JPS6360294A - Rust preventing method - Google Patents

Rust preventing method

Info

Publication number
JPS6360294A
JPS6360294A JP61204794A JP20479486A JPS6360294A JP S6360294 A JPS6360294 A JP S6360294A JP 61204794 A JP61204794 A JP 61204794A JP 20479486 A JP20479486 A JP 20479486A JP S6360294 A JPS6360294 A JP S6360294A
Authority
JP
Japan
Prior art keywords
ions
ion
phosphate
corrosion
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61204794A
Other languages
Japanese (ja)
Inventor
Toshihiro Okai
岡井 敏博
Yoshiaki Okumura
美明 奥村
Mitsuyuki Oda
小田 光之
Takashi Yamamoto
隆 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP61204794A priority Critical patent/JPS6360294A/en
Priority to KR870009530A priority patent/KR880003031A/en
Priority to AU77714/87A priority patent/AU600748B2/en
Priority to CA000545705A priority patent/CA1302661C/en
Priority to EP19870112697 priority patent/EP0259748B1/en
Priority to DE8787112697T priority patent/DE3771018D1/en
Publication of JPS6360294A publication Critical patent/JPS6360294A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/187Mixtures of inorganic inhibitors
    • C23F11/188Mixtures of inorganic inhibitors containing phosphates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Abstract

PURPOSE:To improve the rust preventing performance of a metallic material by bringing the material into contact with a soln. contg. soluble V ions and phosphate ions in the presence of water and oxygen which produce corrosive conditions. CONSTITUTION:A metallic material is brought into contact with a soln. contg. soluble V ions and phosphate ions in the presence of water and oxygen which produce corrosive conditions. The phosphate ions lack the function of an oxidizer and the V ions compensate for the function. The V ions form a redox couple in the soln. under the corrosive conditions, show higher redox potential and fulfill the function of an oxidizer. The phosphate ions form a film of a slightly soluble precipitate under the corrosive conditions and has a deposition function. Very high rust preventing performance is obtd. by the presence of the two kinds of ions.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属材の防錆方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for preventing rust of metal materials.

(従来の技術およびその問題点) 一般に金属は水、酸素、電解質イオンの存在下で腐食す
る。この原因は金属表面に局部電池が形成され、電気化
学的反応の進行のためと信じられている。
(Prior art and its problems) Metals generally corrode in the presence of water, oxygen, and electrolyte ions. This is believed to be due to the formation of local batteries on the metal surface and the progress of electrochemical reactions.

この金属の腐食を防止するには、金属表面に安定な極め
て薄い膜、いわゆる不動態皮膜を形成さ仕ることが行わ
れている。典型的なものとしては、金属材をクロム酸イ
オンに接触させる方法がある。
In order to prevent this corrosion of metals, a stable extremely thin film, a so-called passive film, is formed on the metal surface. A typical method is to contact a metal material with chromate ions.

このクロム酸イオンイこはクロム酸イオン(CrO2”
 )と例えば鋼(Fe)とが反応して鋼表面には安定な
γ−Pet’sが生成する、いわゆるオキシダイザ−(
ox id 1zer)機能と、クロム酸イオンが還元
されて生じる二酸化クロム(CrtOJが鋼表面に付着
する、いわゆるデポジション(depos it 1o
n)機能の2つの機能が存在する。この2つの機能によ
り鋼表面に物理的バリヤー皮膜が形成され、極めて優れ
た防錆作用を発揮する。
This chromate ion is chromate ion (CrO2”
) and steel (Fe), for example, react to produce stable γ-Pet's on the steel surface, the so-called oxidizer (
Oxid 1zer) function and chromium dioxide (CrtOJ) produced by the reduction of chromate ions adheres to the steel surface, the so-called deposition.
n) There are two functions of function. These two functions form a physical barrier film on the steel surface, which exhibits an extremely excellent rust prevention effect.

ところが、この高い防錆能を有する6価クロムは毒性が
強く、我国では種々の法規によりその使用が大きく制限
されている。従って、無公害若しくは低公害の防錆剤の
研究が盛んに行われている。
However, hexavalent chromium, which has a high rust-preventing ability, is highly toxic, and its use is severely restricted in Japan by various laws and regulations. Therefore, research into non-polluting or low-pollution rust preventive agents is being actively conducted.

例えば、リン酸塩系物質、特にリン酸亜鉛、リン酸シリ
カまたは縮合リン酸アルミニウム等が注目され、一部実
用化されている。しかしながら、リン酸系の物質は金属
材との反応により生じた物質が、金属オを保護する前記
デポジション機能のみを有する物質であり、金属材表面
を酸化するオキシダイザ−機能を有していない。従って
、これらはクロム酸イオンに比べて防錆能が劣る。
For example, phosphate-based substances, particularly zinc phosphate, silica phosphate, condensed aluminum phosphate, etc., have attracted attention, and some of them have been put into practical use. However, a phosphoric acid-based substance is a substance produced by a reaction with a metal material, and has only the above-mentioned deposition function of protecting the metal material, and does not have an oxidizer function of oxidizing the surface of the metal material. Therefore, these have inferior rust prevention ability compared to chromate ions.

