JPS6360237A - Reducing and refining method for metal oxide - Google Patents

Reducing and refining method for metal oxide

Info

Publication number
JPS6360237A
JPS6360237A JP20264486A JP20264486A JPS6360237A JP S6360237 A JPS6360237 A JP S6360237A JP 20264486 A JP20264486 A JP 20264486A JP 20264486 A JP20264486 A JP 20264486A JP S6360237 A JPS6360237 A JP S6360237A
Authority
JP
Japan
Prior art keywords
metal
alloy
heat treatment
powder
acetic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20264486A
Other languages
Japanese (ja)
Inventor
Kantaro Yamamoto
山本 勘太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP20264486A priority Critical patent/JPS6360237A/en
Publication of JPS6360237A publication Critical patent/JPS6360237A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily reduce and refine metal oxides, by impregnating metal oxides with acetic acid in which saccharides are dissolved, by subjecting the above to heat treatment for reduction and then to pulverization, by mixing the resulting powder with inorganic reducing agents, etc., by allowing the resulting mixture to react by the addition of sulfuric acid, and then by applying heat treatment to the above. CONSTITUTION:Saccharides such as cane sugar, etc., are added to acetic acid to undergo dissolution. Single or plural metal oxides are impregnated with the resulting dissolved substance, which is subjected to heat treatment to about 500-800 deg.C. The above heat treatment is continued until generation of decomposition gas is stopped, so that above-mentioned metal oxides are reduced into metals or alloys. Subsequently, the above reduced metals or alloys are pulverized into powder. The above metal or alloy powder is mixed with reducing agents such as borax, acetic soda, etc., and the resulting mixture is allowed to react by the addition of sulfuric acid. Thereafter, the powdered metals or alloys are heated slowly to undergo drying and solidification and further heated to about 900-1,200 deg.C to undergo melting, so that products can be completely refined.

Description

【発明の詳細な説明】 本発明によるものは、稀少金!f4酸化物を宮め金lI
i酸化物を原料として、直接金属に還元と精錬をする方
法に関する。
[Detailed Description of the Invention] The present invention is rare gold! f4 oxide
This invention relates to a method of directly reducing and refining metals using i-oxides as raw materials.

出願人は、金属酸化物を還元性有機溶剤中に含浸せしめ
て加熱し、金属として直接精錬する方法、即ち後述の如
く金M酸化物に糖類を添加した酢酸を溶剤として原料混
合物とし1次に熱処理を行って原料混合物から金H4を
分離還元する。此の還元金属を微粉砕して無機還元物質
と混合後硫酸を添加して反応させ、熱処理を行って精錬
する方法が提供できる、 酢酸は元来還元性の溶剤であって酸化物に吸着し易い特
性を有する。特に糖類を酢酸に溶解した物質が金属酸化
物に対し極めて強度の還元力を有し、且つそれが単純に
炭素或は水素還元に用いられるような高温度熱処理を要
することなく、還元力比較はマグネシウムまたはカルシ
ウム還元と同程度に及ぶ特徴を有する。但し。
The applicant proposes a method in which a metal oxide is impregnated in a reducing organic solvent, heated, and directly refined as a metal, that is, as described below, a raw material mixture is prepared using acetic acid, which is a mixture of gold M oxide and sugar added, as a solvent. Heat treatment is performed to separate and reduce gold H4 from the raw material mixture. We can provide a method of finely pulverizing this reduced metal, mixing it with an inorganic reducing substance, adding sulfuric acid, reacting it, and performing heat treatment to refine it. Acetic acid is originally a reducing solvent and is adsorbed to oxides. It has the characteristic of being easy to use. In particular, a substance prepared by dissolving sugars in acetic acid has an extremely strong reducing power against metal oxides, and it does not require the high temperature heat treatment that is used to simply reduce carbon or hydrogen. It has characteristics comparable to magnesium or calcium reduction. however.

