。次に上記ワニスを積
層品用繊維質基材に含浸させ、乾燥させて乾燥樹
脂量が30〜70重量%、好ましくは35〜55重量%の
積層材料を得る。繊維質基材としては紙、布、合
成繊維布、アスベスト布、ガラス布などが用いら
れる。 本発明の二級アミンを有する乾性油および二級
アミンを有するブタジエン重合体は、メタノール
系溶媒、アセトン系溶媒に対する溶解性にすぐ
れ、かつ低粘度のワニスを与えるので、繊維質基
材への浸透性にもすぐれている。 この積層材料を所望枚数積層し、通常20〜200
Kg/cm2、温度130〜180℃、時間20〜180分の成形
条件で熱圧着して成形し、最終製品である積層品
を得る。 さらに本発明のフエノール樹脂組成物は、硬化
した場合に優れた可撓性を示すことは勿論である
が、二級アミン基を有する乾性油および二級アミ
ン基を有するブタジエン重合体は、フエノール樹
脂との相溶性にすぐれかつフエノール樹脂との硬
化反応が速いために架橋密度が高く保たれ、耐煮
沸性、耐熱性、耐溶剤性、寸法安定性にすぐれた
積層板を得ることができる。 本発明の樹脂組成物は積層品以外にも電気絶縁
塗料などの分野にも広く応用することができる。 以下実施例によつて本発明を具体的に説明す
る。 合成例 1 下記に示した反応式の順序に従つて合成した。 あまに油1000gと無水マレイン酸206g(2.1モ
ル)を195℃で3時間反応させて酸価98mgKOH/
gのマレイン化あまに油を得た。(反応1)次い
で還流冷却器を備えた3セパラブルフラスコに
上記マレイン化あまに油1000g、ブチルセロソル
ブ310g(2.62モル)をとり125℃に加熱して4時
間反応させた。(反応2)次いで反応混合物を80
℃に冷却し、β―ヒドロキシエチルアミノエチル
アミン182g(1.75モル)を滴下ロートより約15
分かけて滴下した。1時間かけて反応混合物の温
度を145℃に上げ、同温度で3時間反応させた。
反応混合物は同温度で減圧下に生成した水、ブチ
ルセロソルブ、および未反応アミンを留出しほぼ
定量的収率で()を得た。()にメタノール
―トルエン混合液(1対1重量比)を1150g加え
て樹脂濃度50重量%のワニスとした。(反応3) 合成例 2 (1) nC″4→(C″4o(数平均分子量1200) (′) ナトリウム系触媒を用いてブタジエンを重合さ
せることによつて合成された数平均分子量1200、
ビニル結合58%のブタジエン重合体1000g(0.83
モル)を得、これと無水マレイン酸212g(2.16
モル)を195℃で5時間反応させて酸価100mg
KOH/gのマレイン化ブタジエン重合体を得た。
次いで還流冷却器を備えた3セパラブルフラス
コに上記マレイン化ブタジエン重合体1000g、ブ
チルセロソルブ316g(2.68モル)をとり125℃に
加熱して4時間反応させた。次いで反応混合物を
80℃に冷却し、β―ヒドロキシエチルアミノエチ
ルアミン185g(1.79モル)を滴下ロートより約
15分間かけて滴下した。約1時間かけて反応混合
物の温度を145℃に上げ、同温度で3時間反応さ
せた。反応混合物は同温度で減圧下に生成した
水、ブチルセロソルブおよび未反応アミンを留去
しほぼ定量的収率で二級アミンを有するブタジエ
ン重合体を得る。次にトルエン―メタノール混合
液(1対1重量比)1153gを加えて樹脂濃度50重
量%のワニスとした。 合成例 3〜5 合成例1,2に準じて種々の二級アミンを有す
るブタジエン重合体を合成した。合成例3,4で
用いたブタジエン重合体は合成例2と同じナトリ
ウムを触媒として合成したビニルリツチのブタジ
エン重合体であり、合成例5は住友化学社製スミ
カオイル#150でシス―1,4―タイプのもので
ある。いずれもほぼ定量的収率で二級アミンを有
するブタジエン重合体が得られた。 合成例1,2を含めて表1にその結果をまとめ
た。
The present invention relates to a phenolic resin composition that is used to produce a cured product that has excellent electrical properties and extremely good punching workability, particularly a laminate suitable for arranging and holding electrical components. In recent years, due to technological innovations in communication devices and electronic devices, there has been a demand for more sophisticated electrical and physical properties of laminates. Further, from the viewpoint of automation of processing equipment, labor saving, etc., laminates are required to have excellent punching characteristics at room temperature or relatively low temperatures around room temperature. In response to these demands, methods have been tried in the past, such as adding thermoplastic polymers and plasticizers to phenolic resins, using phenol derivatives with long-chain hydrocarbon substituents as raw materials, and incorporating rubber into them. Ta. However, these methods do not provide satisfactory results because sufficient flexibility cannot be obtained, electrical and physical properties are deteriorated, and workability is deteriorated. A method has also been proposed in which phenols are reacted with drying oil or liquid polybutadiene in the presence of an acid catalyst and then reacted with formaldehyde to produce a flexible phenolic resin for laminated boards.
