JPS6360152B2 - - Google Patents

Info

Publication number
JPS6360152B2
JPS6360152B2 JP58183692A JP18369283A JPS6360152B2 JP S6360152 B2 JPS6360152 B2 JP S6360152B2 JP 58183692 A JP58183692 A JP 58183692A JP 18369283 A JP18369283 A JP 18369283A JP S6360152 B2 JPS6360152 B2 JP S6360152B2
Authority
JP
Japan
Prior art keywords
titanium
coating
carbon fibers
film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58183692A
Other languages
Japanese (ja)
Other versions
JPS6075671A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58183692A priority Critical patent/JPS6075671A/en
Publication of JPS6075671A publication Critical patent/JPS6075671A/en
Publication of JPS6360152B2 publication Critical patent/JPS6360152B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、複合材料用炭素繊維に関する。 近年、炭素繊維は、樹脂、金属、セラミツクな
どのマトリツクス材料とまぜて、航空、宇宙産業
からスポーツ用品の分野まで複合材料として使用
され、機械的強度の優れているが、反面、マトリ
ツクス材料と炭素繊維の層間せん断強度が比較的
弱い欠点がある。 これを改善するため、従来は、炭素繊維の表面
を硝酸酸化、空気酸化処理工程を経る方法がある
が、酸化処理工程の管理がむづかしく又工程が複
雑であり、又炭素繊維の表面が傷む等の欠点を伴
う。 本発明は、簡単に調整液の被覆で得られる層間
せん断強度の増大した複合材料用炭素繊維の製造
法を提供するもので、炭素繊維の表面に、チタニ
ウムアルコキシドのアルコキシ基を1部アセチル
アセトンで置換して成るチタニウム化合物、溶液
の被膜を形成し、その被膜を放置又は加熱するこ
とを特徴とする。 次に本発明の実施例を説明する。 炭素繊維の表面に、チタニウムアルコキシドの
アルコキシ基を1部アセチルアセトンで置換した
チタニウム化合物とは、チタンエトキシド、チタ
ンイソプロポキシド、チタンノルマルブトキシド
などのチタニウムアルコキシドのアルコキシ基を
1部アセチルアセトンで置換した下記の一般式
()〜()のいずれをも含み、換言すれば、
アルコキシチタンアセチレートである。
The present invention relates to carbon fibers for composite materials. In recent years, carbon fibers have been mixed with matrix materials such as resins, metals, and ceramics and used as composite materials in fields ranging from the aviation and space industries to sporting goods, and have excellent mechanical strength. The drawback is that the interlaminar shear strength of the fibers is relatively low. In order to improve this, there is a conventional method of subjecting the surface of carbon fiber to nitric acid oxidation and air oxidation treatment, but the oxidation treatment process is difficult to manage, the process is complicated, and the surface of carbon fiber is It comes with disadvantages such as damage. The present invention provides a method for producing carbon fibers for composite materials with increased interlaminar shear strength that can be easily obtained by coating with a conditioning liquid, and in which the alkoxy groups of titanium alkoxide are partially replaced with acetylacetone on the surface of the carbon fibers. The method is characterized by forming a film of a solution of a titanium compound formed by the method, and leaving or heating the film. Next, embodiments of the present invention will be described. Titanium compounds in which the alkoxy groups of titanium alkoxide are partially substituted with acetylacetone on the surface of carbon fibers are the following compounds in which the alkoxy groups of titanium alkoxide are partially substituted with acetylacetone, such as titanium ethoxide, titanium isopropoxide, and titanium normal butoxide. Including any of the general formulas () to (), in other words,
It is an alkoxy titanium acetylate.

