JPS6360056A - Method and mold for continuously casting stainless steel containing titanium - Google Patents

Method and mold for continuously casting stainless steel containing titanium

Info

Publication number
JPS6360056A
JPS6360056A JP20351786A JP20351786A JPS6360056A JP S6360056 A JPS6360056 A JP S6360056A JP 20351786 A JP20351786 A JP 20351786A JP 20351786 A JP20351786 A JP 20351786A JP S6360056 A JPS6360056 A JP S6360056A
Authority
JP
Japan
Prior art keywords
mold
meniscus
motor core
distance
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20351786A
Other languages
Japanese (ja)
Inventor
Hiroshi Morikawa
広 森川
Morihiro Hasegawa
長谷川 守弘
Takashi Yamauchi
隆 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP20351786A priority Critical patent/JPS6360056A/en
Publication of JPS6360056A publication Critical patent/JPS6360056A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the development of surface defect in a cast slab and to reduce the inclusion by satisfying the specific equation about the distance from a meniscus to a motor core center of stirring apparatus and specifying the horizontal direction flow speed of molten steel in a mold. CONSTITUTION:In case of casting continuously the molten stainless steel containing >=0.1wt% Ti, the setting height of motor core is adjusted by adjusting hydraulic pressure supplying into the hydraulic cylinder 11 and the electromagnetic stirring apparatus holding to the prescribed height is used. And, the distance (h) from the meniscus to the center of motor core 1 for the stirring apparatus is decided, so as to satisfy the equation. Next, the range of stirring flow speed by horizontal spiral flow is provided to 15-40cm/sec at the position of 2Xh. In this way, the development of surface defect in the cast slab is pre4vented and the inclusion caught on the surface layer of cast slab is reduced. In this equation, (h) for the distance (m) toward casting direction from the meniscus to the center of core for the linear motor K for the solidification constant mm/min<1/2> and D for solidified shell thickness mm at the distance 2h from the meniscus under consideration of 10-30mm this value range, are expressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Tiを比較的多量に含有ステンレス鋼を連続
JR造するさいに必ず問題となるTiミストリークの発
生を防止したTi含有ステンレス鋼の連続鋳造方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a Ti-containing stainless steel that prevents the occurrence of Ti mist leakage, which is always a problem when stainless steel containing a relatively large amount of Ti is produced by continuous JR production. This invention relates to a continuous casting method.

〔従来の技術〕[Conventional technology]

Ti添加によって鋼中のC,Nを安定な炭窒化物に変え
てステンレス鋼の耐食性や機械的性質の改善を図ること
が行われているが、かようなTi安走化ステンレス鋼の
連続鋳造においては+  Tiミストリークの発生の問
題が付きまとっている。すなわち、Tiは極めて活性な
金属であるため、添加時において溶鋼中のNと反応し、
更には溶鋼の注入時に大気中のN、と反応して窒化物を
生成し。
Adding Ti has been used to improve the corrosion resistance and mechanical properties of stainless steel by converting C and N in steel into stable carbonitrides. However, there is a problem of +Ti mist leakage. In other words, since Ti is an extremely active metal, it reacts with N in molten steel when it is added.
Furthermore, when molten steel is injected, it reacts with N in the atmosphere to form nitrides.

この窒化物が鋳型内溶鋼中において比重差により浮上し
ようとするさいに相互に凝集してクラスター化する。こ
のような窒化物のクラスターは鋳型パウダーへの溶解度
が小さいのでしばしば連続鋳造鋳片表層部に捕捉される
。鋳片表層部に捕捉された窒化物クラスターは、その構
成粒子たる窒化物の融点が極めて高いので可塑性がなく
、シたがって鋳片の圧延時において線状に並ぶのみで、
冷延板表面において線状の疵、すなわちTiミストリー
クとなる。このTiミストリークは製品の美観を損なう
ばかりでなく、ステンレス鋼においてその使命である耐
食性にも悪影響を与える。
When these nitrides try to float due to the difference in specific gravity in the molten steel in the mold, they coagulate and form clusters. Since such nitride clusters have low solubility in mold powder, they are often trapped in the surface layer of continuously cast slabs. The nitride clusters trapped in the surface layer of the slab have no plasticity because the melting point of the nitride particles that make up the clusters is extremely high, so they are only arranged in a linear shape when the slab is rolled.
Linear flaws, that is, Ti mist leaks, occur on the surface of the cold-rolled sheet. This Ti mist leak not only impairs the beauty of the product, but also adversely affects the corrosion resistance, which is the mission of stainless steel.

このため、従来より、Ti含有ステンレス鋼の連続鋳造
の場合には、 VOD、 AODをはじめとする二次精
錬炉により極力Ox、Ntといったガス成分を低減し且
つ介在物の分離除去を図った後、連続鋳造する方法が行
われてきた。
For this reason, conventionally, in the case of continuous casting of Ti-containing stainless steel, after reducing gas components such as Ox and Nt as much as possible using secondary refining furnaces such as VOD and AOD, and separating and removing inclusions. , a continuous casting method has been used.

しかし、ステンレス鋼では0□+N2との親和力の強い
C「を多量に含有すること、或いは溶鋼中のガス成分の
低減のための並びに生成した介在物の分離除去のための
処理時間の制限等から、介在物除去には自から限界があ
る。このため、非金属介在物(特にTi添加鋼ではTi
窒化物)が残留する溶鋼を鋳造することが余(πなくさ
れている。
However, stainless steel contains a large amount of C, which has a strong affinity with 0 There is a limit to the removal of inclusions.For this reason, non-metallic inclusions (particularly in Ti-added steels)
There is no need to cast molten steel in which residual nitrides remain.