However, the addition of phenols to drying oils or liquid diolefin polymers having non-conjugated double bonds is relatively slow, and side reactions such as cyclization and polymerization of the double bond portion also occur. Therefore, when trying to add a large amount of phenol, these side reactions also occur actively, resulting in a high molecular weight that becomes difficult to dissolve in polar solvents when made into varnish, poor compatibility with phenolic resin, and paper or cloth. Penetration is poor and sluggish. Due to these drawbacks, it is difficult to obtain a laminate with good properties. Phenol resins modified with drying oils containing conjugated double bonds, such as tung oil, have relatively few of the above-mentioned drawbacks and can provide excellent flexibility, but because they are natural oils, price fluctuations are large, and electronic technology New flexibility-imparting agents are desired, for reasons such as the fact that we are no longer able to cope with the increasing level of physical and electrical properties required by the development of plastics. The present invention provides (A), (a) a maleic anhydride adduct of a drying oil having a conjugated and/or non-conjugated double bond with the general formula (In the formula, R 1 and R 2 represent organic residues having 1 to 20 carbon atoms that are the same or different from each other.) A drying oil having a secondary amine group obtained by imidizing a diamine compound represented by the following formula: and (b)
General formula for maleic anhydride adducts of butadiene polymers and/or copolymers with a number average molecular weight of 300 to 10,000. (In the formula, R 1 and R 2 are the same or different organic residues having 1 to 20 carbon atoms) A butadiene polymer and/or a secondary amine-containing diamine compound obtained by imidization reaction Or, an essential component is a resol type phenolic resin obtained by reacting one or two selected from copolymers (a) and (b) with (B) phenols and formaldehyde in the presence of an alkali catalyst. The present invention relates to a curable phenolic resin composition containing: The drying oil containing a secondary amine, which is one component of the phenolic resin composition of the present invention, will be explained. Examples of drying oils having conjugated and/or non-conjugated double bonds include linseed oil, edible oil, soybean oil, tung oil, dehydrated castor oil, etc. whose main components are linolenic acid, linoleic acid, and eleostearic acid. . The maleic anhydride adduct of drying oil in the present invention can be produced by a conventionally known method of reacting the drying oil and maleic anhydride at a temperature of 50 to 300°C. In the case of a drying oil having a conjugated double bond, maleic anhydride is added by the Diels-Alder mechanism, so the maleation reaction can be carried out at a relatively low temperature of 50 to 150°C. On the other hand, in the case of drying oils having non-conjugated double bonds, it is better to carry out the treatment at a somewhat higher temperature, such as 150 to 300°C. The reaction temperature can also be lowered somewhat by adding a small amount of organic peroxide or by using an aerated drying oil. A gelation inhibitor is usually not required during the maleic anhydride addition reaction, but depending on the reaction conditions, a small amount of phenylene diamic acid, pyrogallols, naphthols, etc. may be added to prevent the gelation reaction. The amount of maleic anhydride added is preferably 0.05 to 1.0 mol, preferably 0.1 to 0.5 mol, per 100 g of drying oil. In the present invention, not only drying oils having conjugated double bonds but also drying oils having non-conjugated double bonds, which have conventionally been difficult to put into practical use for general purposes, can be used. This is because the maleation reaction of drying oils having non-conjugated double bonds is easy, and addition of maleic anhydride is possible with relatively few side