【式】【formula】

【式】【formula】

【式】 でRはエチル基、i―プロピル基、n―ブチル基
等のアルキル基、Xはアセチルアセトン置換基を
示す。 上記の()〜()のいずれのアルコキシチ
タンアセチレートが使用できる。チタニウムアル
コキシドのアルコキシ基の1部をアセチルアセト
ンで置換する理由は、置換しないとチタニウムア
ルコキシドは加水分解速度が非常に早く、空気中
の水分の影響をうけ易いため作業性が極めて悪く
困難となり、又その被膜の品質が一定しないなど
の不都合を生ずることを防止するためとアセチル
アセトン置換基により次のアルコール溶液と良好
な塗布液の調製を可能にするためである。次でこ
のアルコキシチタンアセチレートをアルコール、
好ましくは、エタノール、i―プロパノール、n
―ブタノール等に溶解しその溶液を炭素繊維に付
着させその表面にその被膜をつくる。尚、その溶
液の粘度を調整するため、ジエチルエーテルなど
のエーテルを添加してもよい。その被膜の形成法
は、炭素繊維を該溶液中にバツチ式で或は連続的
に浸漬処理したり、スプレー塗布したり任意であ
る。その被膜の厚さは、炭素繊維の溶液浸漬時
間、アルコールの溶媒量、エーテルの添加の有
無、乾燥時間等により自由に制御できるが、乾燥
被膜で1μm以下であることが好ましい。1μmを
越えると、被膜の劣化が生ずる傾向がある。炭素
繊維を溶液中を通過させる場合は、1〜50mm/秒
の速度が好ましく、50mm/秒を越えると被膜が不
均一となる傾向がある。 次で、その溶液に浸漬等による被膜形成処理
後、自然乾燥又は100℃以下で加熱乾燥して製品
とするか、更に、これを100℃以上で加熱し被膜
の酸化処理を行ない製品とする。 上記のチタニウム化合物被膜の形成後の自然又
は比較的低温の加熱乾燥において、チタン化合物
被膜を大気中の水分に接触させ、これによる加水
分解を行なわせ、チタニウムアセチレートやチタ
ニウム水酸化物等の加水分解生成物の被膜を部分
的に生成せしめる1方含有する溶剤の蒸発せしめ
乾燥被膜とする。100℃以上の加熱により、チタ
ン化合物被膜の上記に生成の加水分解物被膜を酸
化せしめて部分的に又は全面的に酸化チタニウム
被膜とする。 尚、自然乾燥を廃し、直ちに加熱し徐々に加熱
しひきつゞき100℃以上に昇温し酸化チタニウム
被膜とすることも出来る。 このように、製造したチタニウム化合物の乾燥
被膜をもつ炭素繊維又は酸化チタニウム被膜をも
つ炭素繊維はいづれも合成樹脂材料、金属材料、
セラミツクなどの無機材料等との複合材料製品に
適用され、この場合、そのチタニウム化合物被
膜、その加水分解被膜、或はチタン酸化物被膜
が、その両者の接着性を向上し、層間せん断強度
の向上した複合材料の製品をもたらす。尚、その
複合材料の製造において、チタン、ボラン、シラ
ン等のカツプリング剤を併用することができる。
次に詳細な実施例につき説明する。 実施例 1 下記表1に示す成分と組成比から成る調製液を
入れた内径20mm長さ150mmのV字状型両端開口ガ
ラス管内を、直径7μmフイラメント数6000本の
炭素繊維を速度1mm/秒にて通過させ、その表面
にその調製液の被膜を形成し、次でそのチタニウ
ム化合物溶液の被膜をもつ炭素繊維を大気中にて
1〜24時間放置し、大気中の水分によりチタニウ
ム化合物の加水分解反応を行ない同時に被膜内に
含有の揮発成分を除去した乾燥被膜とした後更に
130〜150℃の温度範囲で2時間加熱乾燥し、次で
更に280〜300℃の温度範囲で0.5〜1時間加熱し、
その表面に酸化チタニウム被膜をもつ複合材料用
炭素繊維を製造した。
In the formula, R represents an alkyl group such as an ethyl group, an i-propyl group, or an n-butyl group, and X represents an acetylacetone substituent. Any of the alkoxytitanium acetylates () to () above can be used. The reason for substituting a part of the alkoxy group of titanium alkoxide with acetylacetone is that if it is not replaced, titanium alkoxide will hydrolyze at a very high rate and be easily affected by moisture in the air, making workability extremely poor and difficult. This is to prevent inconveniences such as inconsistent quality of the film, and to enable the preparation of the next alcohol solution and a good coating solution using the acetylacetone substituent. Next, add this alkoxy titanium acetylate to alcohol,
Preferably ethanol, i-propanol, n
- Dissolve in butanol, etc. and apply the solution to carbon fiber to form a film on its surface. Incidentally, in order to adjust the viscosity of the solution, ether such as diethyl ether may be added. The coating may be formed by any method including immersing the carbon fibers in the solution in batches or continuously, or by spray coating. The thickness of the coating can be freely controlled by adjusting the time for which the carbon fibers are immersed in the solution, the amount of alcohol as a solvent, the presence or absence of addition of ether, the drying time, etc., but the thickness of the dried coating is preferably 1 μm or less. If it exceeds 1 μm, the coating tends to deteriorate. When the carbon fibers are passed through the solution, a speed of 1 to 50 mm/sec is preferred; if the speed exceeds 50 mm/sec, the coating tends to become non-uniform. Next, after a coating treatment such as immersion in the solution, the product is made by drying naturally or by heating at a temperature below 100°C, or further heated at a temperature above 100°C to oxidize the coating to produce a product. After the formation of the titanium compound film, the titanium compound film is brought into contact with moisture in the air during natural or relatively low-temperature heat drying to cause hydrolysis, resulting in hydration of titanium acetylate, titanium hydroxide, etc. Evaporation of the solvent that partially forms a film of decomposition products results in a dry film. By heating at 100° C. or higher, the above-produced hydrolyzate film of the titanium compound film is oxidized to partially or entirely form a titanium oxide film. Incidentally, it is also possible to omit the natural drying process and immediately heat the material, gradually heating it, and then raising the temperature to 100° C. or higher to form a titanium oxide film. In this way, the manufactured carbon fibers with a dry coating of a titanium compound or the carbon fibers with a titanium oxide coating can be either synthetic resin materials, metal materials,
It is applied to composite material products with inorganic materials such as ceramics, and in this case, the titanium compound coating, its hydrolyzed coating, or the titanium oxide coating improves the adhesion between the two and improves the interlaminar shear strength. Bringing you composite products. Incidentally, in the production of the composite material, a coupling agent such as titanium, borane, silane, etc. can be used in combination.
Next, detailed examples will be described. Example 1 Carbon fibers with a diameter of 7 μm and 6000 filaments were heated at a speed of 1 mm/sec in a V-shaped glass tube with an inner diameter of 20 mm and a length of 150 mm and open at both ends, containing a prepared solution having the components and composition ratios shown in Table 1 below. The carbon fibers coated with the titanium compound solution are then left in the air for 1 to 24 hours to allow the titanium compound to be hydrolyzed by the moisture in the air. After performing the reaction and simultaneously removing volatile components contained in the film to form a dry film, further
Drying by heating at a temperature range of 130 to 150°C for 2 hours, then further heating at a temperature range of 280 to 300°C for 0.5 to 1 hour,
Carbon fiber for composite materials with a titanium oxide coating on its surface was manufactured.

