JPS6360326B2 - - Google Patents
Info
- Publication number
- JPS6360326B2 JPS6360326B2 JP11469977A JP11469977A JPS6360326B2 JP S6360326 B2 JPS6360326 B2 JP S6360326B2 JP 11469977 A JP11469977 A JP 11469977A JP 11469977 A JP11469977 A JP 11469977A JP S6360326 B2 JPS6360326 B2 JP S6360326B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- thin film
- current
- magnetic field
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005291 magnetic effect Effects 0.000 claims description 144
- 239000010409 thin film Substances 0.000 claims description 30
- 230000005294 ferromagnetic effect Effects 0.000 claims description 17
- 230000004907 flux Effects 0.000 claims description 9
- 230000000694 effects Effects 0.000 claims description 8
- 230000005415 magnetization Effects 0.000 description 18
- 239000011295 pitch Substances 0.000 description 11
- 238000001514 detection method Methods 0.000 description 9
- 239000002184 metal Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 229910018106 Ni—C Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910000889 permalloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Magnetic Heads (AREA)
Description
【発明の詳細な説明】
本発明は磁気スケール、特に高密度磁気スケー
ルの信号読取に好適な磁気ヘツドの改良に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in magnetic scales, particularly magnetic heads suitable for reading signals from high-density magnetic scales.
強磁性金属薄膜から成る異方性磁気抵抗効果素
子は磁界の方向変化を検出しうる機能を有するこ
とは周知の通りである。また上記異方性磁気抵抗
効果素子を所定ピツチの磁気目盛(磁気格子)が
施されている磁気スケールの読取用手段(磁気ヘ
ツド)として、該素子の各構成要素を単位として
磁気スケールの位相(磁気格子)に対応して配
列、形成することもすでに提案されている(以上
に関しては例えば特公昭57−5067、実開昭50−
133117号等参照のこと)。 It is well known that an anisotropic magnetoresistive element made of a ferromagnetic metal thin film has a function of detecting changes in the direction of a magnetic field. In addition, the above-mentioned anisotropic magnetoresistive element can be used as a reading means (magnetic head) for a magnetic scale having magnetic graduations (magnetic gratings) of a predetermined pitch. It has already been proposed to arrange and form magnetic lattices (for example, Japanese Patent Publication No. 57-5067, Utility Model Publication No. 50-50).
(See No. 133117, etc.)
而して上記した異方性磁気抵抗効果素子は磁気
ヒステリシスの影響を回避するために150エルス
テツド以上の飽和磁界を必要とするが、該素子を
磁気スケールの読取用ヘツドとして使用する場合
には前記飽和磁界を磁気スケールの漏洩磁界から
得なければならないため、磁気ヘツドの構成素子
の寸法を考慮して、磁気スケールは1mm程度以上
の磁気目盛ピツチのものを用いなければならな
い。そこで例えば磁気スケールのピツチを2mmと
して磁気ヘツドを形成すれば、有好な磁気スケー
ル信号の検出を行いうるが、磁気ヘツドの出力変
化(抵抗変化率)を大きくするために、また磁気
スケールに対する磁気ヘツドの相対変位の方向弁
別機能をもたせるために、磁気ヘツドの寸法が50
mm程度と大きくなり、しかし該磁気ヘツドによる
検出信号の内挿を必要とするので、高価かつ構成
が複雑となるのは避け難い。 The above-mentioned anisotropic magnetoresistive element requires a saturation magnetic field of 150 Oersted or more in order to avoid the influence of magnetic hysteresis, but when the element is used as a reading head for a magnetic scale, the above-mentioned Since the saturation magnetic field must be obtained from the leakage magnetic field of the magnetic scale, the magnetic scale must have a magnetic graduation pitch of about 1 mm or more, taking into consideration the dimensions of the components of the magnetic head. For example, if a magnetic head is formed with a magnetic scale pitch of 2 mm, a favorable magnetic scale signal can be detected, but in order to increase the output change (resistance change rate) of the magnetic head, In order to provide a direction discrimination function for the relative displacement of the head, the dimensions of the magnetic head are 50 mm.
However, since it is necessary to interpolate the detection signal by the magnetic head, it is inevitable that it will be expensive and have a complicated configuration.