reactions such as increase in molecular weight. Maleic anhydride adducts of drying oils have the following general formula: (In the formula, R 1 and R 2 represent the same or different organic residues having 1 to 20 carbon atoms). This reaction method can be carried out, for example, according to the method described in JP-A-53-63439. This reaction is an imidization reaction between a succinic anhydride group or its half-esterified product and a primary amine. The diamine compound used is preferably used in an equivalent amount to the succinic anhydride group, but it is also possible to use an excess of the diamine compound and distill off the end-reacted diamine compound after the reaction is completed. The diamine mentioned here is typically one in which R 1 and R 2 are hydrocarbon residues, but diamines in which some of the hydrogens of the hydrocarbon residues are substituted with hydroxyl groups can also be effectively used. can. A typical example of this diamine is H 2 N(CH 2 ) o NH
(CH 2 ) n H (m, n is 1 to 12), H 2 N (CH 2 ) o NH
(CH 2 ) n OH (m and n are 1 to 12), such as methylaminoethylamine, ethylaminoethylamine, methylaminopropylamine, ethylaminopropylamine, butylaminopropylamine, β-hydroxyethylaminoethylamine,
An example is β-hydroxyethylaminopropylamine. In this reaction, in order to prevent a gelation reaction due to the reaction of the diamine compound, it is recommended to half-esterify the succinic anhydride group by adding an alcohol before adding the diamine compound. The imidization reaction is usually carried out at 50 to 300℃, preferably at 100℃.
Performed at temperatures of ~200°C. The imidization reaction can be carried out in the presence or absence of a solvent. When using a solvent, use hydrocarbon solvents such as benzene, toluene, xylene, cyclohexane, butyl cellosolve, ethyl cellosolve, n
Although alcoholic solvents such as butanol and ethereal solvents such as diglyme can be used, it is particularly preferable to carry out the half-esterification reaction using an alcoholic solvent prior to the imidization reaction. By the above imidization reaction, a secondary amine group is usually added to the drying oil in the following structure. (In the formula, R 3 is a drying oil residue having a conjugated and/or non-conjugated double bond, R 1 and R 2 are organic residues having 1 to 20 carbon atoms that are the same or different from each other) A butadiene polymer containing a secondary amine will be explained. The butadiene polymer containing a secondary amine of the present invention is a maleic anhydride obtained by reacting a butadiene homopolymer with a number average molecular weight of 300 to 10,000 or a butadiene copolymer with a butadiene unit content of 50% or more with maleic anhydride. General formula for butadiene polymer It can be synthesized by reacting with a diamine compound represented by the formula (wherein R 1 and R 2 represent the same or different organic residues having 1 to 20 carbon atoms). First, the raw material butadiene polymer used in the present invention is, for example, one obtained by homopolymerizing butadiene in a hydrocarbon solvent using an alkali metal such as lithium or sodium or an organometallic compound thereof as a catalyst, or one obtained by homopolymerizing butadiene and a vinyl monomer such as styrene. Copolymerization of butadiene and diolefin such as isoprene are preferably used. Also preferably used are butadiene monopolymerized or copolymerized with an alkali metal such as sodium as a catalyst in a polar solvent such as tetrahydrofuran using a polycyclic aromatic compound such as naphthalene or anthracene as an activator. Furthermore, butadiene polymers or copolymers obtained by using a coordination anion polymerization catalyst, and polymers obtained by telomerizing butadiene etc. with a radical initiator can also be used in the same way. . The number average molecular weight of the butadiene polymer referred to in the present invention is in the range of 300 to 10,000, preferably 500 to 5,000.