【表】 このようにして得た上記複合材料用炭素繊維の
多数本をエポキシ樹脂(エピコート828シエル化
学製)100部に硬化剤として三フツ化ホウ素BF3
を2〜5部加えた樹脂マトリツクス中に含浸さ
せ、繊維を1方向に揃えたまま成型金型に入れ、
真空度10mmHgで5分間脱泡を行なつた後、焼鈍
炉内で120℃40分間;170℃70分間のキユアを行な
つた。このようにして得られた複合成形物を長さ
12mm、幅10mm、厚さ3mmの試験片に加工し、シヨ
ートビーム法による3点曲げ試験によつて層間せ
ん断強度を測定した。この際のスパン/厚みは4
で、曲げ試験機のクロスヘツド速度は1mm/分で
あつた。その測定結果を下記表2に示す。 実施例 2 実施例1と同じ成分並に組成比の調整液を使用
し、炭素繊維をその調製液中を同様に通過させ、
その表面にその調製液の被膜を形成した炭素繊維
を大気中で24〜48時間放置しそのチタニウム化合
物の加水分解と溶剤の揮発を行なつた厚さ1μの
被膜(チタニウム化合物、チタニウムアセチレー
ト、チタニウム水酸化物の複合被膜)をもつ複合
材料用炭素繊維を作成した。この製品について、
実施例1で使用したと同じエポキシ樹脂マトリツ
クスと同様に複合成形物をつくり、これにつき、
前記と仝様の試験片を作成し層間せん断強度試験
を行なつた。その結果を表2に示す。 実施例 3 実施例1と仝じように処理して得た複合材料用
炭素繊維を更にカツプリング剤としてチタンカツ
プリング剤、例えばテトライソプロピルビスジオ
クチルホスフアイトチタネート0.8wt%を99.2wt
%のイソプロパノールで溶解したもので浸潰、ス
プレー等により全面に均一に付着処理し、1〜24
時間放置乾燥したものを実施例1と同じ複合材成
形品をつくり、その試験片につき同様に層間せん
断強度を測定した。その結果を、表2に示す。 比較例 1 本発明の調製液で処理しない、実施例1に使用
したと同じ材料の炭素繊維を直ちに実施例1に記
載と同じ方法で複合成形物をつくり、これにつ
き、同様の試験片をつくり、その層間せん断強度
を測定した。その結果を表2に示す。
[Table] A large number of the carbon fibers for composite materials thus obtained were mixed with 100 parts of epoxy resin (Epicote 828 manufactured by Ciel Chemical Co., Ltd.) and boron trifluoride BF 3 as a hardening agent.
The fibers are impregnated into a resin matrix containing 2 to 5 parts of
After degassing for 5 minutes at a vacuum level of 10 mmHg, curing was performed at 120°C for 40 minutes and at 170°C for 70 minutes in an annealing furnace. The composite molded product obtained in this way is
A test piece of 12 mm, width 10 mm, and thickness 3 mm was processed, and the interlaminar shear strength was measured by a three-point bending test using the shot beam method. The span/thickness in this case is 4
The crosshead speed of the bending tester was 1 mm/min. The measurement results are shown in Table 2 below. Example 2 Using an adjustment liquid with the same components and composition ratio as in Example 1, passing the carbon fiber through the preparation liquid in the same manner,
Carbon fibers with a coating of the prepared solution formed on their surfaces were left in the air for 24 to 48 hours to hydrolyze the titanium compounds and volatilize the solvent, resulting in a coating with a thickness of 1μ (titanium compounds, titanium acetylate, We created carbon fibers for composite materials with a composite coating of titanium hydroxide. About this product
A composite molded article was made using the same epoxy resin matrix as used in Example 1, and for this,
A test piece similar to that described above was prepared and an interlaminar shear strength test was conducted. The results are shown in Table 2. Example 3 The carbon fiber for composite material obtained by the same treatment as in Example 1 was further treated with 99.2wt of titanium coupling agent, for example, 0.8wt% of tetraisopropyl bisdioctyl phosphite titanate.
% of isopropanol and apply it uniformly to the entire surface by soaking, spraying, etc.
The same composite molded product as in Example 1 was made by leaving it to dry for a period of time, and the interlaminar shear strength of the test piece was measured in the same manner. The results are shown in Table 2. Comparative Example 1 A composite molded article was immediately made using the same carbon fiber material as used in Example 1, which was not treated with the liquid preparation of the present invention, in the same manner as described in Example 1, and a similar test piece was made for this. , and its interlaminar shear strength was measured. The results are shown in Table 2.