一方1w4の連続鋳造において″i′ii磁攪拌装置に
よって鋳型内溶鋼に流動を付与する技術が開発されてき
た。これは、連鋳用鋳型の両長辺側にリニアモータ型電
磁撹拌装置を取付けて鋳型内溶鋼に電磁攪拌を付与する
ものである。この鋳型内TL電磁攪拌よると鋳片表層部
の介在物の低減が可能となることが1例えば[鉄と鋼J
 、67(1981) 5833に報告されている。ま
た、特公昭59−7536号公報にはりニアモータの上
端位置を場面下200mm以内の上方に位置させると未
脱酸溶鋼でも連鋳ができ、脱酸溶鋼の場合には表面疵の
発生が低減できると教示している。
On the other hand, in continuous casting of 1W4, a technology has been developed in which molten steel is given fluidity in the mold using a magnetic stirring device. This method provides electromagnetic stirring to the molten steel in the mold.This in-mold TL electromagnetic stirring makes it possible to reduce inclusions in the surface layer of the slab.
, 67 (1981) 5833. Furthermore, according to Japanese Patent Publication No. 59-7536, if the upper end of the beam near motor is located within 200 mm above the scene, continuous casting can be performed even with undeoxidized molten steel, and in the case of deoxidized molten steel, the occurrence of surface defects can be reduced. is taught.

すなわち、鋳型内溶鋼に電Tl1l攪拌を付与して鋳型
内で成長しつつある凝固シェル前面に溶鋼流動を適切に
与えると、鋳片表層部に発生するピンホールや鋳片表層
部に捕捉される介在物を低減することができることが知
られている。
In other words, if electric stirring is applied to the molten steel in the mold to appropriately give the molten steel flow to the front surface of the solidified shell that is growing in the mold, the molten steel will be trapped in the pinholes that occur in the surface layer of the slab and in the surface layer of the slab. It is known that inclusions can be reduced.

また、特開昭59−33060号公報は、ガス吹き込み
或いはi![攪拌等の手段を用いて鋳型内溶鋼の湯面上
方中央部に所定の流速の流動を与えることによってステ
ンレス鋼の連鋳鋳片表層部の介在物を低減する方法を開
示する。この方法はステンレス鋼における介在物は表面
より3IIlffi以内の表層部に局在していることを
前提とするものである。
Furthermore, Japanese Patent Application Laid-Open No. 59-33060 discloses that gas blowing or i! [Disclosed is a method for reducing inclusions in the surface layer of a continuous cast slab of stainless steel by applying a flow at a predetermined flow rate to the center above the surface of molten steel in a mold using means such as stirring. This method is based on the premise that inclusions in stainless steel are localized in the surface layer within 3IIlffi from the surface.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はTi含有ステンレス鋼の連続鋳造のさいに生ず
る主としてTi窒化物による鋳片表面疵発生の問題を鋳
型的電磁撹拌技術を適用して解決しようとするものであ
るaTi含有ステンレス鋼に特有のTi窒化物による表
面疵発生の問題が鋳型内電磁攪拌によって回避できるか
否かはこれまで全く未知であった。本発明者らは、Ti
含有ステンレス鋼鋳片表面より厚み方向における介在物
の分布を数多くの鋳片を対象として調査したが、前記特
開昭59−33060号公報の場合とは異なり、鋳片表
面から3mm以上の内部においても多数存在することを
知った。したがって、従来提案された鋳型内電ml拌方
法をTi含有ステンレス鋼の連続鋳造に適用したとして
も、介在物が除去される鋳片表面からの領域が小さいの
で、冷延(反に発生するTiミストリークの発生は防止
できないとの結論に達した。このことは例えば後記の第
1表の試験階2によっても実証される。
The present invention aims to solve the problem of surface defects mainly due to Ti nitrides, which occur during continuous casting of Ti-containing stainless steel, by applying mold-like electromagnetic stirring technology. Until now, it was completely unknown whether the problem of surface flaws caused by Ti nitride could be avoided by electromagnetic stirring within the mold. The inventors have discovered that Ti
The distribution of inclusions in the thickness direction from the surface of the stainless steel slab was investigated using a large number of slabs, but unlike the case of the above-mentioned Japanese Patent Application Laid-open No. 59-33060, inclusions were found within 3 mm or more from the surface of the slab. I learned that there are many. Therefore, even if the previously proposed in-mold electric mixing method is applied to continuous casting of Ti-containing stainless steel, the area from the surface of the cast slab where inclusions are removed is small. It was concluded that the occurrence of mist leaks cannot be prevented.This is also demonstrated by, for example, test floor 2 in Table 1 below.

また、従来提案された鋳型内電磁撹拌装置はモータコア
の位置が鋳型内に固定されている。したがってTi含有
ステンレス鋼の連続鋳造に適した条件を見出すことにも
難点があった。すなわち5モータコアの位置が固定され
ていると、PXlt!?を受ける領域が限定されること
になるが、鋳造速度の変動に伴ってメニスカスから一定
距離にある凝固シェル厚みは変動するので、場合によっ
てはく例えば高速鋳造の場合には)本来撹拌が必要な筈
の領域にまで撹拌が及ばないような事態が生じた。
Furthermore, in the conventionally proposed in-mold electromagnetic stirring device, the position of the motor core is fixed within the mold. Therefore, it is also difficult to find conditions suitable for continuous casting of Ti-containing stainless steel. In other words, if the position of the 5 motor core is fixed, PXlt! ? However, as the thickness of the solidified shell at a certain distance from the meniscus changes as the casting speed changes, in some cases (for example, in the case of high-speed casting) stirring is not necessary. A situation arose in which the agitation did not reach the intended area.

このために、攪拌強度を大きくして攪拌が必要な領域を
拡大するとパウダーの巻き込みが生ずるという問題が新
たに生じた。
For this reason, when the stirring intensity is increased to expand the area where stirring is required, a new problem has arisen in that powder entrainment occurs.