If the molecular weight is too low, the molecular weight between the crosslinking points will be too small, which will not only result in poor flexibility, but also result in poor performance such as strength, heat resistance, and chemical resistance of the cured product. If the molecular weight is too large, the viscosity becomes extremely high, resulting in decreased workability and difficulty in obtaining a uniform cured product. The microstructure of the butadiene polymer used in the present invention is not particularly limited, and either a polymer with many 1,2-bonds or a polymer with many 1,4-bonds can be used. The maleic anhydride adduct of the butadiene polymer or copolymer or mixture thereof of the present invention is produced by a conventionally known method of reacting the above-described butadiene polymer or copolymer with maleic anhydride at a temperature of 100 to 300°C. can. Moreover, a method of suppressing the gelation reaction by adding a small amount of a gelling inhibitor such as phenylene diamines, pyrogallols, or naphthols when carrying out the addition reaction can be preferably employed. In addition, the adduct of maleic anhydride in this reaction is 0.05 to 1.0 mol per 100 g of butadiene polymer or copolymer.
Preferably it is 0.1 to 0.5 mol. The maleic anhydride adduct of butadiene polymer has the following general formula: React with the diamine compound shown in This diamine is the same as the diamine used in the reaction with the maleic anhydride of the drying oil described above. Regarding this reaction method, for example, JP-A-Sho
It can be carried out according to the method described in No. 53-63439. This reaction is an imidization reaction between a succinic anhydride group or its half-esterified product and a primary amine. The diamine compound used is preferably used in an amount equivalent to the succinic anhydride group, but it is also possible to distill off unreacted diamine compounds after the reaction using an excess of the diamine compound. In this reaction, in order to prevent a gelation reaction due to the reaction of the diamine compound, it is recommended to half-esterify the succinic anhydride group by adding an alcohol before adding the diamine compound. The imidization reaction is usually carried out at 50 to 300℃, preferably at 100℃.
Performed at temperatures of ~200°C. The imide compound can be formed in the presence or absence of a solvent. When using a solvent, hydrocarbon solvents such as benzene toluene, xylene, cyclohexane, butyl cellosolve, ethyl cellosolve, n
- Alcohol solvents such as butanol and ether solvents such as diglyme can be used, but
Particularly preferred is a method in which a half-esterification reaction is performed using an alcohol solvent prior to an imidization reaction. Through the above imidization reaction, a secondary amine group is usually added to the butadiene polymer in the following structure. (In the formula, R 4 is a butadiene polymer and/or copolymer with a number average molecular weight of 300 to 10,000, R 1 and R 2 are the same or different, and have 1 to 20 carbon atoms.
carbon residues). The same raw materials and reaction conditions can be used in the synthesis of the above-mentioned drying oil having a secondary amine group and the above-mentioned butadiene polymer and/or copolymer. When it is intended to use a mixture of both oil and (b) a butadiene polymer having secondary amine groups, the drying oil as a raw material and the butadiene polymer and/or copolymer are mixed and then maleic anhydride is added. It is also possible to react and further react with diamines having secondary amines. The other component of the thermosetting resin composition of the present invention, the phenol-formaldehyde resin, is
It is obtained by condensing phenols and aldehydes with a basic catalyst. As the phenols, in addition to phenol, cresol, xylenol, resorcinol, bisphenol, etc. are used alone or in combination. As aldehydes, in addition to formaldehyde, it is also possible to use paraformaldehyde, which decomposes to generate formaldehyde. As the basic catalyst used for phenolic resin condensation, hydroxides of alkali metals or alkaline earth metals, ammonia, amines, etc. are preferably used. Drying oil with secondary amine and/or butadiene polymer with secondary amine and phenol
Formaldehyde resins can be used by mixing those synthesized separately, or by condensing phenols and formaldehyde in the presence of a drying oil having a secondary amine and/or a butadiene polymer having a secondary amine. It is also possible. The mixing ratio of the drying oil with secondary amines and/or the butadiene polymer with secondary amines and the phenol-formaldehyde resin can be varied over a wide range, and depending on the mixing ratio, curing with different properties can be achieved. You can get things. When a drying oil having a secondary amine or a butadiene polymer having a secondary amine is blended alone with a phenol-formaldehyde resin, a drying oil having a secondary amine or a butadiene polymer having a secondary amine and a phenol- The amount of formaldehyde resin is 5:95 to 80:20 by weight,
Further, a range of 20:80 to 60:40 is preferably adopted in order to obtain a cured product having desirable characteristics. In addition, when a drying oil having a secondary amine and a butadiene polymer having a secondary amine are used at the same time, the weight ratio of the total amount of both to the amount of phenol-formaldehyde resin is 5:95 to 80:20, and A range of 20:80 to 60:40 is preferably adopted in order to obtain a cured product having desirable properties.