単に酢酸だけでは還元出来ないので、酢酸の持つ還元力
の増、vot−目的として糖類の添加をする。
Since reduction cannot be achieved with just acetic acid, sugars are added to increase the reducing power of acetic acid.

酢酸に添加した糖は含水炭素として次の如き組成で炭素
分子は酢酸中に溶解する。
The sugar added to acetic acid dissolves in acetic acid as hydrated carbon, and the carbon molecules have the following composition.

庶糖C,,H1,0,(OH)、→C+t + (Ha
 O)。
Sucrose C,, H1,0, (OH), →C+t + (Ha
O).

葡萄糖C,H,,O,→C,,+(H,0)11酢酸は
溶解炭素の量、即ち糖類添加の多少によって還元力を増
減する。此処で数種類の酸化物を資料として糖と還元の
関係全示すと次の通りである。
Glucose C, H,, O, → C,, + (H, 0) 11 The reducing power of acetic acid increases or decreases depending on the amount of dissolved carbon, that is, the amount of sugar added. Here, the complete relationship between sugar and reduction using several types of oxides is as follows.

(資   料)  (還元に必要な庶糖の濃度W/チ)
M−0! (無水モリブデン酸・三酸化モリブデン)4
.0WO,(無水タングステン酸・三酸化タングステン
)4.IT atOs (五酸化タンタル)6.3Zr
Ot(酸化ジA/ =y ニウム)8.OB、O,(無
水はう酸・酸化ホウ素)9.0還元方法は、氷酢酸(C
H,C0OH・純酢酸96%以上◆融点16.68℃・
沸点118℃・比重1.057)に庶糖を溶解し、この
溶液中に酸化物を浸漬後熱処理を行う。熱処理は体熱か
ら始め次第に乾面する段階で還元性採機雰囲気を保つた
め表面を粒状或いは粉状炭素で密閉し、更にその1ま温
度を500℃乃至800℃程度に上昇させ分解ガスの発
生が停止するまで加熱することによって金属に還元する
。このFyr要時間約80分である。
(Data) (Concentration of sucrose required for reduction W/CH)
M-0! (Molybdic anhydride/molybdenum trioxide) 4
.. 0WO, (tungstic anhydride/tungsten trioxide)4. IT atOs (tantalum pentoxide) 6.3Zr
Ot (diA/=y nium oxide)8. OB, O, (anhydrous fluoric acid/boron oxide) 9.0 reduction method is glacial acetic acid (C
H, COOH・Pure acetic acid 96% or more ◆Melting point 16.68℃・
Sucrose is dissolved at a boiling point of 118° C. and a specific gravity of 1.057), and the oxide is immersed in this solution, followed by heat treatment. Heat treatment begins with body heat, and as the surface gradually dries out, the surface is sealed with granular or powdered carbon to maintain a reducing atmosphere, and the temperature is further raised to approximately 500°C to 800°C to generate decomposition gas. It is reduced to metal by heating until it stops. The required time for this Fyr is approximately 80 minutes.

酸化物還元に際して酢酸の過剰投与は還元度に影響はな
いが、使用する純度が氷酢酸以下の場合は還元度が劣価
する。また糖類添加が過剰の場合、当然炭素の残留を予
想するが、酸化物の全酸素当量に匹敵する炭素を有する
楯を与えたとしても、酢酸との溶解物質として気化蒸発
して遊離炭素はなく囮はげ酢酸は緩衝剤でもある。
Excessive administration of acetic acid during oxide reduction does not affect the degree of reduction, but if the purity used is less than glacial acetic acid, the degree of reduction becomes poor. In addition, if sugar addition is excessive, it is expected that carbon will remain, but even if a shield with carbon equivalent to the total oxygen equivalent of the oxide is provided, it will vaporize as a dissolved substance with acetic acid and there will be no free carbon. Decoy acetic acid is also a buffering agent.