本発明の目的は、Ti含有ステンレス鋼鋳片の表面疵発
生の問題を、従来提案された鋼の鋳型的電磁撹拌装置を
改良し且つ適切な操業条件を見出すことによって解決し
ようとするものである。
An object of the present invention is to solve the problem of surface flaws occurring in Ti-containing stainless steel slabs by improving the conventionally proposed steel casting type electromagnetic stirring device and finding appropriate operating conditions. .

〔問題点を解決する手段〕[Means to solve problems]

本発明は、0.1重量%以上のTiを含有するステンレ
ス鋼の連鋳鋳片の表面疵発生を低減する連続鋳造方法と
して、高さ方向に設定位置可変のリニアモータ型撹拌装
置を備えた連鋳鋳型を使用し。
The present invention is a continuous casting method for reducing the occurrence of surface defects in continuous cast slabs of stainless steel containing 0.1% by weight or more of Ti, and is equipped with a linear motor type stirring device whose setting position is variable in the height direction. Using a continuous casting mold.

メニスカスから該装置のモーターコア中心までの距離れ
を下式(11の関係が実質的に満足するように定め、メ
ニスカスから2×hの位置における鋳型内溶鋼の水平方
向の流速が15〜40cm/secの範囲となるように
該電磁撹拌装置によって鋳型内ffI鋼に水平旋回流を
付与することを特徴とするTi含有ステンレス鋼の連続
鋳造方法を提供するものである。
The distance from the meniscus to the center of the motor core of the device is determined so that the following equation (11) is substantially satisfied, and the horizontal flow velocity of molten steel in the mold at a position 2 x h from the meniscus is 15 to 40 cm The present invention provides a method for continuous casting of Ti-containing stainless steel, characterized in that a horizontal swirling flow is applied to the ffI steel in the mold by the electromagnetic stirring device so that the flow rate is within the range of sec.

11−□・V・(D/K)”     ・・(1)ま ただし。11-□・V・(D/K)”...(1) however.

h;メニスカスからリニアモータコア沖心までの鋳造方
向への距離(m)。
h: Distance (m) in the casting direction from the meniscus to the offshore center of the linear motor core.

K;凝固定数(mm/min””) +D;メニスカス
から2hの距離における凝固シール厚(mm)であり、
10〜30慨鴨の範囲の数値とする。
K: Coagulation fixation number (mm/min"") +D: Coagulation seal thickness (mm) at a distance of 2h from the meniscus,
The value shall be in the range of 10 to 30 degrees.

以下に本発明の内容を図面を参照しながら具体的に説明
しよう。
The contents of the present invention will be specifically explained below with reference to the drawings.

第1図は本発明に従う連続鋳造鋳型の平面を。FIG. 1 shows a plan view of a continuous casting mold according to the present invention.

第2図は第1図の■−■″断面を示す。本発明に従う鋳
型は、モータコアlとこのモータコア1を取り囲むコイ
ル2とからなるリニアモータ型電磁撹拌装置を、従来の
連続鋳造用水冷鋳型の両長辺側3の内部に、上下移動可
能に設置しである。4は鋳型内へ?8w4を注入する浸
漬ノズル、5は鋳型内溶鋼、6は連鋳パウダー、7は凝
固シェルを示している。
FIG. 2 shows a cross section of FIG. It is installed vertically movably inside both long sides 3. 4 is an immersion nozzle for injecting ?8W4 into the mold, 5 is molten steel in the mold, 6 is continuous casting powder, and 7 is a solidified shell. ing.

モータコア1およびこれを取り巻くコイル2は第1図に
示すように鋳片幅−杯に両長辺側鋳型内に設置されてい
る。この両長辺側鋳型内に設置される一対のりニアモー
タの磁場の移動方向を互いに逆向きにすることにより1
両長辺に沿った流れは互いに逆向きとなり、鋳型内溶鋼
は第1図の矢印に示すように水平方向に回動(旋回)す
る。この撹拌モードを本明細書において“水平旋回流゛
と呼ぶ。これに対し、一対のりニアモータの磁場の移動
方向を同方向にした場合には1両長辺に沿った流れは場
面では同方向となり、短辺側に突き当たったあと下方に
潜って回動することになる。
As shown in FIG. 1, a motor core 1 and a coil 2 surrounding the motor core 1 are installed in molds on both long sides at the width of the slab. By reversing the moving directions of the magnetic fields of the pair of glue near motors installed in the molds on both long sides,
The flows along both long sides are in opposite directions, and the molten steel in the mold rotates (swivels) in the horizontal direction as shown by the arrow in FIG. This stirring mode is referred to as a "horizontal swirl flow" in this specification.On the other hand, when the moving directions of the magnetic fields of a pair of linear motors are set in the same direction, the flow along both long sides becomes the same direction in the scene. , after hitting the short side, it dives downward and rotates.

この攪拌モードを本明細占では“水平一方向流”と呼ぶ
This stirring mode is referred to as "horizontal unidirectional flow" in this specification.

本発明に従う鋳型内電磁撹拌装置は、コイル2とモータ
コア1の一体物を鋳型内で昇降可能に設置した点に特徴
がある。すなわち、第2図に示すように、長辺側鋳型内
に昇降用ガイド9を設け。
The in-mold electromagnetic stirring device according to the present invention is characterized in that a coil 2 and a motor core 1 are integrally installed so as to be movable up and down within the mold. That is, as shown in FIG. 2, a lifting guide 9 is provided inside the mold on the long side.