本発明はかかる事由に鑑みてなされたもので、
以下図面に示す実施例を参照して説明する。 The present invention was made in view of such circumstances,
Embodiments will be described below with reference to embodiments shown in the drawings.
第1図に示す実施例において、1は磁気スケー
ルで、非磁性材から成る基板2上に形成された磁
性薄膜3に記録された所定ピツチλの磁気格子4
を有する。5は強磁性金属薄膜から成る異方性磁
気抵抗効果素子で、一定のクリアランス△を以つ
て磁気スケール1上に移動可能に保持される。強
磁性金属薄膜から成る異方性磁気抵抗効果素子か
ら成る従来の磁気ヘツドが短波長(短い磁気格子
ピツチ)の磁気スケール信号磁界を検出できなか
つた理由は上記素子の構成要素を単位として磁気
格子の位相に対応させ、しかも磁気格子面に対し
て上記素子面を垂直に配設し、その面内磁場の方
向変化に直接的に感応させるようにしていたの
で、スケールとヘツドとの相対移動により磁気に
周期的に記録された信号磁界は素子面内で方向を
変えることになり、短い磁気格子ピツチでは空間
の信号磁界が弱くてこの信号磁界を検出できない
ことによる。 In the embodiment shown in FIG. 1, 1 is a magnetic scale, and a magnetic grating 4 with a predetermined pitch λ is recorded on a magnetic thin film 3 formed on a substrate 2 made of a non-magnetic material.
has. Reference numeral 5 denotes an anisotropic magnetoresistive element made of a ferromagnetic metal thin film, which is movably held on the magnetic scale 1 with a certain clearance Δ. The reason why conventional magnetic heads consisting of anisotropic magnetoresistive elements made of ferromagnetic metal thin films could not detect magnetic scale signal magnetic fields of short wavelengths (short magnetic lattice pitches) is because the magnetic lattice elements are used as units of the elements of the above-mentioned elements. Moreover, since the element plane was arranged perpendicular to the magnetic lattice plane and it was made to directly respond to changes in the direction of the magnetic field in that plane, the relative movement between the scale and the head caused The signal magnetic field that is periodically recorded magnetically changes direction within the element plane, and this is because the signal magnetic field in space is weak and cannot be detected with a short magnetic grating pitch.
そこで本実施例では磁気スケール信号の検出感
度を高めて磁気格子4のピツチを小さくし、検出
信号の内挿を少なくし得るようにするために、図
示の如く前記異方性磁気抵抗効果素子5の各構成
要素を形成する電流通路6が磁気格子4の各位相
に対応してじぐざぐに配置されるように構成す
る。ただし、磁気格子4のピツチが小さくなる
と、該磁気格子からの漏洩磁界の広がりも激減
し、磁気抵抗素子5の構成要素を飽和し得なくな
り、そのままでは前述した磁気ヒステリシスの生
起が問題となる。そこで各電流通路6に対して図
示のように高透磁性薄膜から成る磁路部材7を配
設し、各磁気格子との間で閉磁路を形成するよう
にしてある。このように構成すると第6図に示す
ように磁路部材7が磁気格子4からの漏洩磁束を
誘導することにより電流通路6を充分な飽和磁界
に置くことができる。かくして強磁性金属薄膜か
ら成る磁気抵抗素子5と高透磁性薄膜から成る磁
路部材7とで磁気ヘツドが構成される。 Therefore, in this embodiment, in order to increase the detection sensitivity of the magnetic scale signal, reduce the pitch of the magnetic grating 4, and reduce the interpolation of the detection signal, the anisotropic magnetoresistive effect element 5 is used as shown in the figure. The current paths 6 forming each component of the magnetic grating 4 are arranged in a zigzag pattern corresponding to each phase of the magnetic grating 4. However, as the pitch of the magnetic grating 4 becomes smaller, the spread of the leakage magnetic field from the magnetic grating is also drastically reduced, making it impossible to saturate the components of the magnetoresistive element 5, and if left as is, the above-mentioned magnetic hysteresis will occur. Therefore, a magnetic path member 7 made of a highly permeable thin film is provided for each current path 6 as shown in the figure, so as to form a closed magnetic path with each magnetic grid. With this configuration, as shown in FIG. 6, the magnetic path member 7 induces leakage magnetic flux from the magnetic grating 4, so that the current path 6 can be placed in a sufficient saturation magnetic field. Thus, a magnetic head is constituted by the magnetoresistive element 5 made of a ferromagnetic metal thin film and the magnetic path member 7 made of a highly permeable thin film.