(問題点を解決するための手段) 本発明者等は上記リン酸イオンに加えて、バナジウムの
可溶性イオンを用いると、極めて高い防錆能が得られる
ことを見出した。
(Means for Solving the Problems) The present inventors have discovered that when soluble vanadium ions are used in addition to the above-mentioned phosphate ions, extremely high antirust performance can be obtained.

即ち、本発明は水および酸素が存在する腐食条件下にお
いて、金属材をバナジウムの可溶性イオンおよびリン酸
イオンを含有する環境に接触することを特徴とする防錆
方法を提供する。
That is, the present invention provides a rust prevention method characterized by contacting a metal material with an environment containing soluble vanadium ions and phosphate ions under corrosive conditions in the presence of water and oxygen.

このバナジウムの可溶性イオンは、リン酸イオンに欠け
ているオキシダイザ−機能を補う。このイオン種は水と
酸素の存在する腐食条件下で溶液内レドックス・カップ
ルを構成して責なレドックス電位を示し、前記のオキシ
ダイザ−機能を果す。
This soluble ion of vanadium supplements the oxidizer function lacking in the phosphate ion. This ionic species forms an in-solution redox couple under corrosive conditions in the presence of water and oxygen, exhibits a significant redox potential, and performs the oxidizer function described above.

一方、リン酸イオンは萌述のように、腐食条件下で難溶
性の沈澱皮膜(FePO4と思イっれる)を形成し、デ
ポジション機能を有する。従って、本発明にはこの両者
のイオン種の存在が不可欠であり、どちらのイオン種が
欠けても本発明の効果は発現しない。
On the other hand, as described by Moe, phosphate ions form a poorly soluble precipitated film (possibly FePO4) under corrosive conditions and have a deposition function. Therefore, the presence of both of these ionic species is essential to the present invention, and the effects of the present invention will not be achieved if either of the ionic species is absent.

本発明に用いるバナジウムの可溶性イオンはバナジウム
原子の価数が3価、4価および5価よりなるイオン群で
あり、例えばv3′″、VOH”、vo”、vo”、H
Vo7”、HV、05−1HVO3”  、  VOt
”  、   H3VzO7−、H,VO4−、HVo
、2−1vo、’−1VO3−1HV20.’−1V2
07’−1V6O13−1V 40H2’−1HtV+
The soluble ions of vanadium used in the present invention are an ion group in which the valence of vanadium atoms is trivalent, tetravalent, and pentavalent, such as v3''', VOH'', vo'', vo'', H
Vo7", HV, 05-1HVO3", VOt
”, H3VzO7-, H, VO4-, HVo
, 2-1vo, '-1VO3-1HV20. '-1V2
07'-1V6O13-1V 40H2'-1HtV+
.

02g’−1HV 、。02e’−1VI00211’
−などのバナジウムのイオンの単量体またはこれらのポ
リマーが挙げられる。つまり、オルトバナジン酸イオン
と縮合バナジン酸イオンに大別され、この2つのイオン
の存在は衆知の通り、通常、溶液中では混合系として存
在し、特にpHが中性近傍(5〜9の範囲付近)におい
ては縮合バナジン酸イオンが主体で存在し、単量体であ
るオルトバナジン酸イオンは微量にしか存在しない。こ
れはオルトバナジン酸イオンは溶液中で縮合するからで
ある。縮合バナジン酸イオンは、上記の化学式で示した
が、ピロバナジン酸イオン、メタバナジン酸イオン、ト
リバナジン酸イオン、テトラバナジン酸イオン、ヘキサ
バナジン酸イオン、デカバナジン酸イオンなどに代表さ
れる、オルトバナジン酸イオンが種々の割合で縮合した
バナジン酸イオンの縮合体である。溶液中に存在するバ
ナジン酸イオンの形態は公知であり、その縮合度やpH
により種々変化する。これらのイオンの内、バナジウム
が3価の場合、水と酸素が存在する系内では酸素の作用
で・1価と5価のレドックス・カップルを構成する。
02g'-1HV,. 02e'-1VI00211'
Examples include vanadium ion monomers such as - or polymers thereof. In other words, they are roughly divided into orthovanadate ions and condensed vanadate ions, and as is well known, these two ions usually exist as a mixed system in solutions, especially when the pH is near neutral (in the range of 5 to 9). (near), condensed vanadate ions are mainly present, and monomeric orthovanadate ions are present only in trace amounts. This is because orthovanadate ions condense in solution. Condensed vanadate ions are shown in the chemical formula above, and orthovanadate ions are represented by pyrovanadate ions, metavanadate ions, trivanadate ions, tetravanadate ions, hexavanadate ions, decavanadate ions, etc. It is a condensate of vanadate ions condensed in various proportions. The form of vanadate ion present in the solution is known, and its degree of condensation and pH
It varies depending on the situation. Among these ions, when vanadium is trivalent, in a system where water and oxygen exist, it forms a monovalent and pentavalent redox couple due to the action of oxygen.