但し、実際に必要とする糖は理論当量の175以下に過
ぎず還元物質中に炭素残留の憂いはない。
However, the amount of sugar actually required is less than the theoretical equivalent of 175, so there is no concern about carbon remaining in the reducing substance.

前述中の資料例の大部分は酢酸に混合して溶解すること
なくそのまま還元されるが、資料の種かt−複数混合し
て還元を行い、且つ資料の一種を除く他の一種または数
廊が酢に中に溶解する状態にあるときは、生成物は合金
とな9.ま之合金となシ得ない関係にあるものは、相互
間の化合物となって還元する。この合金生成は酢酸還元
の特徴であって糖添加調整によって拡大され非金属に及
ぶ。
Most of the materials mentioned above are mixed with acetic acid and reduced as they are without being dissolved; however, if the reduction is carried out by mixing one or more kinds of materials, and other kinds or a number of materials other than one kind are reduced. When dissolved in vinegar, the product is an alloy.9. Things that have an indispensable relationship with the alloy become mutual compounds and reduce. This alloy formation is a characteristic of acetic acid reduction and is extended to nonmetals by sugar addition adjustment.

金属酸化物を前述の如く還元した金属または合金110
0メツシユ乃至200メツシユに微粉砕粉末としたもの
に、硼砂或いは酢酸ソーダ全粉末金Mlに対して1:1
乃至1:0.5の割合で混合し、この混合物全重量の5
/100乃至10/100程度の硫酸を加えて反応させ
約300分間放置後反応が停止した段階で熱処理を行う
Metal or alloy 110 obtained by reducing a metal oxide as described above
Finely pulverized powder to 0 mesh to 200 mesh is mixed with borax or sodium acetate at a ratio of 1:1 to total powdered gold Ml.
5 to 1:0.5 of the total weight of this mixture.
Add sulfuric acid of about 1/100 to 10/100 and allow to react for about 300 minutes. When the reaction has stopped, heat treatment is performed.

初め100℃以内で約30分間体熱を与えて次第に乾面
する時点で還元状態保獲雰囲気を保つため粒状炭素で表
面を密閉し兇にそのまま温度を上昇させる。fil?錬
する金属により与える温度に差違を持たせるが、大兄9
00℃乃至1200℃の範囲をもって90分間から12
0分間連続加熱により粉末状金属または合金が溶融後先
全にf#錬される。
Initially, body heat is applied for about 30 minutes within 100°C, and when the surface gradually dries out, the surface is sealed with granular carbon to maintain a reducing atmosphere and the temperature is raised directly. fil? The temperature given varies depending on the metal being forged, but
90 minutes to 12 minutes in the range of 00℃ to 1200℃
After the powdered metal or alloy is melted by continuous heating for 0 minutes, it is thoroughly refined.

金属酸化物を還元後前述の如く粉砕して微粉末とした粉
末状金属を粘性有機溶剤(例えば。
After reducing the metal oxide, the powdered metal is pulverized as described above and made into a fine powder using a viscous organic solvent (for example).

アラビャゴムヲ糊状とした水和物・ニカワまたはゼラテ
ンの水和物)と混合攪拌して、後述の熱処理温度に堪え
得る金属の表面に塗布して薄膜を作り、これを炭素粉末
中に埋没し、約900℃乃至1100℃の熱処理を90
分間乃至120分間行う方法と、微粉末とした粉末金属
中に直接埋込み同様の熱処理を行うか、材質・形状によ
り何れか一つを選択して熱処理することによって粉末状
金属は、溶融の段階で金属の表面及び表面下3ミリ程度
までit換し展開する。ここで作製した還元合金が酸化
ジルコニウムと硼酸を原料とした場合、当然Zr−B(
ジルコニウムボロン)合金となシ、熱処理し几金ki4
表面及び表面下はZr−B合金を置換析出して硬化する
A paste-like hydrate of gum arabic, a hydrate of glue or gelate) is mixed and stirred, applied to the surface of a metal that can withstand the heat treatment temperature described below to form a thin film, and this is embedded in carbon powder. Heat treatment at approximately 900℃ to 1100℃ for 90
Powdered metal can be heated at the melting stage by heating for 120 minutes, by directly embedding it in finely powdered metal, or by heat treating by selecting one of the methods depending on the material and shape. IT conversion is carried out to the surface of the metal and about 3 mm below the surface. If the reduced alloy prepared here uses zirconium oxide and boric acid as raw materials, it is natural that Zr-B (
zirconium boron) alloy and heat treated ki4
The surface and subsurface are hardened by substitution precipitation of Zr-B alloy.