次に第2図の実施例の動作原理を簡単に説明す
ると、電気抵抗の異方性効果とは、その磁化方向
と電流方向のなす角度によつて、抵抗が異方的に
変化する、よく知られた物理現象である。ここで
磁化方向とは外部印加磁界の方向を言うのではな
く、強磁性体内の磁化の方向を意味する。 Next, to briefly explain the operating principle of the embodiment shown in Fig. 2, the anisotropic effect of electrical resistance means that the resistance changes anisotropically depending on the angle formed between the magnetization direction and the current direction. This is a known physical phenomenon. Here, the magnetization direction does not mean the direction of an externally applied magnetic field, but the direction of magnetization within the ferromagnetic body.
因みに、一般の強磁性合金にあつては、電流と
磁化の方向が平行になつた時が抵抗最大で、直交
した時が最小になり、その抵抗値ρ(θ)は、
ρ(θ)=ρ⊥sin2θ+ρcos2θ ……(1)
θ:磁化の方向と電流のなす角度
ρ⊥:磁化の方向と電流のなす方向が直交した時
の抵抗
ρ:磁化の方向と電流のなす方向が平行の時の
抵抗
の関係で表わされることが、従来より公知であ
る。また、(1)式は次のように書き改めることがで
きる。 Incidentally, for general ferromagnetic alloys, resistance is maximum when the current and magnetization directions are parallel, and minimum when they are orthogonal, and the resistance value ρ(θ) is ρ(θ)= ρ⊥sin 2 θ+ρcos 2 θ ...(1) θ: Angle between the direction of magnetization and the current ρ⊥: Resistance when the direction of magnetization and the direction of the current are perpendicular ρ: The angle between the direction of magnetization and the current It is conventionally known that this is expressed by the relationship of resistance when parallel. Also, equation (1) can be rewritten as follows.
ρ(θ)=ρ0−△ρsin2θ ……(2)
ρ0:無磁界時の抵抗値=ρ)
△ρ:磁化が困難軸方向を向いた時の抵抗変化量
(=ρ−ρ⊥)
ストライプ状の強磁性体薄膜において外部磁界
が印加されていないとき、または非常に弱いと
き、強磁性体薄膜中の自発磁化は磁化容易軸(電
流方向)に揃つているが、これに外部磁界が容易
軸方向と直交する方向に印加されると、磁化は外
部磁界の強さに応じて内面で回転し、その磁化の
回転に伴い強磁性体薄膜の抵抗値が変化する。 ρ (θ) = ρ 0 −△ρsin 2 θ ...(2) ρ 0 : Resistance value without magnetic field = ρ) △ρ : Amount of resistance change when magnetization is directed in the direction of the difficult axis (= ρ − ρ ⊥) When no external magnetic field is applied to a striped ferromagnetic thin film, or when it is very weak, the spontaneous magnetization in the ferromagnetic thin film is aligned with the axis of easy magnetization (current direction). When a magnetic field is applied in a direction perpendicular to the easy axis direction, the magnetization rotates on the inner surface depending on the strength of the external magnetic field, and the resistance value of the ferromagnetic thin film changes as the magnetization rotates.
この場合、外部磁界Hにより磁化の回転方向
は、sinθ=H/κ1HSの関係を有し、抵抗値ρは、
ρ0=ρ0−△ρ(H/κ1HS)2 ……(3)
で表わされるが、周囲的に記録された外部磁界H
=κ2HSsinθγ(θγ:磁気目盛ピツチを周期とする
磁場角度)にあつては、(3)式の抵抗値は、
ρ=ρ0−△ρ・κ3sin2θγ ……(4)
κi:いずれも定数0<κi<1
Hs:強磁性体薄膜の飽和磁界
で表わされるものとなる。 In this case, the rotational direction of magnetization due to the external magnetic field H has the relationship sinθ=H/κ 1 H S , and the resistance value ρ is ρ 0 =ρ 0 −△ρ(H/κ 1 H S ) 2 ... …(3) is expressed by the external magnetic field H recorded in the periphery.