Here, the ratio of the drying oil having a secondary amine to the butadiene polymer having a secondary amine may be, for example, 5:95 to 95:5. The thermosetting resin composition of the present application can be cured at a temperature of 100 to 250°C without particularly adding a catalyst. In order to obtain a laminate plate suitable for arranging and holding electrical components, such as a wiring printed board or a chassis board, using this thermosetting resin, it is preferable to carry out the following procedure, for example. That is, the drying oil having a secondary amine and/or the butadiene polymer having a secondary amine, and the phenol-formaldehyde resin contained in the thermosetting resin composition are mixed with alcohols such as methanol, ethanol, butanol, acetone, and methyl ethyl ketone. A varnish is prepared by dissolving it in one or more solvents such as ketones such as, aromatic hydrocarbons such as benzene, toluene, and xylene. Next, the above-mentioned varnish is impregnated into a fibrous base material for a laminate and dried to obtain a laminate material having a dry resin content of 30 to 70% by weight, preferably 35 to 55% by weight. Paper, cloth, synthetic fiber cloth, asbestos cloth, glass cloth, etc. are used as the fibrous base material. The drying oil having a secondary amine and the butadiene polymer having a secondary amine of the present invention have excellent solubility in methanol-based solvents and acetone-based solvents, and provide a varnish with low viscosity, so that they can penetrate into fibrous base materials. It also has excellent sex. Laminate the desired number of layers of this laminated material, usually 20 to 200.
Kg/cm 2 , temperature 130 to 180°C, and time 20 to 180 minutes to mold by thermocompression to obtain a final product, a laminate. Furthermore, the phenolic resin composition of the present invention naturally exhibits excellent flexibility when cured, but the drying oil having a secondary amine group and the butadiene polymer having a secondary amine group are Because the curing reaction with the phenolic resin is excellent and the curing reaction with the phenolic resin is fast, the crosslinking density is kept high, and a laminate with excellent boiling resistance, heat resistance, solvent resistance, and dimensional stability can be obtained. The resin composition of the present invention can be widely applied not only to laminate products but also to fields such as electrical insulation coatings. The present invention will be specifically explained below using Examples. Synthesis Example 1 Synthesis was carried out according to the order of the reaction formula shown below. 1000 g of linseed oil and 206 g (2.1 mol) of maleic anhydride were reacted at 195℃ for 3 hours to obtain an acid value of 98 mgKOH/
g of maleated linseed oil was obtained. (Reaction 1) Next, 1000 g of the above maleated linseed oil and 310 g (2.62 mol) of butyl cellosolve were placed in a three-separable flask equipped with a reflux condenser, heated to 125° C., and reacted for 4 hours. (Reaction 2) Then the reaction mixture was heated to 80%
℃, and add 182 g (1.75 mol) of β-hydroxyethylaminoethylamine from the dropping funnel to approx.
It was dripped over several minutes. The temperature of the reaction mixture was raised to 145°C over 1 hour, and the reaction was continued at the same temperature for 3 hours.
Water, butyl cellosolve, and unreacted amine were distilled from the reaction mixture under reduced pressure at the same temperature to obtain () in a nearly quantitative yield. 1150 g of a methanol-toluene mixture (1:1 weight ratio) was added to () to prepare a varnish with a resin concentration of 50% by weight. (Reaction 3) Synthesis example 2 (1) nC″ 4 → (C″ 4 ) o (number average molecular weight 1200) (′) Number average molecular weight 1200, synthesized by polymerizing butadiene using a sodium-based catalyst.
1000 g of butadiene polymer with 58% vinyl bonds (0.83
mol) and 212 g (2.16 mol) of maleic anhydride were obtained.
mol) at 195℃ for 5 hours to obtain an acid value of 100mg.
A maleated butadiene polymer of KOH/g was obtained.