(実施例1) 無水タングステン酸100グラムに硼酸53ダラムを混
合する。庶糖13グラムを氷酢酸310グラムに加えて
溶解する。これを加えて攪拌し、約120分間放置して
充分含浸させた後、約20分間徐熱温度凡そ100℃を
持続して乾面する。次に温度を800℃附近に上昇させ
て分解ガスを発生させ死後、ガス発生の終了を確認して
加熱を停止し徐冷冷却する。生成物は硼化タングステン
(WB、)96グラムである。全加熱時間90分間。使
用容器は石英管を用いた。熱源は都市ガス・熱源に使用
した器具は都市ガス用バーナである。
(Example 1) 100 grams of tungstic anhydride is mixed with 53 durams of boric acid. Add and dissolve 13 grams of sucrose in 310 grams of glacial acetic acid. This was added, stirred, and left for about 120 minutes to allow sufficient impregnation, and then kept at an annealing temperature of about 100° C. for about 20 minutes to dry the surface. Next, the temperature is raised to around 800°C to generate decomposed gas, and after death, the completion of gas generation is confirmed, heating is stopped, and the animal is gradually cooled. The product is 96 grams of tungsten boride (WB). Total heating time is 90 minutes. A quartz tube was used as the container. The heat source is city gas and the appliance used for the heat source is a city gas burner.

(実施例2) d化ジルコニウム80グラムに硼酸170グラムを混合
する。庶糖20グラムを氷酢酸400グラムに加えて溶
解する。これを該酸化物に加えて攪拌し、約1時間(6
0分間)放置して充分含没後、加熱温健約100℃で1
5分間持続して乾面させ1次に温度1000℃附近に上
昇させ分解ガス発生の終止を確認まで80分間、還元保
#!I雰囲気を保つため表面を粒状カーボンで密閉し、
熱源を停止して徐冷冷却する。生成物はジルコニウムボ
ロン(Zr−B)160グラムである。全加熱時間95
分間。使用容器は鉄坩堝を使用。熱源はプロパンガス・
熱源に使用した器具はプロパンガス用バーナーである。
(Example 2) 170 grams of boric acid is mixed with 80 grams of d-zirconium. Add 20 grams of sucrose to 400 grams of glacial acetic acid and dissolve. This was added to the oxide and stirred for about 1 hour (6
0 minutes) After leaving it for sufficient impregnation, heat it at a temperature of approximately 100°C.
Let the surface dry for 5 minutes, then raise the temperature to around 1000℃ for 80 minutes until the end of decomposition gas generation is confirmed. The surface is sealed with granular carbon to maintain the I atmosphere.
Stop the heat source and cool slowly. The product is 160 grams of zirconium boron (Zr-B). Total heating time 95
minutes. The container used is an iron crucible. The heat source is propane gas.
The equipment used as a heat source was a propane gas burner.

(実施例3) 実施例2によって製作し之ジルコニウムボロンをボール
ミルを使用して、約200メツシユに粉砕する。
(Example 3) The zirconium boron produced according to Example 2 was ground into about 200 meshes using a ball mill.

水500CC中にアラビヤゴム5グラムを溶解し、この
水溶液中にジルコニウムボロン粉末100グラムを混合
攪拌する。
5 grams of gum arabic is dissolved in 500 cc of water, and 100 grams of zirconium boron powder is mixed and stirred into this aqueous solution.