=κ 2 H S sin θγ (θγ: magnetic field angle with period of magnetic scale pitch), the resistance value of equation (3) is ρ=ρ 0 −△ρ・κ 3 sin 2 θγ ……(4 ) κ i : All constants 0<κ i <1 H s : Expressed by the saturation magnetic field of the ferromagnetic thin film.
今、前述の強磁性体薄膜から成る異方性磁気抵
抗効果素子を用いて、第3図に示す如く第1及び
第2の電流通路が周期的に記録された磁気信号の
波長λに対して、所定間隔略1/2(n+1/2)
λを隔てて、略平行となる如く配設し、該電流通
路の接続部に出力端子を設けたものとする(n=
0とすれば、両素子の間隔はλ/4)。 Now, using the above-mentioned anisotropic magnetoresistive element made of a ferromagnetic thin film, as shown in FIG. , predetermined interval approximately 1/2 (n+1/2)
The current paths are arranged so that they are approximately parallel to each other, separated by λ, and an output terminal is provided at the connection part of the current path (n=
If it is 0, the distance between both elements is λ/4).
この素子の第1及び第2の電流通路となる強磁
性体薄膜エレメントの抵抗値ρ1及びρ2は、磁界の
強さの変化に感応させても、或いは磁界の方向変
化に感応させても、いずれの場合も位相角の90゜
ずれた周期磁界が印加されて(4)式或いは(5)式の関
係から、
ρ1=ρ0−△ρsin2θ
ρ2=ρ0−△ρsin2(90゜+θ) ……(6)
で表わされ、その中点出力△Vは、
△V≒VB/2−△ρ・VBcos2θ/4ρ0 ……(7)
となる。 The resistance values ρ 1 and ρ 2 of the ferromagnetic thin film elements that form the first and second current paths of this element can be made to respond to changes in the strength of the magnetic field or to changes in the direction of the magnetic field. In either case, a periodic magnetic field with a phase angle of 90° is applied, and from the relationship in equation (4) or (5), ρ 1 = ρ 0 −△ρsin 2 θ ρ 2 = ρ 0 −△ρsin 2 (90°+θ) ...(6), and the midpoint output △V is △V≒V B /2-△ρ·V B cos2θ/4ρ 0 ...(7).
即ち、いずれの場合にもその出力信号は信号磁
界の倍周波の信号として得られ、当該異方性磁気
抵抗効果素子の作用効果として同じである。 That is, in either case, the output signal is obtained as a signal with a frequency double the signal magnetic field, and the effect of the anisotropic magnetoresistive element is the same.
また、(6)式より
ρ1+ρ2=2ρ0−△ρ ……(8)
の関係があり、信号磁界の如何に拘らず、上記素
子の全抵抗値が常に一定となる作用効果も同じで
ある。 Also, from equation (6), there is the relationship ρ 1 + ρ 2 = 2ρ 0 −△ρ ...(8), and the effect that the total resistance value of the above element is always constant regardless of the signal magnetic field is also the same. It is.
まず、第1図に示されるような磁気格子に対す
る磁路部材の配置では、第6図から明らかなよう
に磁気格子の信号磁束φはその多くが磁路部材を
還流する。そして信号磁束φの何割かは隣接する
磁路部材へ漏洩する。 First, in the arrangement of the magnetic path members relative to the magnetic grid as shown in FIG. 1, as is clear from FIG. 6, most of the signal magnetic flux φ of the magnetic grid flows back through the magnetic path member. Then, some percentage of the signal magnetic flux φ leaks to adjacent magnetic path members.