一方、リン酸イオンとしては、オルトリン酸イオン、ピ
ロリン酸イオン、トリポリリン酸イオン、それ以上の縮
合リン酸イオン、トリメタリン酸イオン、テトラメタリ
ン酸イオン、それ以上の縮合メタリン酸の解離平衡によ
り生ずるイオン種等の13i1体あるいはポリマーであ
る。これらのリン酸イオンら縮合度及びpHにより溶液
中に存在するそのイオン形態は種々変化し溶液中では通
常、縮合体として存在する。
On the other hand, phosphate ions include orthophosphate ions, pyrophosphate ions, tripolyphosphate ions, more condensed phosphate ions, trimetaphosphate ions, tetrametaphosphate ions, and ion species generated by the dissociation equilibrium of more condensed metaphosphates. 13i1 body or polymer. The ion form of these phosphate ions in a solution changes depending on the degree of condensation and pH, and they usually exist as a condensate in a solution.

この種のイオンの供給方法は、イオン交換樹脂や無機イ
オン交換体(例えば、ハイドロタルサイト)等のイオン
担持体に吸着させてもよい。また、リン酸イオンを含む
化合物とバナジウムの可溶性イオンを含む化合物との複
合酸化物を高温あるいは低温で焼成して粉末状にして用
いてもよい。
This type of ion supply method may include adsorption onto an ion carrier such as an ion exchange resin or an inorganic ion exchanger (eg, hydrotalcite). Alternatively, a composite oxide of a compound containing a phosphate ion and a compound containing a soluble vanadium ion may be fired at a high or low temperature and used in the form of a powder.

上記イオン種を含む化合物または担持体を防錆ワックス
、塗料、ライニング等に配合して、金属材と接触させて
もよい。また、上記イオン種を含む水溶液を金属材表面
に吹き付け、−時的な防錆効果を得てもよい。上記イオ
ン種の存在が、塗料その他の組成物の安定性に悪影響を
与える場合には、イオン種を含む化合物また担持体を種
々の物質で被覆して使用してもよい。
A compound or a carrier containing the above-mentioned ionic species may be blended into antirust wax, paint, lining, etc., and brought into contact with the metal material. Alternatively, an aqueous solution containing the above ionic species may be sprayed onto the surface of the metal material to obtain a temporary rust prevention effect. If the presence of the above ionic species adversely affects the stability of paints or other compositions, compounds or carriers containing the ionic species may be coated with various substances for use.

本発明を適用する金属材は鋼材、高強度間、高張力鋼、
メッキ鋼板、ステンレス鋼等の合金、鋳鉄、アルミニウ
ムやその合金等が挙げられる。
The metal materials to which the present invention is applied are steel, high strength steel, high tensile steel,
Examples include plated steel sheets, alloys such as stainless steel, cast iron, aluminum and its alloys.

本発明が有効に作用する腐食条件は少くとも水あるいは
酸素か存在する条件であり、腐食を促進すると考えられ
ている他のイオン(例えば、塩素イオン)等が存在して
もよい。本発明方法が最適の腐食条件はpHが5〜9の
範囲内である。この範囲を越えると、防錆効果が低下す
る。
The corrosion conditions under which the present invention is effective are those in which at least water or oxygen is present, and other ions (for example, chloride ions) etc. that are considered to promote corrosion may also be present. The optimum corrosion conditions for the method of the present invention are within the pH range of 5-9. If it exceeds this range, the antirust effect will decrease.

(発明の効果) 本発明の防錆方法は防錆機能をリン酸イオンとバナジウ
ムの可溶性イオンの両者により生じさせ、クロム酸イオ
ンと同等もしくは、それ以上の防錆能を発揮する。本発
明は無公害・低公害の金属材の優れた防錆法を提供する
。本発明方法により抑制される腐食は腐食減量、腐食割
れ、糸端、孔食、端面腐食、折り曲げ等の加工部腐食等
である。
(Effects of the Invention) The rust prevention method of the present invention generates the rust prevention function by both phosphate ions and soluble vanadium ions, and exhibits a rust prevention ability equal to or greater than that of chromate ions. The present invention provides an excellent rust prevention method for metal materials that is pollution-free and low-pollution. Corrosion suppressed by the method of the present invention includes corrosion loss, corrosion cracking, yarn end corrosion, pitting corrosion, end face corrosion, and corrosion of processed parts such as bending.

(実施例) 本発明を実施例により更に詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples.

実施例Iおよび比較例1 本実施例はオルトリン酸イオン(po、3−)や添加効
果の差を示す。3%NaCl2のpH=7の水溶液(空
気開放系)に各種イオン(例えば、“CrO*”−1V
043−等)を添加しく0.05M)、更に、PO,”
−を添加した場合としない場合の水溶液中での冷間圧延
鋼板(JIS  G3141)の腐食速度を重量法で求
めた。結果第1図に示す。
Example I and Comparative Example 1 This example shows the difference in orthophosphate ion (po, 3-) and the effect of addition. Various ions (e.g. "CrO*" -1V
043-0.05M), and further PO,"
The corrosion rate of a cold rolled steel plate (JIS G3141) in an aqueous solution with and without addition of - was determined by gravimetric method. The results are shown in Figure 1.

また、水中でのこの銅板の腐食電位を銀−塩化銀電極(
Ag/Agcσ/3.33N  KC&)を参照電極と
して電位差計で測定した結果を第2図に示す。
In addition, the corrosion potential of this copper plate in water was measured using a silver-silver chloride electrode (
FIG. 2 shows the results of measurement with a potentiometer using Ag/Agcσ/3.33N KC&) as a reference electrode.

なお、液の温度は20℃であった。Note that the temperature of the liquid was 20°C.