【表】 ※ 市販品は、酸化処理炭素繊維とエポ
キシ樹脂の複合材料。
尚、本発明のアルコキシチタンアセチレート
に、0.01〜10モル%の割合でMe1(OR)4,Me2
(OR)3,(但し、Me1はSi,Zr,Me2はAl,Rは
CH3,C2H5,C3H7)で示されるアルコキシドを
添加含有したものでも同様の効果があつた。この
ように、本発明によれば、炭素繊維の表面に、チ
タニウムアルコキシドのアルコキシ基を1部アセ
チルアセトンで置換したチタニウム化合物溶液の
被膜を形成し、その被膜を放置又は加熱するよう
にしたので、アルコキシチタニウムアセチレー
ト、その加水分解物又は及び酸化チタンから成る
被膜をもつ複合材料用炭素繊維が得られ、これを
複合材料の製造に他の複合材料の素材と混用する
ときは、層間せん断強度の優れた複合材料もたら
し、又その複合材料用炭素繊維の製造を容易に
し、炭素繊維表面を傷めることがない等の効果を
存する。
[Table] *The commercially available product is a composite material of oxidized carbon fiber and epoxy resin.
In addition, Me 1 (OR) 4 and Me 2 are added to the alkoxy titanium acetylate of the present invention at a ratio of 0.01 to 10 mol%.
(OR) 3 , (Me 1 is Si, Zr, Me 2 is Al, R is
A similar effect was obtained by adding an alkoxide represented by CH 3 , C 2 H 5 , C 3 H 7 ). As described above, according to the present invention, a film of a titanium compound solution in which the alkoxy groups of titanium alkoxide are partially substituted with acetylacetone is formed on the surface of carbon fibers, and the film is left to stand or is heated. Carbon fibers for composite materials having a coating made of titanium acetylate, its hydrolyzate, or titanium oxide are obtained, and when mixed with other composite materials in the production of composite materials, it is important to have excellent interlaminar shear strength. It also has the effect of making it easier to manufacture carbon fibers for the composite material without damaging the surface of the carbon fibers.