この漏洩磁界Hは磁気抵抗効果素子の電流通路
(即ちその電流方向)と略直角方向に印加されて、
電流通路の自発磁化は漏洩磁界の方向へ磁化の向
きを変え、該磁化回転角度に応じて電流通路の抵
抗値が変化する。 This leakage magnetic field H is applied in a direction approximately perpendicular to the current path (that is, the current direction) of the magnetoresistive element,
The spontaneous magnetization of the current path changes the direction of magnetization in the direction of the leakage magnetic field, and the resistance value of the current path changes depending on the magnetization rotation angle.
第1図に関して、磁気格子に対する磁路部材が
λ/4(格子ピツチ:λ)ずれた配置においては、
磁気格子の信号磁束φのあと、磁路部材を還流す
る割合が少なくなり、空間漏洩の割合が多くな
る。 Regarding FIG. 1, when the magnetic path member is shifted from the magnetic grid by λ/4 (grid pitch: λ),
After the signal magnetic flux φ of the magnetic lattice, the proportion of the magnetic flux flowing back through the magnetic path member decreases, and the proportion of space leakage increases.
したがつて、Hも相対的に低減し、電流通路の
自発磁化はほとんど磁化の向きを変えず、電流通
路の抵抗値はほとんど変化しない。 Therefore, H is also relatively reduced, the spontaneous magnetization of the current path hardly changes the direction of magnetization, and the resistance value of the current path hardly changes.
このように、磁気格子と磁路部材/電流通路の
相対移動に伴つて、電流通路に印加される磁界
は、その方向が電流方向と略直角で、その大きさ
がλ/2の繰返し周期で変わることになり、本発
明による構成の磁気ヘツドの出力は、磁気格子の
倍周期で変化する。 In this way, as the magnetic grating and the magnetic path member/current path move relative to each other, the magnetic field applied to the current path has a direction approximately perpendicular to the current direction and a magnitude with a repetition period of λ/2. Therefore, the output of the magnetic head constructed according to the invention varies by twice the period of the magnetic grating.
第1図から明らかなように、異方性磁気抵抗効
果素子としてNi−C0薄膜を使用する場合には、
該薄膜は1軸対称性を有するから、磁気格子4の
1ピツチに対して2回繰返し出力(倍周波出力)
が得られる。 As is clear from Fig. 1, when using a Ni-C 0 thin film as an anisotropic magnetoresistive element,
Since the thin film has uniaxial symmetry, the output is repeated twice for each pitch of the magnetic grating 4 (double frequency output).
is obtained.
また異方性磁気抵抗効果素子5を形成する強磁
性金属薄膜と磁路部材7を形成する高透磁性薄膜
とは一般に電気的に絶縁する必要がある。そこで
例えばガラス、グレーズトセラミツク或いはシリ
コン等の基板にNi−C0等の強磁性薄膜を形成し
た後、SiO2等の薄膜で磁気シールド効果の少な
い電気的絶縁層を作り、その上にパーマロイ等の
高透磁性薄膜を形成する。この場合、基板面に対
する各薄膜の積層の順序は上述と逆になつてもよ
いこと勿論である。 Further, the ferromagnetic metal thin film forming the anisotropic magnetoresistive element 5 and the highly permeable thin film forming the magnetic path member 7 generally need to be electrically insulated. Therefore, for example, after forming a ferromagnetic thin film such as Ni-C 0 on a substrate such as glass, glazed ceramic, or silicon, an electrically insulating layer with a low magnetic shielding effect is made of a thin film such as SiO 2 , and then permalloy etc. A highly permeable thin film is formed. In this case, it goes without saying that the order in which the thin films are stacked on the substrate surface may be reversed to that described above.