第1図から明らかなように、オルトリン酸イオン(PO
,”)のみで無添加に比べ約1/10程度、腐食速度が
減少しく第1図A)、従来から知られているリン酸イオ
ンの防錆性が本例でも認められた。
As is clear from Figure 1, orthophosphate ion (PO
, ") alone, the corrosion rate was reduced by about 1/10 compared to the case without additives (Fig. 1A), and the conventionally known antirust properties of phosphate ions were confirmed in this example as well.

しかし、第1図Bのクロム酸イオン(CrO*’−イオ
ン)あるいは第1図りのタングステン酸イオン(W O
4!−)と共存させても、PO43−の添加効果は認め
られない。それに比し、モリブデン酸イオン(M、0.
2−)、ホウ酸イオン(BO33−)またはケイ酸イオ
ン(S iO3’−)とPO43−イオンとを共存(第
1図CおよびF)させると、その共存効果は大きいが、
その腐食速度はPO,’−イオン単独の場合と比べ、大
きな差は認められない。ところがバナジン酸イオン(v
o、3−)とPO43−イオンが共存すると、極めて腐
食速度が抑制され、Cr O4”−イオンと同等又はそ
れ以下の腐食速度となり、極めて有効な腐食抑制効果を
発現する。
However, the chromate ion (CrO*'- ion) in Figure 1B or the tungstate ion (WO
4! -), no effect of addition of PO43- is observed. In comparison, molybdate ion (M, 0.
2-), when borate ions (BO33-) or silicate ions (SiO3'-) coexist with PO43- ions (Fig. 1 C and F), the coexistence effect is large;
There is no significant difference in the corrosion rate compared to the case of PO,'-ion alone. However, vanadate ion (v
When CrO4''-) and PO43- ions coexist, the corrosion rate is extremely suppressed, resulting in a corrosion rate equal to or lower than that of CrO4''- ions, and exhibits an extremely effective corrosion inhibiting effect.

第2図から明らかなように、PO4”、vo、’−イオ
ンの共存下では他の組み合わせと比べ著しく責な電位を
示し、良好な防錆能を示している。
As is clear from FIG. 2, in the coexistence of PO4", vo, and '- ions, the potential is significantly lower than that of other combinations, indicating good rust prevention ability.

実施例■および比較例■ 本実施例は、リン酸イオン(po、’!−)とバナジウ
ムの可溶性イオン(vo、’″″)との共存効果をクロ
ム酸イオン(CrO4”−)の防錆機構との類似性で示
す。
Example ■ and Comparative Example ■ This example demonstrates the coexistence effect of phosphate ions (po, '!-) and soluble vanadium ions (vo, ''''') in the rust prevention of chromate ions (CrO4''-). It is shown by the similarity with the mechanism.