モータコア1を支持する固定子10をこの昇降用ガイド
9内に上下摺動可能に設置し、油圧シリンダー11によ
って往復動するピストンロッド12にこの固定子IOを
接続する。これにより、油圧シリンダー11に供給する
油圧の調整によりモータコアlの設置高さを調整でき且
つ所定の高さに保持することができる。なお、長辺側鋳
型の両側の両モータコア1とも同一構造に昇降可能に設
置するが、油圧シリンダー11を独立して駆動すれば3
両モータコア1の相互の高さを独立して設置できる。し
たがって本装置によると、モータコア1の両者の高さを
異ならしめて設置することにより傾斜流による攪拌モー
ドも可能である。しかし1本発明法の実施にさいしては
、特別のことがない限り1両モータコアlとも同し高さ
に設定して水平往復旋回流の攪拌モードを採用する。な
お、固定子10の昇降のための駆動機構は油圧シリンダ
ー11に変えて電動機構とすることもできる。
A stator 10 supporting the motor core 1 is installed in the lifting guide 9 so as to be vertically slidable, and the stator IO is connected to a piston rod 12 that is reciprocated by a hydraulic cylinder 11. Thereby, by adjusting the oil pressure supplied to the hydraulic cylinder 11, the installation height of the motor core I can be adjusted and maintained at a predetermined height. Note that both motor cores 1 on both sides of the long-side mold are installed in the same structure so that they can be raised and lowered, but if the hydraulic cylinders 11 are driven independently,
Both motor cores 1 can be installed at different heights. Therefore, according to this device, by setting the two motor cores 1 at different heights, an agitation mode using an inclined flow is also possible. However, in carrying out the method of the present invention, unless otherwise specified, both motor cores are set at the same height and a stirring mode of horizontal reciprocating swirling flow is adopted. Note that the drive mechanism for raising and lowering the stator 10 may be an electric mechanism instead of the hydraulic cylinder 11.

本発明においては、かようなモータコアの位置を自由に
設定できる電磁攪拌鋳型を用いてTi含有ステンレス鋼
を速読鋳造するのであるが、既述のように、Ti含有ス
テンレス鋼の場合には鋳片表面より31以上、場合によ
って1OIIIII+を超える広範囲にわたって介在物
を除去することが必要となる0本発明ではこのためにf
l1式の関係を満足するようにモーフコアの中心位置を
設定する。まず。
In the present invention, Ti-containing stainless steel is rapidly cast using an electromagnetic stirring mold in which the position of the motor core can be freely set. It is necessary to remove inclusions from a wide area of 31 or more, and in some cases more than 1OIII+ from one surface.
The center position of the morph core is set so as to satisfy the relationship of equation l1. first.

この(1)式の4出について説明する。The four outputs of equation (1) will be explained.

−IIにステンレス溶銅のシェル厚みDと時間tとの関
係は、溶鋼の過熱度および流動の影響により多少異なる
が2次式(2)によって比較的良好に表すことができる
-II The relationship between the shell thickness D of stainless steel molten copper and the time t can be expressed relatively well by the quadratic equation (2), although it varies somewhat depending on the degree of superheating of the molten steel and the influence of flow.

D=に−A            ・・・(2)ここ
で2 Kは凝固定数である。
D=to-A (2) where 2 K is the coagulation fixation number.

一方、連続鋳造において、鋳片は一定速度で下方に引き
抜かれるから1時間区とメニスカスからの距離Hとの関
係は、鋳造速度をVとすれば。
On the other hand, in continuous casting, the slab is drawn downward at a constant speed, so the relationship between the 1 hour period and the distance H from the meniscus is as follows, assuming that the casting speed is V.

H=V−t            ・・・(3)で示
される。(2)および(3)式より2凝固シェル厚りと
メニスカスからの距離Hとの関係は次の(4)式で示さ
れる。
H=Vt (3). From equations (2) and (3), the relationship between the thickness of the solidified shell and the distance H from the meniscus is expressed by the following equation (4).

H=V・(D / K)”        ・・・(4
)したがって、厚みがDとなるまでの凝固シェルに捕捉
される介在物を除去するには、メニスカスからHの距離
内において介在物を除去するに必要な撹拌を付与する必
要がある。
H=V・(D/K)"...(4
) Therefore, in order to remove the inclusions trapped in the solidified shell up to the thickness D, it is necessary to provide the necessary agitation to remove the inclusions within a distance of H from the meniscus.

一方、一対のりニアモータの磁界の移動方向を互いに逆
向きにした場合に生ずる水平旋回流は。
On the other hand, the horizontal swirling flow that occurs when the moving directions of the magnetic fields of a pair of linear motors are opposite to each other.

モータコア中心を最大流速とすると第3図のような分布
となる。したがって、この水平旋回流によってメニスカ
スからHまでの距離範囲で、介在物低減に有効な流速に
よって攪拌しようとする場合に、モータコア中心をH/
2=hに一致させて撹拌するのが最も効率が高い。
If the maximum flow velocity is at the center of the motor core, the distribution will be as shown in Figure 3. Therefore, when attempting to stir the horizontal swirling flow at a flow rate effective for reducing inclusions in the distance range from the meniscus to H, the center of the motor core is
Stirring to match 2=h is most efficient.

以上より、鋳片表面からDの領域の介在物を水平旋回流
によって除去するのに最適なリニアモータコアの中心の
位置りは2次の(11弐で表される。
From the above, the optimal position of the center of the linear motor core for removing inclusions in the region D from the slab surface by horizontal swirling flow is expressed by the quadratic (112).