Next, 1000 g of the above maleated butadiene polymer and 316 g (2.68 mol) of butyl cellosolve were placed in a three-separable flask equipped with a reflux condenser, heated to 125° C., and reacted for 4 hours. Then the reaction mixture
Cool to 80℃ and add 185 g (1.79 mol) of β-hydroxyethylaminoethylamine from the dropping funnel.
It was added dropwise over 15 minutes. The temperature of the reaction mixture was raised to 145°C over about 1 hour, and the reaction was continued at the same temperature for 3 hours. The water, butyl cellosolve and unreacted amine produced in the reaction mixture are distilled off under reduced pressure at the same temperature to obtain a butadiene polymer having a secondary amine in almost quantitative yield. Next, 1153 g of a toluene-methanol mixture (1:1 weight ratio) was added to obtain a varnish with a resin concentration of 50% by weight. Synthesis Examples 3 to 5 Butadiene polymers having various secondary amines were synthesized according to Synthesis Examples 1 and 2. The butadiene polymer used in Synthesis Examples 3 and 4 was a vinyl-rich butadiene polymer synthesized using the same sodium as a catalyst as in Synthesis Example 2, and Synthesis Example 5 was a cis-1,4-type Sumica Oil #150 manufactured by Sumitomo Chemical Co., Ltd. belongs to. In all cases, butadiene polymers having secondary amines were obtained in almost quantitative yields. The results, including Synthesis Examples 1 and 2, are summarized in Table 1.

【表】【table】

【表】 合成例 6 37%ホルムアルデヒド水溶液485g、フエノー
ル470gおよび25%アンモニア水溶液34gを90℃
で30分間反応させ、減圧下で脱水したのちトルエ
ン、メタノール混合液(1対1重量比)を加えて
樹脂濃度50重量%のワニスとした。 合成例 7 合成例2で合成した二級アミン基を有するブタ
ジエン重合体500g、37%ホルムアルデヒド水溶
液437g(5.39モル)、およびフエノール339g
(3.6モル)を還流冷却器を備えたセパラブルフラ
スコにとり、25%アンモニア水15.3g(0.23モ
ル)を滴下ロートより約5分で滴下し、約20分か
けて90℃に昇温し同温度で2.5時間反応させたの
ち減圧下で脱水した。この時留出した水は365g
であつた。次いでトルエン―メタノール混合液
(1対1重量比)926gを加えて樹脂濃度50重量%
のワニスとした。 実施例 1〜7 このようにして得られたワニスを下の表2に示
す割合で配合し、得られた混合ワニスをクラフト
紙に含浸させた。いずれのワニスも紙への浸透性
はすぐれていた。乾燥後樹脂含量50重量%の樹脂
含浸紙を得た。 この樹脂含浸紙を9枚重ね150℃、100Kg/cm2
条件で45分間加熱加圧して厚さ1.6mmの積層板を
得た。この積層板の諸特性を下表2に示した。 比較例 1 桐油500g、メタクレゾール756g(7.0モル)、
パラトルエンスルホン酸2g(0.01モル)を混合
し、100℃で2時間反応させた。次いで37%ホル
マリン738g(9.1モル)、25%アンモニア水48g
(0.7モル)を加えて90℃で3時間反応させた。減
圧下に水を除去し、メタノール―トルエン(1対
1重量比)混合液を加えて樹脂濃度50重量%のワ
ニスとした。 このようにして得られたワニスをクラフト紙に
含浸し、乾燥し、樹脂含有量50重量%に調整した
樹脂含浸紙を得た。これを実施例1〜4と全く同
一条件で積層板とした。積層板の諸特性を下表2
に示す。 比較例 2 あまに油500g、メタクレゾール756g(7.0モ
ル)、パラトルエンスルホン酸3g(0.15モル)
を混合し120℃で2時間反応させた。次いで37%
ホルマリン738g(9.1モル)、25%アンモニア水
48g(0.7モル)を加えて90℃で3時間反応させ
た。減圧下に水を除去し、メタノール―トルエン
(1対1重量比)混合液を加えて樹脂濃度50重量
%のワニスとした。このようにして得られたワニ
スをクラフト紙に含浸し、乾燥し、樹脂含有量50
重量%に調整した樹脂含浸紙を得た。これを実施
例1〜4と全く同一条件で積層板とした。積層板
の諸特性を下表2に示す。 下表2に示した結果から明らかなように従来の
桐油変性、あまに油変性フエノール樹脂と比較し
て二級アミンを有する乾性油、二級アミンを有す
るブタジエン重合体および両者の混合物はレゾー
ル型フエノール樹脂と配合した場合に電気特性を
低下させずに耐溶剤性、耐熱性、打抜加工性を改
良していることは明らかである。
[Table] Synthesis Example 6 485 g of 37% formaldehyde aqueous solution, 470 g of phenol, and 34 g of 25% ammonia aqueous solution were heated at 90°C.