Claims (1)

【特許請求の範囲】 1 炭素繊維の表面に、チタニウムアルコキシド
のアルコキシ基を1部アセチルアセトンで置換し
て成るチタニウム化合物、溶液の被膜を形成し、
その被膜を放置又は加熱することを特徴とする複
合材料用炭素繊維の製造法。 2 該被膜の厚さは1ミクロン以下である特許請
求の範囲1に記載の製造法。
[Claims] 1. Forming on the surface of carbon fiber a coating of a solution of a titanium compound made by partially substituting the alkoxy group of titanium alkoxide with acetylacetone,
A method for producing carbon fiber for composite materials, which comprises leaving the coating on or heating it. 2. The manufacturing method according to claim 1, wherein the thickness of the coating is 1 micron or less.
JP58183692A 1983-10-01 1983-10-01 Production of carbon fiber for composite material Granted JPS6075671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58183692A JPS6075671A (en) 1983-10-01 1983-10-01 Production of carbon fiber for composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58183692A JPS6075671A (en) 1983-10-01 1983-10-01 Production of carbon fiber for composite material

Publications (2)

Publication Number Publication Date
JPS6075671A JPS6075671A (en) 1985-04-30
JPS6360152B2 true JPS6360152B2 (en) 1988-11-22

Family

ID=16140264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58183692A Granted JPS6075671A (en) 1983-10-01 1983-10-01 Production of carbon fiber for composite material

Country Status (1)

Country Link
JP (1) JPS6075671A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961971A (en) * 1988-12-19 1990-10-09 United Technologies Corporation Method of making oxidatively stable water soluble amorphous hydrated metal oxide sized fibers
JP5712470B2 (en) * 2009-07-28 2015-05-07 日東紡績株式会社 Alkali-resistant glass fiber and method for producing the same
JP2017155172A (en) * 2016-03-03 2017-09-07 国立大学法人信州大学 Carbon fiber-reinforced plastic, method for producing the same, and carbon fiber

Also Published As

Publication number Publication date
JPS6075671A (en) 1985-04-30

Similar Documents

Publication Publication Date Title
US4397666A (en) Method of producing glass from metal alkoxide solution
US4937208A (en) Catalyst for sol-gel method using metal alkoxide and sol-gel method using the same
JPH0277580A (en) Production of ceramic coated body
JPS6360152B2 (en)
US4547402A (en) Method of increasing the thermal shock resistance of phosphate laser glass
US4671990A (en) Process for the production of polymers from silicon alkoxides
JPS5837260B2 (en) Manufacturing method of heat ray reflective glass
US4460654A (en) Aluminosilicate coating method, coated articles and organic substituted silicon-oxygen-aluminum oligomers
JPH054839A (en) Method for preparing thin film by sol-gel method
TWI233938B (en) Sol-gel process for the preparation of vitreous films possessing high adhesion properties and stable colloidal solutions suitable for its carrying out the same
JPS6150903B2 (en)
JPH05805A (en) Thin film formation by a sol-gel method
JP2818785B2 (en) Method of forming silica coating on metal substrate
JPH0247268A (en) Dip solution
JPH0465327A (en) Production of optical quartz fiber with ti doped layer
JPH0217670B2 (en)
JPH04160020A (en) Production of thin film
JPS6376881A (en) Production of zirconia film
JP2997707B2 (en) Method of forming zirconia coating on substrate
JPH0367978B2 (en)
JPS5988701A (en) Metal coated optical fiber and its production
JPH0376819A (en) Production of tio2 hollow fiber
KR100236479B1 (en) Process for preparation of uv blocking and water repelling glass
JP2862283B2 (en) Method for producing conductive ceramic fiber
JPS62230644A (en) Production of electrically conductive fiber