■ h = −−V −(D/K)2−− (1)次に攪拌
モードについては、同一攪拌強度で攪拌を続けた場合、
水平一方向流では鋳型の一方の短辺側において場面の盛
り上がりと共に場面の露出が生じ、他方の短辺側では連
鋳パウダーの巻き込みが生じる。また、垂直上向き撹拌
を与えた場合には、鋳型内申央部に湯面の盛り上がりが
生じ両灯辺側で連鋳パウダーの巻き込みが生じる。そし
て垂直方向の撹拌では大きな下降流が生じるので大型介
在物が鋳片内部にもたらされる危険がある。
■ h = −−V −(D/K)2−− (1) Next, regarding the stirring mode, if stirring is continued at the same stirring intensity,
In the horizontal unidirectional flow, the surface rises and is exposed on one short side of the mold, and the continuously cast powder is drawn in on the other short side. Furthermore, when vertical upward stirring is applied, the molten metal surface rises in the center of the mold, causing continuous casting powder to be drawn in on both lamp sides. Since vertical stirring produces a large downward flow, there is a risk that large inclusions will be introduced into the slab.

これに対し、水平旋回流でスラブ連鋳用鋳型内の溶鋼を
撹拌する場合には、上記の2者に比べて攪拌効率の点で
は劣るが、場面の盛り上がりが殆どなく且つ大きな下+
+s iも生じないので本発明法ではこの水平旋回流を
採用する。そして本発明ではこの水平旋回流による撹拌
流速の範囲を2xhの位置で15〜40cm/secと
する。これは、第4図の結果から求めたものである。同
図は撹拌流速VFaと鋳片表層部の介在物指数の関係を
示すものであるが、少なくとも15cm/sec以上の
流速で撹拌することによって介在物を著しく低減できる
ことが明らかである。したがって、厚みDの凝固シェル
に介在物が捕捉しがたいように撹拌するにはメニスカス
からこの厚みDまでの距離にわたって少なくとも15c
IIl/sec以上の流速を必要とする。一方、第3図
に見られるように、メニスカスより2xhの位置におい
て成る大きさの流速を与えるように水平方向に攪拌する
と、その大きさの流速にほぼ対応する大きさの流動がメ
ニスカスでも生じる。この流動が大きくなると連鋳用パ
ウダーの巻き込みが生ずるようになる。水平旋回流を与
えた場合に連鋳用パウダーの巻き込みが生じる流速は約
40cm/secである。したがって3攪拌流速の範囲
を2×hの位置で15〜40cm/secとする。
On the other hand, when stirring molten steel in a mold for slab continuous casting using a horizontal swirling flow, the stirring efficiency is inferior to the above two methods, but there is almost no bulge in the scene and there is a large bottom +
Since neither +s i occurs, this horizontal swirling flow is adopted in the method of the present invention. In the present invention, the range of the stirring flow rate due to this horizontal swirling flow is set to 15 to 40 cm/sec at the 2xh position. This was determined from the results shown in FIG. The figure shows the relationship between the stirring flow rate VFa and the inclusion index of the surface layer of the slab, and it is clear that inclusions can be significantly reduced by stirring at a flow rate of at least 15 cm/sec or higher. Therefore, in order to stir so that inclusions are difficult to be trapped in the solidified shell of thickness D, the distance from the meniscus to this thickness D must be at least 15 cm.
A flow rate of 11/sec or more is required. On the other hand, as seen in FIG. 3, when stirring in the horizontal direction to give a flow velocity of a magnitude equal to that at a position 2xh from the meniscus, a flow approximately corresponding to the flow velocity of that magnitude also occurs at the meniscus. When this flow becomes large, the powder for continuous casting becomes entangled. When a horizontal swirling flow is applied, the flow velocity at which continuous casting powder is drawn in is approximately 40 cm/sec. Therefore, the range of the stirring flow rate is set to 15 to 40 cm/sec at the 2×h position.

次にhの算出方法について説明する。Next, a method of calculating h will be explained.

まず(【)式中のDをメニスカスから2xhの位置での
凝固シェル厚と定め、このDの値を10〜30mmと定
める。このDの値の範囲10〜30mmは次の理由によ
る。Ti含有ステンレス溶鋼について電磁攪拌の攪拌時
間を変えることによって、撹拌流動を受けた凝固シェル
の厚みの異なるサンプルを作成し、熱延・冷延に供し、
攪拌を受けた凝固シェル厚みの範囲とそれぞれの冷延板
で観察される線状疵との関係を求め、第5図の結果を得
た。同図より、線状疵の著しい低減がL3められるのは
、PA拌を受けた凝固シェル厚みの範囲が1011II
+1以上の場合である。このことから、凝固シェルが少
なくとも10mm以上にまで成長するまでは介在物除去
に必要な電磁攪拌の流動が確保されねばならない。しか
し、 30a+m以上となるともはや線状疵の低減効果
は飽和し、それ以上の攪拌は本発明の目的を達成するう
えでは無意味となる0以上の理由から、Ti含有ステン
レス鋼の連続鋳造にさいしての介在物を′i¥を磁攪拌
によって除去しなければならない凝固シェル厚みの範囲
は10〜30mmとし、また、他の要因によって鋳片の
表面研削を余儀なくされる場合を考慮して、好ましくは
15mm以上とする。
First, D in the formula ([) is determined to be the solidified shell thickness at a position 2xh from the meniscus, and the value of D is determined to be 10 to 30 mm. The value range of D is 10 to 30 mm for the following reason. By changing the stirring time of electromagnetic stirring for Ti-containing stainless steel molten steel, samples with different thicknesses of solidified shells subjected to stirring flow were prepared, and the samples were subjected to hot rolling and cold rolling.
The relationship between the range of the thickness of the solidified shell subjected to stirring and the linear flaws observed on each cold-rolled sheet was determined, and the results shown in FIG. 5 were obtained. From the same figure, the reason why the linear flaws are significantly reduced in L3 is that the range of the solidified shell thickness subjected to PA agitation is 1011II.
This is a case of +1 or more. From this, it is necessary to ensure the flow of electromagnetic stirring necessary for removing inclusions until the solidified shell grows to at least 10 mm or more. However, when the temperature exceeds 30 a+m, the effect of reducing linear flaws is saturated, and further stirring is meaningless in achieving the purpose of the present invention. The range of the thickness of the solidified shell from which all inclusions must be removed by magnetic stirring is 10 to 30 mm, and considering the case where surface grinding of the slab is forced due to other factors, it is preferable. shall be 15 mm or more.