更に電流通路6を流れる電流iと磁気格子4か
ら流入する磁束φとは同一(又は逆)方向で、た
だ磁場の強さが変化するだけである。そこで上述
した磁気ヘツドによる検出出力電圧を増大させ、
その電磁変換効率を高めるために、主電流方向と
略直交する方向に永久磁石等によりバイアス磁場
を印加して異方性磁気抵抗効果素子に面内磁場変
化を与えるようにする。磁気ヘツドにおける磁場
Hと検出出力電圧Eとの関係は第2図に示すよう
になる。同図において点線はヒステリシス特性
を、上下の実線は夫々の主電流Iと磁場Hが平行
及び直交する場合の特性をあらわし、Hrは可逆
磁界、HSは飽和磁界、HBはバイアス磁界を示す。 Furthermore, the current i flowing through the current path 6 and the magnetic flux φ flowing from the magnetic grid 4 are in the same (or opposite) direction, and only the strength of the magnetic field changes. Therefore, by increasing the detection output voltage by the magnetic head mentioned above,
In order to increase the electromagnetic conversion efficiency, a bias magnetic field is applied by a permanent magnet or the like in a direction substantially perpendicular to the main current direction to give an in-plane magnetic field change to the anisotropic magnetoresistive element. The relationship between the magnetic field H in the magnetic head and the detected output voltage E is shown in FIG. In the same figure, the dotted line represents the hysteresis characteristic, and the upper and lower solid lines represent the characteristics when the main current I and the magnetic field H are parallel and perpendicular to each other, H r is the reversible magnetic field, H S is the saturation magnetic field, and H B is the bias magnetic field. show.
その他、磁気ヘツドを形成する各異方性磁気抵
抗効果素子の電流通路は同一パターン形状とし、
互いに直交するように配置するのではなくて、
nλ/2±λ/4だけ離して構成し、電流方向が同一で
磁場がλ/4の位相差(磁場が直交することと等
価)を有するように配設する。また磁気ヘツドの
検出方向、即ち磁気ヘツドと磁気スケールとの相
対変位の方向の弁別のために、2相の検出出力を
得るべく異方性磁気抵抗効果素子は少なくとも2
組配設する。そしてこの種の異方性磁気抵抗効果
素子では倍周波検出出力が得られることを考慮し
て、一般に必要とされる両素子間の磁気格子位相
差はnλ/2+λ/8とするのが好適である。 In addition, the current paths of each anisotropic magnetoresistive element forming the magnetic head have the same pattern shape,
Rather than placing them perpendicular to each other,
They are configured to be separated by nλ/2±λ/4, and arranged so that the current directions are the same and the magnetic fields have a phase difference of λ/4 (equivalent to the magnetic fields being orthogonal). In addition, in order to discriminate the detection direction of the magnetic head, that is, the direction of relative displacement between the magnetic head and the magnetic scale, at least two anisotropic magnetoresistive elements are used to obtain two-phase detection outputs.
Assemble and arrange. Considering that this type of anisotropic magnetoresistive element can obtain double frequency detection output, it is preferable that the generally required magnetic lattice phase difference between both elements be nλ/2 + λ/8. be.
かくして本発明の磁気ヘツドは、例えば第3図
に示す如く、前述のようにして形成された2組の
異方性磁気抵抗効果素子8,9、バイアス磁石1
0から構成される。ただし同図で、11〜14は
電流端子、15,16は出力端子である。 Thus, the magnetic head of the present invention, for example as shown in FIG.
Consists of 0. However, in the figure, 11 to 14 are current terminals, and 15 and 16 are output terminals.
磁気格子からの漏洩磁場を強化し、前記した閉
磁路による磁束誘導効果を高めるためには、更に
例えば第4図に示すような構成をとることにより
一層効果的である。同図において磁気スケール1
7は縦磁界記録を施した磁気格子18と、高透磁
性材から成る基板19とから構成される。このよ
うに磁気スケールを構成することにより、漏洩磁
場を強化することができ、一方、前記閉磁路を形
成させるための高透磁性薄膜から成る磁路部材2
0は、その後方で全てを連結する構成とすること
により、磁束誘導効果を高めている。 In order to strengthen the leakage magnetic field from the magnetic lattice and enhance the magnetic flux guiding effect by the closed magnetic circuit described above, it is more effective to adopt a configuration as shown in FIG. 4, for example. In the same figure, magnetic scale 1
Reference numeral 7 is composed of a magnetic grating 18 subjected to longitudinal magnetic field recording and a substrate 19 made of a highly permeable material. By configuring the magnetic scale in this way, the leakage magnetic field can be strengthened, and on the other hand, the magnetic path member 2 made of a highly permeable thin film for forming the closed magnetic path.
0 enhances the magnetic flux guiding effect by connecting everything behind it.