この混合溶剤を使用し金型用鋼材片(材質5K−8KS
−8KD・其の他)の表面上に均質な塗布膜を作り乾燥
させる。黒鉛製坩堝中に炭素粉を充填し、用意した鋼材
片を埋込み加熱温度約1100℃を以て90分間後。
Using this mixed solvent, mold steel pieces (material 5K-8KS)
-8KD, etc.) A homogeneous coating film is made on the surface and dried. Fill a graphite crucible with carbon powder, embed the prepared steel pieces, and heat to approximately 1100°C for 90 minutes.

加熱を停止し徐冷冷却する。鋼材表面の硬化程度は別表
、千葉県機械金属試願場のビッカース硬度試験機による
試験検査成績誉による。
Stop heating and slowly cool. The degree of hardening of the steel surface is based on the test results obtained using the Vickers hardness tester at the Chiba Prefecture Machinery and Metals Research Institute in the attached table.

(実施例4) 氷酢酸310グラム中に庶糖13グラムを溶解し二酸化
チタン150グラムを加え混合攪拌して後、約120分
間放置し充分含浸させる。次に約20分間徐熱温度1o
o℃を持続して乾面する。更に加熱温度8oO℃附近に
上昇させて分解ガス発生が停止するのを確認して熱源を
停止し徐冷冷却する。還元し九チタン(TI)!iは9
8グラムである。此れをボールミルを使用して200メ
ツシユに粉砕して粉末とする。粉末状チタン98グラム
を酢酸ソーダ90グラムと混合後i醒1oグラムを加え
て反応させ、約300分間放置して反応熱が停止した段
階で再度熱処理を行う。
(Example 4) 13 grams of sucrose was dissolved in 310 grams of glacial acetic acid, 150 grams of titanium dioxide was added thereto, mixed and stirred, and left for about 120 minutes to allow sufficient impregnation. Next, heat the mixture at a temperature of 1o for about 20 minutes.
Dry the surface at 0°C. Further, the heating temperature is increased to around 800° C., and after confirming that generation of decomposed gas has stopped, the heat source is stopped and cooling is performed gradually. Reduced nine titanium (TI)! i is 9
It is 8 grams. This was ground into powder using a ball mill into 200 mesh pieces. After mixing 98 grams of powdered titanium with 90 grams of sodium acetate, 10 grams of titanium was added to react, and the mixture was allowed to stand for about 300 minutes, and once the heat of reaction had stopped, heat treatment was performed again.

先づ、徐PA50℃乃至100℃以内で熱膨張しようと
する容器中の反応物質を温度調節によって抑比+I し
つつ次第に乾面させる。還元保銭雰囲気を保つため表面
を粒状カーボンで密閉し、更に温度t−1000℃附近
に上昇させて120分間加熱後熱源を停止し徐冷冷却す
る。粉末状チタンは溶融機完全に金属チタンとして精錬
される。
First, the reaction material in the container, which is about to thermally expand within 50 to 100 degrees Celsius, is suppressed by temperature control and gradually dried. In order to maintain a return deposit atmosphere, the surface is sealed with granular carbon, and the temperature is further increased to around t-1000°C, heated for 120 minutes, and then the heat source is stopped and slowly cooled. Powdered titanium is completely refined into metallic titanium using a melter.

坩堝内に飛散したN量を除き、生成物重量は84グラム
である。
Excluding the amount of N scattered into the crucible, the product weight is 84 grams.

使用容器は黒鉛ルツボ・熱源プロパンガス・使用器具プ
ロパン用バーナである。
The container used is a graphite crucible, the heat source is propane gas, and the equipment used is a propane burner.