3%NaCl2中にCr0h’−イオンのみを種々の濃
度になるように添加した水溶液(pH= 7の空気開放
系)、PO43−イオンとVO43−イオンの各々の濃
度を種々変えた水溶液、またはwo、”−と■043−
との濃度を変えた水溶液中での綱板(JIS  G31
41)の腐食速度と腐食電位を実施例■と同様の方法で
測定した。結果を第3図に示す。第3図中CrO42−
の添加溶液を△印(比較例)で示し、PO43−とvo
、’−の添加溶液を・印(実施例)で示す。第3図から
明らかなように、比較例と実施例との測定例が1つの曲
線上にあることから、本発明の方法はクロム酸イオンの
防錆機構と極めて類似していると考えられる。なお、第
3図より、タングステン酸イオン(wo、”)とリン酸
イオンとの共存系は、明らかに本発明の防錆機構とは異
なっている。この事は通常実施される電気化学的手法に
よる分極測定、すなわち、例えば、アノード分極曲線の
測定より同表面の不動態挙動を調べると(第4図)、第
3図の腐食速度がl mddより小さい領域では特にア
ノード分極曲線上に約250mV以上の幅を持つ不動態
域が発現し、クロム酸イオンと類似の曲線を示すことが
確認された。すなわち、鋼表面に安定な皮膜の形成が推
測される。第4図の測定は冷間圧延鋼板(SPCC)を
予めクロム酸イオン0.05モルの液およびバナジン酸
イオン0.05モル+リン酸イオン0.05モルの液に
2週間浸漬したものを試料とした。そして、この試料を
0.025モルのNatB407+ l 0H20+0
.O1モルのNaC(2の溶液中でlOmV/min、
の昇圧速度で分題しこの時の電位−電流曲線を測定した
。なお、25℃の空気開放系としfこ。第4図中のXは
予め浸漬していないもので、Yはバナジン酸イオンとリ
ン酸イオン共存系、Zはクロム酸イオン、に各々予め浸
漬された試料の分極曲線である。なお、第3図の実施例
から判断されるように、本発明の防錆能の発揮は、バナ
ジウムの可溶性イオンとリン酸イオンとの共存系であり
、この2種のイオン種の組み合わせは、バナジウムの可
溶性イオンの濃度が0゜001モルとリン酸イオンの0
度が0.01モルとの組み合わせの濃度以上の共存系で
、充分、その防錆効果を発揮するもので、好ましくは、
バナジウムの可溶性イオンが0001モル〜0.05モ
ル、リン酸イオンが0.O1モル〜0.1モルの範囲で
あって、この2種のイオン種の濃度比(組成比)が[V
 043−3/[P 0.3−コで5倍〜0.OI倍の
範囲が好ましい。そして、これらは、電位を貴にする効
果と腐食速度への効果が対応する範囲でもある。そして
、本例の条件下ではl mdd以下の腐食速度に於いて
、腐食電位は一660mV以上の責な電位を示す範囲が
好ましい。
An aqueous solution in which only Cr0h'- ions were added at various concentrations in 3% NaCl2 (air open system with pH = 7), an aqueous solution with various concentrations of PO43- ions and VO43- ions, or WO ,”- and ■043-
(JIS G31)
The corrosion rate and corrosion potential of 41) were measured in the same manner as in Example ①. The results are shown in Figure 3. CrO42- in Figure 3
The addition solution of PO43- and vo is indicated by △ (comparative example).
, '− added solutions are indicated by * (example). As is clear from FIG. 3, since the measurement examples of the comparative example and the example are on one curve, it is considered that the method of the present invention is extremely similar to the rust prevention mechanism of chromate ions. Furthermore, from Fig. 3, the coexistence system of tungstate ions (WO,'') and phosphate ions is clearly different from the rust prevention mechanism of the present invention. For example, when the passive behavior of the same surface is examined by measuring the anodic polarization curve (Fig. 4), it is found that approximately 250 mV is observed on the anodic polarization curve, especially in the region of Fig. 3 where the corrosion rate is smaller than l mdd. It was confirmed that a passive region with a width greater than 10% was developed and showed a curve similar to that of chromate ions.In other words, it is assumed that a stable film is formed on the steel surface. A rolled steel plate (SPCC) was pre-immersed in a solution containing 0.05 mol of chromate ions and a solution containing 0.05 mol of vanadate ions + 0.05 mol of phosphate ions for two weeks. 0.025 mol NatB407+ l 0H20+0
.. 1 mol of NaC (1 OmV/min in a solution of 2,
The potential-current curve at this time was measured. Note that this is an open air system at 25°C. In FIG. 4, X is the polarization curve of a sample that has not been immersed in advance, Y is a polarization curve of a sample that has been immersed in a vanadate ion and phosphate ion coexistence system, and Z is a sample that has been immersed in chromate ion. Furthermore, as judged from the example shown in FIG. 3, the antirust ability of the present invention is exhibited by the coexistence system of vanadium soluble ions and phosphate ions, and the combination of these two types of ions is The concentration of soluble vanadium ions is 0°001 mol and the concentration of phosphate ions is 0.
In a coexisting system with a concentration of 0.01 mol or more, the rust-preventing effect is sufficiently exhibited, and preferably,
Soluble vanadium ion is 0001 to 0.05 mol, phosphate ion is 0.0001 mol to 0.05 mol. O ranges from 1 mol to 0.1 mol, and the concentration ratio (composition ratio) of these two types of ionic species is [V
043-3/[P 0.3-co 5 times to 0. A range of OI times is preferable. These are also the ranges in which the effect of increasing the potential and the effect on the corrosion rate correspond. Under the conditions of this example, the corrosion potential is preferably in the range of -660 mV or more at a corrosion rate of 1 mdd or less.

次に、4種の系(NaCQ  Na5P 04  V2
O5系、NaCQ  Na5PO,V2O3系、NaC
12−5rCr O4系およびNaC(、Na5P04
系)について、p I−I変化による腐食減量を求めた
。液のpHはこれらの液中にllCa又はNaOHを添
加することにより調整し、25℃の空気開放系で、30
日間後の各々の液中に浸漬した冷間圧延鋼板の腐食減量
を重量法で求めた。その結果を第5図に示す。
Next, four types of systems (NaCQ Na5P 04 V2
O5 series, NaCQ Na5PO, V2O3 series, NaC
12-5rCr O4 system and NaC (, Na5P04
The corrosion weight loss due to p II change was determined for (system). The pH of the liquids was adjusted by adding llCa or NaOH to these liquids, and the pH was adjusted to 30°C in an open air system at 25°C.
The corrosion loss of the cold rolled steel sheets immersed in each solution after 1 day was determined by gravimetric method. The results are shown in FIG.

NaCQ−Na3P04系では腐食減量が多く、NaC
Q−8r Cr O4系ではその減量が小さく、従来よ
り知られている結果となっている。それに比べ、NaC
l2−Na5P 04−V2O3系およびNaC(!N
a5P O4V to 5系は有効な防錆能を示し、ク
ロム酸イオンと同等又はそれ以上の防錆能を発揮してい
る。そして、pH=5〜9の範囲内で特にその防錆能が
優れている。
In the NaCQ-Na3P04 system, corrosion loss is large, and NaC
In the Q-8r Cr O4 system, the weight loss is small, a result known from the past. In comparison, NaC
l2-Na5P 04-V2O3 system and NaC(!N
The a5P O4V to 5 system exhibits effective rust prevention ability, and exhibits rust prevention ability equivalent to or greater than that of chromate ions. The antirust ability is especially excellent within the pH range of 5 to 9.