次に本発明の他の実施例を第5図に示す。同図
において、異方性磁気抵抗効果素子21は比較的
高い透磁率を有する強磁性金属薄膜、例えばパー
マロイ等の薄膜から成り、該素子を構成する磁気
抵抗路22は各々独立で、磁気スケール23の磁
気格子24の位相に対応して配置されることは前
述の通りであるが、非磁性導電薄膜25で各々の
磁気抵抗路を電気的に結合する。なお26は導磁
性材から成る基板である。本実施例では前記電流
通路の代りに上記薄膜25を使用するだけであ
り、磁気ヘツドの構成を極めて簡略化できる。な
お、第1図及び第4図で磁気抵抗路6の両端は第
3図に示すような電流及び出力端子に接続され
る。 Next, another embodiment of the present invention is shown in FIG. In the figure, an anisotropic magnetoresistive element 21 is made of a ferromagnetic metal thin film having a relatively high magnetic permeability, such as a thin film such as permalloy. As described above, each magnetoresistive path is electrically coupled with a non-magnetic conductive thin film 25. Note that 26 is a substrate made of a magnetically conductive material. In this embodiment, only the thin film 25 is used in place of the current path, and the structure of the magnetic head can be extremely simplified. In addition, both ends of the magnetoresistive path 6 in FIGS. 1 and 4 are connected to current and output terminals as shown in FIG. 3.
以上説明したように本発明によれば高密度記録
の磁気スケールの信号読取に好適な磁気ヘツドを
精密かつ簡易に形成することができると共に検出
信号の内挿が少なくて済むので検出回路の構成も
簡略化できるから、安価でしかも高精度の磁気ス
ケールを提供しうる。 As explained above, according to the present invention, a magnetic head suitable for reading signals on a magnetic scale for high-density recording can be precisely and easily formed, and since the interpolation of detection signals can be reduced, the configuration of the detection circuit can also be improved. Since it can be simplified, it is possible to provide an inexpensive and highly accurate magnetic scale.
第1図は本発明の一実施例の主要部を示す概略
平面図、第2図は異方性磁気抵抗効果素子の磁場
と検出出力電圧の関係を示す曲線図、第3図は本
発明による磁気ヘツドの一構成例を示す概略斜視
図、第4図及び第5図は夫々本発明の他の実施例
の主要部を示す該略図、第6図は第1図の主要部
の概略正面図である。
FIG. 1 is a schematic plan view showing the main parts of an embodiment of the present invention, FIG. 2 is a curve diagram showing the relationship between the magnetic field of the anisotropic magnetoresistive element and the detected output voltage, and FIG. 3 is a diagram according to the present invention. FIG. 4 and FIG. 5 are schematic diagrams showing main parts of other embodiments of the present invention, and FIG. 6 is a schematic front view of the main parts of FIG. 1. It is.
Claims (1)
より形成される異方性磁気抵抗効果素子の各構成
要素を形成する複数の電流通路が磁気スケールの
磁気格子の各位相に対応して配置され、前記各電
流通路を直列接続した2組の構成要素が所定の距
離を隔てて設けられ、該要素の接続部に出力端子
を設けると共に、上記両構成要素の夫々の他端に
電流供給端子を設けて構成したことを特徴とする
磁気ヘツド。 2 前記各電流通路に対して、この電流通路を形
成する強磁性磁気抵抗薄膜との間に電気的絶縁層
を介して高透磁性薄膜から成る磁路部材を配置し
て、この磁路部材により磁気格子からの電流通路
への磁束誘導を行うようにしたことを特徴とする
特許請求の範囲第1項記載の磁気ヘツド。 3 前記電流通路が夫々独立に形成され、かつ非
磁性導電薄膜が独立の各電流通路を電気的に接続
するようにしたことを特徴とする特許請求の範囲
第1項記載の磁気ヘツド。 4 前記電流通路と略直交する方向にバイアス磁
場を印加して、異方性磁気抵抗効果素子の面内に
おいて磁場変化を与えるようにしたことを特徴と
する特許請求の範囲第1項乃至第3項記載の磁気
ヘツド。[Claims] 1. A plurality of current paths forming each component of an anisotropic magnetoresistive element formed by a ferromagnetic thin film having an anisotropic magnetoresistive effect are connected to each phase of a magnetic grating of a magnetic scale. Two sets of components are arranged corresponding to each other and have the respective current paths connected in series, and are separated by a predetermined distance, and an output terminal is provided at the connection part of the elements, and each of the other components is A magnetic head characterized in that it is configured with a current supply terminal provided at the end. 2. For each current path, a magnetic path member made of a highly permeable thin film is arranged with an electrically insulating layer interposed between the ferromagnetic magnetoresistive thin film forming the current path, and the magnetic path member 2. The magnetic head according to claim 1, wherein magnetic flux is guided from the magnetic grid to the current path. 3. The magnetic head according to claim 1, wherein each of the current paths is formed independently, and a nonmagnetic conductive thin film electrically connects each of the independent current paths. 