After the mixture was reacted for 30 minutes and dehydrated under reduced pressure, a mixed solution of toluene and methanol (1:1 weight ratio) was added to obtain a varnish with a resin concentration of 50% by weight. Synthesis Example 7 500 g of the butadiene polymer having secondary amine groups synthesized in Synthesis Example 2, 437 g (5.39 mol) of 37% formaldehyde aqueous solution, and 339 g of phenol.
(3.6 mol) was placed in a separable flask equipped with a reflux condenser, and 15.3 g (0.23 mol) of 25% aqueous ammonia was added dropwise from the dropping funnel over about 5 minutes, and the temperature was raised to 90°C over about 20 minutes. After reacting for 2.5 hours, the mixture was dehydrated under reduced pressure. The water distilled out at this time was 365g.
It was hot. Next, 926 g of toluene-methanol mixture (1:1 weight ratio) was added to make the resin concentration 50% by weight.
It was made into a varnish. Examples 1 to 7 The varnishes thus obtained were blended in the proportions shown in Table 2 below, and kraft paper was impregnated with the resulting mixed varnish. All varnishes had excellent permeability into paper. After drying, a resin-impregnated paper with a resin content of 50% by weight was obtained. Nine sheets of this resin-impregnated paper were stacked together and heated and pressed for 45 minutes at 150° C. and 100 kg/cm 2 to obtain a laminate with a thickness of 1.6 mm. Various properties of this laminate are shown in Table 2 below. Comparative example 1 Tung oil 500g, metacresol 756g (7.0 mol),
2 g (0.01 mol) of para-toluenesulfonic acid was mixed and reacted at 100°C for 2 hours. Next, 738g (9.1 mol) of 37% formalin and 48g of 25% aqueous ammonia.
(0.7 mol) was added and reacted at 90°C for 3 hours. Water was removed under reduced pressure, and a methanol-toluene (1:1 weight ratio) mixed solution was added to give a varnish with a resin concentration of 50% by weight. Kraft paper was impregnated with the varnish thus obtained and dried to obtain resin-impregnated paper with a resin content of 50% by weight. This was made into a laminate under exactly the same conditions as Examples 1 to 4. The properties of the laminate are shown in Table 2 below.
Shown below. Comparative example 2 500 g of linseed oil, 756 g (7.0 mol) of metacresol, 3 g (0.15 mol) of para-toluenesulfonic acid
were mixed and reacted at 120°C for 2 hours. followed by 37%
Formalin 738g (9.1mol), 25% ammonia water
48g (0.7mol) was added and reacted at 90°C for 3 hours. Water was removed under reduced pressure, and a methanol-toluene (1:1 weight ratio) mixed solution was added to give a varnish with a resin concentration of 50% by weight. The varnish thus obtained is impregnated on kraft paper, dried and has a resin content of 50
Resin-impregnated paper adjusted to % by weight was obtained. This was made into a laminate under exactly the same conditions as Examples 1 to 4. Various properties of the laminate are shown in Table 2 below. As is clear from the results shown in Table 2 below, compared to conventional phenolic resins modified with tung oil and linseed oil, drying oils with secondary amines, butadiene polymers with secondary amines, and mixtures of both are resol type. It is clear that when blended with phenolic resin, solvent resistance, heat resistance, and punching workability are improved without deteriorating electrical properties.