実施例■及び比較例■ 本実施例は、溶液に添加する前の状態のバナジウムの可
溶性イオン種と添加萌のリン酸イオン種の種類による防
錆能を、クロム酸イオンを比較例として、その有効性を
示す。
Example ■ and Comparative Example ■ This example examines the rust prevention ability of vanadium soluble ion species before being added to the solution and the phosphate ion species added, using chromate ion as a comparative example. Demonstrate effectiveness.

3%N a CQ中に各種イオンを添加し、空気開放系
の25℃下での冷間圧延鋼板の腐食減量かクロム酸イオ
ン添加の場合より小さい場合を○印、略同量の場合を△
印、大きい場合をX印として防錆能を表示した。その結
果を表=1〜表−2に示す。
When various ions are added to 3% Na CQ, the corrosion loss of a cold rolled steel plate at 25°C in an open air system is smaller than that with the addition of chromate ions, marked with ○, and when approximately the same amount is marked with △.
The rust prevention ability is indicated by a mark, and an X mark indicates a larger value. The results are shown in Tables 1 to 2.

表−1はリン酸イオン種の効果を、表−2はバナジウム
の可溶性イオン種の効果を示す。尚、液はpH=7に調
整した。
Table 1 shows the effect of phosphate ion species, and Table 2 shows the effect of vanadium soluble ion species. The pH of the solution was adjusted to 7.

表−1 表−2 実施例■および比較例■ 本実施例は、溶液中の酸素の効果を示す。Table-1 Table-2 Example ■ and comparative example ■ This example shows the effect of oxygen in solution.

第6図に示すセルにより、測定した。ガラス製の容器1
に冷間圧延鋼板2及び予め脱酸素した0゜01%のNa
Cσに0.05モルのリン酸イオンと0.05モルのバ
ナジン酸イオンを共存したpl(=7の溶液3又は脱酸
素した0、01%のNaCQに0.05モルのリン酸イ
オンのみを添加したpH−7の溶液3を窒素ガス雰囲気
下で入れ、この容器1の上面に酸素透過速度の異なる各
種の膜4を固定し、膜4と容器■の上面との間隙からの
酸素の侵入を防止するために、予め容器lの上面にはグ
リースをぬった。これらの操作を行った後に、全体を空
気中に静置し、鋼板2の腐食減量と膜の酸素透過速度と
の関係を求めた。その結果を第7図に示す。
Measurement was carried out using the cell shown in FIG. glass container 1
Cold rolled steel plate 2 and pre-deoxidized 0°01% Na
pl with 0.05 mol of phosphate ion and 0.05 mol of vanadate ion coexisting in Cσ (solution 3 of = 7 or only 0.05 mol of phosphate ion in deoxygenated 0.01% NaCQ) The added pH-7 solution 3 is put in a nitrogen gas atmosphere, and various membranes 4 with different oxygen permeation rates are fixed on the top surface of this container 1, and oxygen enters through the gap between the membrane 4 and the top surface of the container 1. In order to prevent this, grease was applied to the top surface of the container L in advance. After performing these operations, the whole was left standing in the air, and the relationship between the corrosion loss of the steel plate 2 and the oxygen permeation rate of the membrane was investigated. The results are shown in Figure 7.

第7図より、リン酸イオンとバナジン酸イオンの共存効
果は酸素がI O”’ 18(m(−cm/cm2・s
ee・am Hg)以上補給されることにより達せられ
ることが解る。
From Figure 7, the coexistence effect of phosphate ions and vanadate ions is such that oxygen
It can be seen that this can be achieved by replenishing more than ee・am Hg).