次に凝固定数にの値であるが、Cr系あるいはNi−C
r系ステンレス鋼の場合にはKの値は概略25n+m/
e+in””であり、Ti含有ステンレス鋼においても
この値にほぼ等しい。したがって2本発明法においては
K =25ms+/5ill””の値を採用することが
できる。ただし、鋳型内の冷却条件や鋳造条件の大幅な
変更が生ずる場合には、放射性同位元素の投入実験等に
よって、より正確なKを予め把握しておく必要がある。
Next, regarding the value of coagulation fixation number, Cr-based or Ni-C
In the case of r-series stainless steel, the value of K is approximately 25n+m/
e+in'', which is almost equal to this value even in Ti-containing stainless steel. Therefore, in the method of the present invention, a value of K=25ms+/5ill'' can be adopted. However, if the cooling conditions within the mold or the casting conditions are to be significantly changed, it is necessary to obtain a more accurate K in advance through experiments such as introducing radioactive isotopes.

このようにして求めたDおよびKにより、鋳造速度Vが
与えられると+11式にしたがってhが求まる。例とし
て、鋳造速度V =1.Om/min、  D =15
mm。
Using D and K obtained in this way, h can be determined according to formula +11 when the casting speed V is given. As an example, casting speed V=1. Om/min, D=15
mm.

K =25I1m/win””の条件で(1)式によっ
てhを求めると、  h”180mmとなる。
If h is determined by equation (1) under the condition of K = 25I1m/win"", h" is 180mm.

つぎに、メニスカスから2xhの位置において15cm
/sec以上の所定の流速を得るための攪拌強度を決定
する手順について説明する。
Next, 15cm at the 2xh position from the meniscus.
A procedure for determining the stirring intensity to obtain a predetermined flow rate of /sec or more will be explained.

撹拌強度はりニアモータのコイルにill電する電流に
よって調整される。したがって1例えば第6図に示すよ
うに、電流Iと鋳型内溶鋼の流速vF。
The stirring intensity is adjusted by the current applied to the coil of the near motor. Therefore, for example, as shown in FIG. 6, the current I and the flow velocity vF of molten steel in the mold.

の分布との関係を予め求めておけば、メニスカスから2
Xhの位置における所定の流速を得るに必要な電流■を
知ることができる。ここで、このIとvF、の関係を求
める筒便な一例について述べると、実際の流動の大きさ
は、流動が生しる位置での磁束密度Bに依存するから、
まず、各電流値■におけるモータコア中心を原点とした
鋳造方向へのBの大きさの分布を測定しておく。一方、
流速が40cm/see以下の範囲においては、磁束密
度Bと流速v0との関係は次の(5)式で表される。
If we find the relationship with the distribution of
It is possible to know the current () required to obtain a predetermined flow velocity at the position of Xh. Here, to give a convenient example of finding the relationship between I and vF, since the actual magnitude of flow depends on the magnetic flux density B at the position where the flow occurs,
First, the distribution of the magnitude of B in the casting direction with the center of the motor core as the origin at each current value (■) is measured. on the other hand,
In a range where the flow velocity is 40 cm/see or less, the relationship between the magnetic flux density B and the flow velocity v0 is expressed by the following equation (5).

v、1l=a−Bz         ・・(5)ここ
で5 aは定数であり、この値は9例えばBの分布が既
知の電流■のもとて溶鋼を実験的に攪拌し、得られた鋳
塊のデンドライトの偏向角から推定されるv9を求める
ことにより、得ることができる。これによって、第6図
のように、異なる電流値での流速分布図を作成すればよ
い。この流速分布図が得られれば、2×hの位置での流
速が15cm/sec以上の所定値となる電流値■によ
って電磁攪拌を行えばよい。
v, 1l=a-Bz...(5) where 5a is a constant, and this value is 9For example, when molten steel is experimentally stirred under a current 2 with a known B distribution, the resulting cast It can be obtained by determining v9 estimated from the deflection angle of the dendrites of the mass. As a result, flow velocity distribution charts at different current values can be created as shown in FIG. Once this flow velocity distribution diagram is obtained, electromagnetic stirring may be performed using a current value (2) at which the flow velocity at the position 2×h is a predetermined value of 15 cm/sec or more.

以上に説明した本発明法に従ってTi含有ステンレス鋼
を連続鋳造した場合の代表的な実施例結果を比較例と共
に第1表に総括して示した。
Table 1 summarizes the results of typical examples in which Ti-containing stainless steel was continuously cast according to the method of the present invention described above, together with comparative examples.