4. Claims 1 to 3, characterized in that a bias magnetic field is applied in a direction substantially perpendicular to the current path to provide a magnetic field change within the plane of the anisotropic magnetoresistive element. Magnetic head as described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11469977A JPS5448575A (en) | 1977-09-26 | 1977-09-26 | Magnetic head |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11469977A JPS5448575A (en) | 1977-09-26 | 1977-09-26 | Magnetic head |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5448575A JPS5448575A (en) | 1979-04-17 |
JPS6360326B2 true JPS6360326B2 (en) | 1988-11-24 |
Family
ID=14644404
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11469977A Granted JPS5448575A (en) | 1977-09-26 | 1977-09-26 | Magnetic head |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5448575A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5766309A (en) * | 1980-10-09 | 1982-04-22 | Hitachi Ltd | Device for sensing rotation of rotating body |
JPS5779410A (en) * | 1980-11-06 | 1982-05-18 | Sony Corp | Coaxial magnetic scale |
JPS5814011A (en) * | 1981-07-20 | 1983-01-26 | Hitachi Ltd | Magnetic encoder |
JPS597213A (en) * | 1982-07-05 | 1984-01-14 | Inoue Japax Res Inc | Encoder |
JP2509306Y2 (en) * | 1992-07-02 | 1996-09-04 | 株式会社アート・スリー | Urn |
US9574906B2 (en) * | 2013-10-28 | 2017-02-21 | Hitachi Metals, Ltd. | Magnetic medium for magnetic encoder, magnetic encoder and method for manufacturing magnetic medium |
-
1977
- 1977-09-26 JP JP11469977A patent/JPS5448575A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5448575A (en) | 1979-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6640652B2 (en) | Rotation angle sensor capable of accurately detecting rotation angle | |
CA1306009C (en) | Magnetoresistive magnetic sensor | |
US5521501A (en) | Magnetic field sensor constructed from a remagnetization line and one magnetoresistive resistor or a plurality of magnetoresistive resistors | |
US7378839B2 (en) | Magnetic encoder | |
JP3210192B2 (en) | Magnetic sensing element | |
US20100001723A1 (en) | Bridge type sensor with tunable characteristic | |
JPH11513128A (en) | Magnetic field sensor with magnetoresistive bridge | |
JPH0252807B2 (en) | ||
KR19990022160A (en) | Magnetic field sensor including bridge circuit of magnetoresistive bridge element | |
US5128614A (en) | Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor | |
JP2000035343A (en) | Encoder provided with gigantic magnetic resistance effect element | |
EP0317471A2 (en) | Solid state magnetic head with improved biasing | |
JP3619156B2 (en) | Magnetic detector | |
JPS6360326B2 (en) | ||
JP2000512763A (en) | Magnetic field sensor with Wheatstone bridge | |
JPH052033A (en) | Current sensor and setting method for range of detection current thereof | |
JPH0151127B2 (en) | ||
JP2001141514A (en) | Magnetoresistive element | |
JPS638531B2 (en) | ||
US7339369B2 (en) | Magnetic encoder | |
JPH0792395B2 (en) | Area type flow meter with sensor and flow rate measuring method | |
JPS5853722B2 (en) | magnetic head | |
US5699214A (en) | Magnetic information detecting apparatus | |
JP2529951B2 (en) | Magnetoresistive sensor for magnetic encoder | |
JPS61290377A (en) | Magnetoresistance effect type sensor |