なお、ここで用いた膜の酸素透過速度の測定は、通常用
いられている電気化学的方法より求めるもので、例えば
本発明者が発表記載[色材、55゜191(1982)
コした方法である。
The oxygen permeation rate of the membrane used here was determined by a commonly used electrochemical method.
This is a sophisticated method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は実施例■および比較例■の2種の
イオン種の共存効果を示す図面である。 第3図は実施例■および比較例Hの腐食電位と腐食速度
の関係を示す図である。 第4図は分極曲線を測定した図である。 第5図は冷間圧延鋼板の腐食減量を示す図である。 は 第6男壺施例■および比較例■に用いた測定装置を示す
図であり、第7図はその結果を示す図である。 ;シ1 第6図中、■は容器、2は冷間圧延刷板、3はpH7の
溶液、4は膜を示す。 代 理 人 弁理士 青 山 葆 ほか2名第2図 (共存イ才>fi) 第6図 第7図 10”   10”   Iσ141σ121o→0f
IXf)afif、’rf1313’4−11 (mf
−cm /cm2゛sea −cm HQ )手続補正
書 特許庁長官殿   昭和62年11月2601 事件の
表示 昭和61 年特許願第 204794  号2、 発明
の名称 防錆方法 3、補正をする者 事件との関係 特許出願人 ■ 大阪府大阪市大淀区大淀北2丁目1番2号名1 日
本ペイント株式会社 代表者    佐 々 木 −雄 4、代理人 住所 〒540 大阪府大阪市東区域見2丁目1番61
号6、補正の対象  明細書の「発明の詳細な説明」の
欄および7、補正の内容 ■ 明細口中下記の箇所を訂正する。 (1)第3頁第15行、「構成して」とあるを「構成す
るようになり、結果的に」に訂正する。 (2)第4頁第6行、「HV Ot’Jとあるを削除す
る。 (3)第・1頁第7行、rHV O3+、Jとあるを削
除する。 (4)第71頁第12行、「つまり、オルトバナジン酸
イオン]とあるを「つまり、バナジウムイオン、バナジ
ルイオン、オルトバナジン酸イオン」に訂正する。 (5)第・1頁第13行、「大別され、」とあるを「大
別され、特にオルトバナジン酸イオンと縮合バナジン酸
イオンが好ましい。」に訂正する。 (6)第4頁第14行、「衆知」とあるを「周知」に訂
正する。 (7)第5頁第8行〜第9行、「これらのイオンの内、
 ・・・酸素の作用で」とあるを[これらのイオンは、
水と酸素が存在する系内では」に訂正する。 (8)第5頁第1O行、「構成する。」の後に「またバ
ナジウムが3価の場合も水溶液中で酸素の作用で、4価
と5価のバナジウムの可溶性イオンを生成するので、レ
ドックスカップルを構成する。」を挿入する。 (9)第6頁第4行、「複合酸化物を」とあるを「混合
物を粉末状にしても良いし、またその混合物を」に訂正
する。 (I O)第7頁第17行、l”CrO3’−Jとある
をrCrO,’−jに訂正する。 (11)第9頁第6行、rPCh3−Jとあるを「Po
43−jに訂正する。 (12)第12頁第1行の上に「及敷鯉皿叉気塩恰鯉皿
」を挿入する。 (13)第15真下から第8行γ第7行、1″オキノバ
ナジン酸イオン」とあるを「バナジルイオン」に訂正す
る。 (14)第15頁下から第3行〜第2行、「オキンバナ
ジン酸イオン」とあるを「バナジルイオン」に訂正する
。 (15)以下の箇所に「モル」とあるを1モル/Q」に
訂正する。但し、1行中に複数回「モル」がある時はそ
れら全てを「モル/+2Jに訂正する。 Il、  (+)  図面中実2図、第3図および第4
図を別紙のように訂正する。 以上 第2図 (共存イオン利O
FIGS. 1 and 2 are drawings showing the coexistence effect of two types of ionic species in Example (1) and Comparative Example (2). FIG. 3 is a diagram showing the relationship between corrosion potential and corrosion rate in Example ① and Comparative Example H. FIG. 4 is a diagram showing measured polarization curves. FIG. 5 is a diagram showing corrosion loss of a cold rolled steel plate. FIG. 7 is a diagram showing the measuring device used in the sixth men's jar Example (2) and Comparative Example (2), and FIG. 7 is a diagram showing the results. ; 1 In FIG. 6, ■ indicates a container, 2 indicates a cold-rolled plate, 3 indicates a solution with a pH of 7, and 4 indicates a membrane. Agent Patent attorney Aoyama Ao and 2 others Figure 2 (Coexistence > fi) Figure 6 Figure 7 10"10" Iσ141σ121o → 0f
IXf) afif, 'rf1313'4-11 (mf
-cm /cm2゛sea -cm HQ) Procedural amendments Dear Commissioner of the Patent Office, November 1988 2601 Display of the case Patent application No. 204794 of 1988 2, Title of the invention Rust prevention method 3, Person making the amendment Case and Relationship Patent Applicant ■ 2-1-2 Oyodokita, Oyodo-ku, Osaka-shi, Osaka Prefecture Name 1 Nippon Paint Co., Ltd. Representative: Yu Sasaki 4, Agent Address: 2-1, Mihigashi-ku, Osaka-shi, Osaka 540 Prefecture 61
No. 6, Subject of amendment The column of "Detailed explanation of the invention" of the specification and 7. Contents of amendment ■ The following parts in the description are corrected. (1) On page 3, line 15, the phrase ``comprise'' is corrected to ``come to compose, and as a result.'' (2) On page 4, line 6, delete “HV Ot'J.” (3) On page 1, line 7, delete “rHV O3+, J.” (4) On page 71, line 12. In the line, ``In other words, orthovanadate ion'' should be corrected to ``In other words, vanadium ion, vanadyl ion, orthovanadate ion.'' (5) On page 1, line 13, the phrase "generally classified" is corrected to "generally classified, and orthovanadate ions and condensed vanadate ions are particularly preferred." (6) On page 4, line 14, "public knowledge" should be corrected to "well known." (7) Page 5, lines 8-9, “Among these ions,
...by the action of oxygen" [These ions are
"In a system where water and oxygen exist," is corrected to "In a system where water and oxygen exist." (8) Page 5, line 1 O, after ``constituting.'' ``Also, when vanadium is trivalent, soluble ions of tetravalent and pentavalent vanadium are generated by the action of oxygen in an aqueous solution, so redox constitute a couple.” is inserted. (9) On page 6, line 4, the phrase ``complex oxide'' is corrected to ``the mixture may be made into powder, or the mixture thereof.'' (I O) Page 7, line 17, "l"CrO3'-J is corrected to rCrO,'-j. (11) Page 9, line 6, rPCh3-J is changed to "Po
43-j. (12) Insert "Kaishiki Koi Plate and Salt-based Koi Plate" above the first line of page 12. (13) Line 8, γ, line 7 from directly below No. 15, 1″ Correct the phrase “oquinovanadate ion” to “vanadyl ion.” (14) On the 3rd to 2nd lines from the bottom of page 15, the words "ochimvanadate ion" are corrected to "vanadyl ion." (15) In the following places, the word "mole" is corrected to "1 mole/Q". However, if "mole" appears multiple times in one line, all of them should be corrected to "mole/+2J." Il, (+) Figures 2, 3, and 4
Correct the figure as shown in the attached sheet. Above is Figure 2 (coexistence ion concentration O