使用した鋳型は+ 200 X 1030mmのスラブ
型湾曲型連続鋳造機に、第1〜2図に示したようにコイ
ルとモータコアを両長辺側に昇降可能に設置したリニア
モータ型電磁攪拌鋳型である。鋳造に供したTi含有ス
テンレス溶鋼は、Tiを含有しない通常のステンレス溶
鋼の場合と同様に、 VODで脱ガス処理を行った。第
1表に表示の鋳造温度はクンプッシュ内の溶鋼温度であ
り、これは液相線温度より40〜50℃高い温度とした
。攪拌強度の調節は周波数を1OHzの一定として電流
値を変えることによって行った。モータコアの設置位置
n (mm)については、第1表中に*印を付したもの
はシェル厚d (mm) = Dとして前記+11式に
より求めた設置位置りに一致させたものであり、それ以
外は一致していないものである。評価にあたっては、得
られた鋳片の表面から15mn+の範囲内に存在する介
在物を調べてその面積率を求め、これを鋳片表層部の介
在物面積率とした。また、鋳片を片面2111111以
下の研削量で表面研削したうえ熱延・冷延に供し。
The mold used was a linear motor type electromagnetic stirring mold in which a coil and a motor core were installed in a slab type curved continuous casting machine measuring +200 x 1030 mm so that they could be raised and lowered on both long sides as shown in Figures 1 and 2. . The Ti-containing molten stainless steel used for casting was degassed using VOD in the same way as normal molten stainless steel that does not contain Ti. The casting temperature shown in Table 1 is the molten steel temperature in the Kumbush, which was 40 to 50° C. higher than the liquidus temperature. The stirring intensity was adjusted by changing the current value while keeping the frequency constant at 1 OHZ. Regarding the installation position n (mm) of the motor core, those marked with an asterisk (*) in Table 1 correspond to the installation position determined using formula +11 above, assuming shell thickness d (mm) = D. Other than that, they do not match. In the evaluation, inclusions existing within a range of 15 mm+ from the surface of the obtained slab were examined and their area ratio was determined, and this was taken as the inclusion area ratio of the surface layer of the slab. Further, the slab was surface ground with a grinding amount of 2111111 mm or less on one side, and then subjected to hot rolling and cold rolling.

介在物疵に起因した冷延製品におけるクズ発生率と2級
品発生率の両者を合計して格落ち発生率とした。
Both the occurrence rate of scraps and the occurrence rate of second-class products in cold-rolled products due to inclusion defects were summed to determine the occurrence rate of downgrading.

第1表から次のことが明らかである。The following is clear from Table 1.

試験魚1は攪拌なしの対照例であるが、この場合は鋳片
表層部の介在物も製品の格落ち発生率も高い。
Test fish 1 is a control example without stirring, but in this case, inclusions in the surface layer of the cast slab and product failure rate are high.

試験患2はモータコア中心の位置はhに一致させたが、
シェル厚5IIlvAにおいて流速が15cm/see
の水平旋回流による流動を受けた比較例、試験隘3〜7
はシェルI’JIOmm以上において流速が15cm/
see以上の水平旋回流による流動を受けた本発明例で
ある。試験階2に見られるように、Ti含有ステンレス
溶鋼の場合にはシェル厚5mmのところで流動を与えて
も格落ち発生率は高いものとなる。これに対して本発明
法に従ってシェル厚10mm以上で流動を与えた試験f
lh3〜7では、格落ち発生率は2%以下のレベルまで
低減されている。
In test patient 2, the position of the motor core center was made to match h,
Flow velocity is 15cm/see at shell thickness 5IIlvA
Comparative example, test holes 3 to 7 subjected to horizontal swirling flow
The flow velocity is 15 cm/
This is an example of the present invention which was subjected to a flow due to a horizontal swirl flow of more than . As seen in Test Floor 2, in the case of Ti-containing molten stainless steel, the failure rate is high even when flow is applied at a shell thickness of 5 mm. On the other hand, a test f in which flow was applied with a shell thickness of 10 mm or more according to the method of the present invention
For lh3 to lh7, the failure rate has been reduced to a level of 2% or less.

試験魚8と9は、撹拌モードが水平一方向流の場合の比
較例である。この場合には、モーフコアの位置をhに一
致させ且つシェルTI′1.1OIIIffi以上で充
分な流動を与えたとしても、鋳片表層部の介在物面積率
も格落ち発生率も高くなる。これは、連鋳用パウダーの
巻き込み或いは噛み噛みに原因するものである。
Test fish 8 and 9 are comparative examples in which the stirring mode is horizontal unidirectional flow. In this case, even if the position of the morph core is made to match h and sufficient flow is provided with the shell TI'1.1OIIIffi or more, the area ratio of inclusions in the surface layer of the slab and the occurrence rate of failure will increase. This is caused by the continuous casting powder being entrapped or chewed.

試験11kL10と11は、モータコア中心をhに一致
させて水平旋回流で流動させたが、攪拌強度が小さい場
合と大きい場合の比較例である。階10では攪拌強度が
弱くてシェル厚15mmでの流速並びにメニスカスでの
流速が小さい。このために攪拌による介在物の除去効果
が殆ど現れていない。逆にIl&Lllのように撹拌強
度を強くして流速が40cm/secを超えた場合には
、対照例隘1と同等もしくはそれ以上の介在物量並びに
格落ち発生率となっている。
Tests 11kL10 and 11 are comparative examples in which the center of the motor core is aligned with h and the fluid is caused to flow in a horizontal swirling flow, and the agitation intensity is low and high. At floor 10, the stirring intensity is weak, and the flow velocity at the shell thickness of 15 mm and the flow velocity at the meniscus are low. For this reason, stirring has little effect on removing inclusions. On the other hand, when the stirring intensity was increased and the flow rate exceeded 40 cm/sec, as in Il&Lll, the amount of inclusions and the occurrence rate of failure were equal to or higher than those of Control Example No. 1.

これは連鋳用パウダーの巻き込みがその原因である。This is caused by the inclusion of continuous casting powder.

試験N112〜15は、モータコア中心がhとは離れた
位置にある場合の比較例である。階12および14のよ
うに、モータコア中心位置が(11式から求まる位置よ
り上方にある場合には1本発明例のような良好な成績が
得られておらず、1lh14に至っては最も悪い成績で
ある。これは、シェル厚10 m mのa固シェルに対
して15cm/sec以上の流動を与えようとするとメ
ニスカスでの流速が大きくなって連鋳用パウダーの巻き
込みが生しるからである。一方。
Tests N112 to N15 are comparative examples in which the center of the motor core is located away from h. As in floors 12 and 14, when the motor core center position is above the position determined from equation 11, good results as in the example of the present invention are not obtained, and 1lh14 is the worst result. This is because if an attempt is made to apply a flow of 15 cm/sec or more to a solid shell with a shell thickness of 10 mm, the flow velocity at the meniscus will increase and the continuous casting powder will be drawn in. on the other hand.