本方法は以上前述に於いて説明の如く、酸化物の一種ま
たは数稀に対して、糖を添加溶解した酢酸を触れさせて
加熱乾面し、更に500℃以上の温度を持続して分解ガ
スを遊離させ、粉末状金属または合金を還元生成する。
As explained above, in this method, one or a few oxides are brought into contact with acetic acid in which sugar has been added and dissolved, the surface is heated and dried, and the temperature is maintained at 500°C or higher to generate decomposed gas. is released and reduced to produce a powdered metal or alloy.

此の粉末還元金属を粘性有機溶剤と混合して他の金M4
表面に虚脱面を作り、これを熱処理により塗膜面は溶融
置換する。
This powdered reduced metal is mixed with a viscous organic solvent to produce other gold M4.
A collapsed surface is created on the surface, and the coated surface is melted and replaced by heat treatment.

また更に粉末金属或いは合金に対して、無機還元性物質
を配合し、侃酸を加えて反応後、熱処理によって溶融し
、金属を直接精錬することを特徴とする上記の方法。
Furthermore, the above-mentioned method is characterized in that an inorganic reducing substance is blended into the powdered metal or alloy, borosemic acid is added thereto, the reaction is performed, and the metal is melted by heat treatment to directly refine the metal.

Claims (3)

【特許請求の範囲】[Claims] (1)各種の有機溶剤の中に於いて酢酸に糖類を添加し
て溶解した物質が強度の還元力を有する特徴を発見した
。次いで此の溶解物質中に単一または複数の金属酸化物
を含浸せしめ、此れに加熱処理を施すことで溶解混合物
質は分離還元して金属または合金となる。更に此の還元
金属または合金を微粉砕して粉末となし、硼砂或いは酢
酸ソーダ等の還元剤と混合後硫酸を加えて反応させ、熱
処理を行って粉末状金属または合金を溶融し、生成物を
完全に精練することを特徴とする金属酸化物の還元と精
錬方法。
(1) We discovered that a substance prepared by adding sugars to acetic acid and dissolving it in various organic solvents has a strong reducing power. Next, single or multiple metal oxides are impregnated into this dissolved substance, and by subjecting it to heat treatment, the dissolved mixed substance is separated and reduced to become a metal or an alloy. Furthermore, this reduced metal or alloy is finely pulverized into a powder, mixed with a reducing agent such as borax or sodium acetate, and then sulfuric acid is added to cause a reaction. Heat treatment is performed to melt the powdered metal or alloy and produce a product. A method for reducing and refining metal oxides, characterized by complete refining.
(2)金属酸化物を単一または複数混合して純酢酸に庶
糖を溶解した物質中に含浸せしめた後熱処理を行って還
元した金属または合金物質を微粉砕粉末となし、これを
粘性有機溶剤と混合攪拌し、金属材料又は金属加工材料
の表面に塗布膜を作り、粉末炭素中に該材料を埋没させ
て熱処理を行うか、または直接微粉砕した粉末中に埋没
させて熱処理を行うか、何れか一つの方法を選択する。 該粉末金属または合金は溶融の段階で金属材料又は金属
加工材料の表面及び表面下に置換展開することを特徴と
する特許請求の範囲1による方法。
(2) A single metal oxide or a mixture of multiple metal oxides is impregnated into a substance prepared by dissolving sucrose in pure acetic acid, and then heat treated to reduce the metal or alloy substance to a finely ground powder, which is then mixed with a viscous organic solvent. mixed and stirred to form a coating film on the surface of the metal material or metal processing material, and heat-treated by immersing the material in powdered carbon, or directly immersing it in finely ground powder, Choose one method. 2. A method according to claim 1, characterized in that the powdered metal or alloy is displaced and expanded on the surface and subsurface of the metal material or metal processing material during the melting stage.
(3)酸化ジルコニウム及び硼酸を原料混合物とし、此
れを氷酢酸と庶糖を溶解した溶液中に浸漬後熱処理を行
って乾面し還元する。次にこれを微粉砕粉末とし、更に
粘性の有機溶剤と混合して金属材料または金属加工材料
などの表面に塗布して被膜を作り、木炭粉或は粒状カー
ボン等炭素粉末中に埋没せしめて熱処理を施すことで該
材料の表面及び表面下はジルコニウムボロン合金を置換
析出して硬化することを特徴とする特許請求の範囲2に
よる方法。
(3) A raw material mixture of zirconium oxide and boric acid is immersed in a solution of glacial acetic acid and sucrose, and then heat treated to dry and reduce. Next, this is made into a finely ground powder, mixed with a viscous organic solvent, applied to the surface of metal materials or metal processing materials, etc. to create a film, and then embedded in carbon powder such as charcoal powder or granular carbon and heat treated. 3. The method according to claim 2, wherein the surface and subsurface of the material are hardened by displacement precipitation of a zirconium boron alloy.
JP20264486A 1986-08-30 1986-08-30 Reducing and refining method for metal oxide Pending JPS6360237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20264486A JPS6360237A (en) 1986-08-30 1986-08-30 Reducing and refining method for metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20264486A JPS6360237A (en) 1986-08-30 1986-08-30 Reducing and refining method for metal oxide