Claims (1)

【特許請求の範囲】 1、水および酸素が存在する腐食条件下において、金属
材をバナジウムの可溶性イオンおよびリン酸イオンを含
有する環境に接触することを特徴とする防錆方法。 2、腐食条件のpHが5〜9である第1項記載の防錆方
法。
[Claims] 1. A rust prevention method characterized by contacting a metal material with an environment containing soluble vanadium ions and phosphate ions under corrosive conditions in the presence of water and oxygen. 2. The rust prevention method according to item 1, wherein the pH of the corrosion condition is 5 to 9.
JP61204794A 1986-08-29 1986-08-29 Rust preventing method Pending JPS6360294A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP61204794A JPS6360294A (en) 1986-08-29 1986-08-29 Rust preventing method
KR870009530A KR880003031A (en) 1986-08-29 1987-08-29 Corrosion Prevention Act
AU77714/87A AU600748B2 (en) 1986-08-29 1987-08-31 Process for preventing corrosion and embodiments thereof
CA000545705A CA1302661C (en) 1986-08-29 1987-08-31 Process for preventing corrosion and embodiments thereof
EP19870112697 EP0259748B1 (en) 1986-08-29 1987-08-31 Corrosion preventing pigment and composition
DE8787112697T DE3771018D1 (en) 1986-08-29 1987-08-31 CORROSION INHIBITING PIGMENT AND COMPOSITION.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61204794A JPS6360294A (en) 1986-08-29 1986-08-29 Rust preventing method

Publications (1)

Publication Number Publication Date
JPS6360294A true JPS6360294A (en) 1988-03-16

Family

ID=16496466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61204794A Pending JPS6360294A (en) 1986-08-29 1986-08-29 Rust preventing method

Country Status (2)

Country Link
JP (1) JPS6360294A (en)
KR (1) KR880003031A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669381A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Corrosion inhibitor of aluminum and its alloy
JPS58164792A (en) * 1982-03-23 1983-09-29 Otsuka Chem Co Ltd Corrosion preventing liquid for aluminum engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669381A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Corrosion inhibitor of aluminum and its alloy
JPS58164792A (en) * 1982-03-23 1983-09-29 Otsuka Chem Co Ltd Corrosion preventing liquid for aluminum engine

Also Published As

Publication number Publication date
KR880003031A (en) 1988-05-13

Similar Documents

Publication Publication Date Title
El-Meligi Corrosion preventive strategies as a crucial need for decreasing environmental pollution and saving economics
JP4473895B2 (en) Corrosion-resistant surface-treated metal material and surface treatment agent therefor
ES2632424T3 (en) Surface treatment composition for galvanized steel sheet, surface treatment method for galvanized steel sheet, and galvanized steel sheet
CN111601911B (en) Surface treatment solution composition, surface-treated alloyed hot-dip galvanized steel sheet, and method for producing same
US20110024001A1 (en) Zirconium-Vanadium Conversion Coating Compositions For Ferrous Metals And A Method For Providing Conversion Coatings
US20030019391A1 (en) Supramolecular oxo-anion corrosion inhibitors
UA76733C2 (en) Acid aqueous solution for the preparation of corrosion resistant coating, method for the preparation of corrosion resistant coating and product containing corrosion resistant coating
CN100526504C (en) Strong acid metal surface phosphor passivation and anti-rust agent and its production method
US5756218A (en) Corrosion protective coating for metallic materials
AU782149B2 (en) A chemically processed steel sheet improved in corrosion resistance
US20040216637A1 (en) Corrosion resistant coating with self-healing characteristics
CN1217032A (en) Chromate passivating and storage stable concentrate solutions thereof
CN112930419A (en) Surface treatment solution composition containing trivalent chromium and inorganic compound, and method for producing hot-dip galvanized steel sheet surface-treated with the same
JPH09217180A (en) Middle-temperature manganese phosphate chemical conversion treating liquid and chemical conversion treatment
CN101519775B (en) Environmental-friendly chrome-free phosphating electrogalvanized sealed steel sheet and manufacturing method thereof
US5993567A (en) Compositions and processes for forming a solid adherent protective coating on metal surfaces
JPS6360294A (en) Rust preventing method
JP5447218B2 (en) Surface-treated plated steel sheet and surface treatment liquid
AU712410B2 (en) Moderate temperature manganese phosphate conversion coating composition and process
Gogoi et al. Corrosion inhibition of carbon steel in open recirculating cooling water system of petroleum refinery by a multi-component blend containing zinc (II) diethyldithiocarbamate
Amadeh et al. The use of rare earth cations as corrosion inhibitors for carbon steel in aerated NaCl solution
A El-Meligi Corrosion of materials in polluted environment and effect on world economy
EP0724488A1 (en) Process for treating zinciferous surfaces
JPS61133278A (en) Coating composition for suppressing hydrogen absorption
US4774145A (en) Zinc phosphate chemical conversion film and method for forming the same