【表】【table】

Claims (1)

【特許請求の範囲】 1 (A) (a) 共役および/または非共役二重結合
を有する乾性油の無水マレイン酸付加物に一
般式 (R1およびR2は互いに同一または相異な
る炭素数1〜20の有機残基) で表わされるジアミン化合物をイミド化反応
させて得られる二級アミン基を有する乾性油 および (b) 数平均分子量が300〜10000のブタジエン重
合体および/または共重合体の無水マレイン
酸付加物に一般式 (R1およびR2は互いに同一または相異な
る炭素数1〜20の有機残基) で表わされるジアミン化合物をイミド化反応
させて得られる二級アミン基を有するブタジ
エン重合体および/または共重合体 の(a)および(b)のうちから選ばれる1種または2
種以上、 (B) フエノール類およびホルムアルデヒドをアル
カリ触媒の存在下で反応させて得られるレゾー
ル型フエノール樹脂を必須成分として含有する
硬化性フエノール樹脂組成物。
[Claims] 1 (A) (a) A maleic anhydride adduct of a drying oil having a conjugated and/or non-conjugated double bond with the general formula (R 1 and R 2 are the same or different organic residues having 1 to 20 carbon atoms) A drying oil having a secondary amine group obtained by imidizing a diamine compound represented by: and (b) number average molecular weight The general formula for maleic anhydride adducts of butadiene polymers and/or copolymers with 300 to 10,000 (R 1 and R 2 are the same or different organic residues having 1 to 20 carbon atoms) A butadiene polymer and/or copolymer having a secondary amine group obtained by imidizing a diamine compound represented by 1 or 2 selected from (a) and (b) of
(B) A curable phenolic resin composition containing as an essential component a resol type phenolic resin obtained by reacting phenols and formaldehyde in the presence of an alkali catalyst.
JP3745481A 1981-03-16 1981-03-16 Curable resin composition Granted JPS57151640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3745481A JPS57151640A (en) 1981-03-16 1981-03-16 Curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3745481A JPS57151640A (en) 1981-03-16 1981-03-16 Curable resin composition

Publications (2)

Publication Number Publication Date
JPS57151640A JPS57151640A (en) 1982-09-18
JPS6360787B2 true JPS6360787B2 (en) 1988-11-25

Family

ID=12497950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3745481A Granted JPS57151640A (en) 1981-03-16 1981-03-16 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS57151640A (en)

Also Published As

Publication number Publication date
JPS57151640A (en) 1982-09-18

Similar Documents

Publication Publication Date Title
JP3248424B2 (en) Process for producing modified polyphenylene oxide, epoxy resin composition using modified polyphenylene oxide by this process, prepreg using this composition, and laminate using this prepreg
CN115073907B (en) Resin composition, compound, prepreg, electric copper-clad plate and preparation method and application thereof
EP0138609A2 (en) Resin compositions for laminated boards
JPS6360787B2 (en)
JP3265984B2 (en) Epoxy resin composition, prepreg using this resin composition, and laminate using this prepreg
JP3339301B2 (en) Epoxy resin composition, prepreg using this resin composition, and laminate using this prepreg
US4336347A (en) Process for production of phenolic resin modified with liquid polybutadiene
US4317754A (en) Curable resin composition
JPS6248985B2 (en)
US4291148A (en) Process for preparation of a phenolic-polybutadiene-HCHO resin composition useful for laminated sheet
US4259395A (en) Process for preparation of resin composition useful for laminated sheet
JPS6248699B2 (en)
US4322470A (en) Resin compositions comprising amine or ammonia salts of malenized butadiene polymers are used to form fibrous laminates
JPH07329087A (en) Manufacture of laminated sheet
JPH07329090A (en) Manufacture of laminated sheet
JP7307813B2 (en) Terminal-modified polybutadiene, resin composition for metal-clad laminate, prepreg, and metal-clad laminate
JPH111604A (en) Thermosetting resin composition
JP3246686B2 (en) Curable resin composition
JPS62177033A (en) Production of heat-resistant laminate
JPS61246220A (en) Production of oiticica oil-modified phenolic resin
JPS6313443B2 (en)
JPS5817212B2 (en) Method for producing polybutadiene-modified phenolic resin
JPS6247220B2 (en)
JPH0521932B2 (en)
JPS6026489B2 (en) Production method of oil-modified phenolic resin for laminated products