Publications (1)

Publication Number Publication Date
JPS6360237A true JPS6360237A (en) 1988-03-16

Family

ID=16460756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20264486A Pending JPS6360237A (en) 1986-08-30 1986-08-30 Reducing and refining method for metal oxide

Country Status (1)

Country Link
JP (1) JPS6360237A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515280B1 (en) * 1996-05-16 2005-11-22 다이도 도꾸슈꼬 가부시끼가이샤 Process for obtaining metal from metal oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100515280B1 (en) * 1996-05-16 2005-11-22 다이도 도꾸슈꼬 가부시끼가이샤 Process for obtaining metal from metal oxide

Similar Documents

Publication Publication Date Title
DE1667416A1 (en) Method for producing a carbide or boride
JPS61295308A (en) Production of alloy powder containing rare earth metal
CN110937628A (en) TiO with oxygen vacancy2Method for producing a material
Wang et al. One-step solvent-free mechanochemical synthesis of metal iodate fine powders
Samsonov et al. Activated sintering of tungsten with nickel additions
JPS6360237A (en) Reducing and refining method for metal oxide
JPH062919B2 (en) Method for producing titanium nitride dispersion strengthened alloy
Yukhin et al. Bismuth preoxidation for preparing solutions of salts
CN110983091A (en) Method for preparing nano tungsten-based powder material by doping yttrium oxide in liquid-liquid manner
US2470790A (en) Manufacture of alloys
US2897159A (en) Catalyst manufacture
JPS61141674A (en) Tungsten silicide alloy sintered body and manufacture
RU2535104C1 (en) METHOD OF SYNTHESIS OF NdNi5 INTERMETALLIC COMPOUND POWDER IN MOLTEN SALTS
JP3312733B2 (en) Amalgam for dental filling and method for adjusting the synthesis of this amalgam
CN108275692A (en) It is a kind of that Ti is synthesized using Pb fluxing agents3B2The method of N
JPH04231407A (en) Preparation of metal powder
JPS60235717A (en) Production of ultrafine powder of titanium diboride
Lassaigne LXIX. Note upon the combination of sulphur with chrome, and upon a new process for obtaining the oxide of that metal
JPH01246206A (en) Filler for tooth and production thereof
JPS6213506A (en) Production of rare earth metal powder
GB740547A (en) Process for the production of carbides
US1159365A (en) Catalyst for the production of ammonia and process of making the same.
CN107488088A (en) The method that ammonium perchlorate metal salt complex is prepared based on sodium alginate solidification
JPH0597623A (en) Glass powder for glass ionomer cement and its production
Dresvyannikov et al. Synthesis and Properties of Dispersed Systems Based on Elemental Iron and Tungsten Obtained through Precipitation on Aluminum in the Presence of Citric Acid