試験m13および15のようにモータコア中心位置がf
i1式から求まる位置より下方にある場合にも充分な成
績が得られていない。これは、鋳片の極表層での介在物
除去効果が低減するからである。
As in tests m13 and 15, the motor core center position is f
Sufficient results are not obtained even when the position is below the position determined from the i1 formula. This is because the effect of removing inclusions in the extreme surface layer of the slab is reduced.

試験1m16と17は1本発明法に従う同一の鋳造条件
のもとで異なるTi含有量の溶鋼を鋳造した例である。
Tests 1m16 and 17 are examples in which molten steel with different Ti contents was cast under the same casting conditions according to the method of the present invention.

1b17のように、1%を超えるTiを含存するステン
レス鋼の場合でも1本発明法によると格落ち発生率は2
%以下の低い水準にまで低減できることがわかる。
Even in the case of stainless steel containing more than 1% Ti, such as 1b17, according to the method of the present invention, the incidence of downgrading is 2.
% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に従う連続鋳造鋳型の平面図。 第2図は第1図のn−n’線矢視断面図、第3図は電磁
攪拌により生ずる水平旋回流の速度分布の例を示す図、
第4図は攪拌速度と鋳片表層部の介在物指数との関係を
示す図、第5図は攪拌流動を受けた凝固シェルの厚みの
範囲と冷延板における介在物に起因した線状疵指数との
関係を示す図。 第6図は電磁撹拌における誘導電流値と速度分布との関
係を示す図である。 ■・・モータコア、  2・・コイル、  3・・長辺
側鋳型、  4・・溶鋼注入用の浸漬ノズル。 5・・Ti含有ステンレス溶鋼、  6・・連鋳用パウ
ダー、  7・・凝固シェル、  9・・昇降用ガイド
9.10・・モータコアを支持する固定子。 11・・油圧シリンダー、12・・ピストンロッド。
FIG. 1 is a plan view of a continuous casting mold according to the present invention. FIG. 2 is a cross-sectional view taken along the line nn' in FIG. 1, and FIG. 3 is a diagram showing an example of the velocity distribution of horizontal swirling flow caused by electromagnetic stirring.
Figure 4 shows the relationship between the stirring speed and the inclusion index of the surface layer of the slab, and Figure 5 shows the range of thickness of the solidified shell subjected to stirring flow and the linear flaws caused by inclusions in the cold rolled sheet. A diagram showing a relationship with an index. FIG. 6 is a diagram showing the relationship between induced current value and speed distribution in electromagnetic stirring. ■... Motor core, 2... Coil, 3... Long side mold, 4... Immersion nozzle for injecting molten steel. 5. Ti-containing molten stainless steel, 6. Powder for continuous casting, 7. Solidified shell, 9. Lifting guide 9.10. Stator that supports the motor core. 11... Hydraulic cylinder, 12... Piston rod.

Claims (2)

【特許請求の範囲】[Claims] (1)0、1重量%以上のTiを含有するステンレス溶
鋼の連続鋳造方法において、高さ方向に設定位置可変の
リニアモータ型撹拌装置を備えた連鋳鋳型を使用し、メ
ニスカスから該装置のモーターコア中心までの距離れを
下式(1)の関係が実質的に満足するように定め、メニ
スカスから2×hの位置における鋳型内溶鋼の水平方向
の流速が15〜40cm/secの範囲となるように該
電磁撹拌装置によって鋳型内溶鋼に水平旋回流を付与す
ることを特徴とするTi含有ステンレス鋼の連続鋳造方
法。 h=1/2・V・(D/K)^2・・(1)ただし、 h;メニスカスからリニアモータコア中心までの鋳造方
向への距離(m)、 K;凝固定数(mm/min^1^/^2)_1D;メ
ニスカスから2hの距離における凝固シェル厚(mm)
であり、10〜30mmの範囲の数値とする。
(1) In a continuous casting method for molten stainless steel containing 0.1% by weight or more of Ti, a continuous casting mold equipped with a linear motor-type stirring device whose position can be varied in the height direction is used, and the device is The distance to the center of the motor core is determined so that the relationship of the following formula (1) is substantially satisfied, and the horizontal flow velocity of molten steel in the mold at a position 2×h from the meniscus is in the range of 15 to 40 cm/sec. A continuous casting method for Ti-containing stainless steel, characterized in that the electromagnetic stirring device imparts a horizontal swirling flow to molten steel in the mold. h=1/2・V・(D/K)^2...(1) However, h: Distance in the casting direction from the meniscus to the center of the linear motor core (m), K: Number of solidification fixation (mm/min^1 ^/^2)_1D; Solidified shell thickness at a distance of 2h from the meniscus (mm)
, and the value is in the range of 10 to 30 mm.
(2)鋼の連鋳鋳造用鋳型の内部に、コイルで取り巻か
れたモータコアを設置してなる電磁攪拌鋳型において、
該コイルとモータコアとの一体物を、鋳型内に設置した
昇降用ガイドに上下摺動可能に取付け、外部動力により
該モータコアの設定高さを調節自在にした特許請求の範
囲第1項の方法に使用する連続鋳造用鋳型。
(2) In an electromagnetic stirring mold in which a motor core surrounded by a coil is installed inside a steel continuous casting mold,
The method according to claim 1, wherein the integral body of the coil and motor core is attached so as to be able to slide up and down on a lifting guide installed in a mold, and the set height of the motor core can be freely adjusted by external power. Continuous casting mold used.
JP20351786A 1986-08-29 1986-08-29 Method and mold for continuously casting stainless steel containing titanium Pending JPS6360056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20351786A JPS6360056A (en) 1986-08-29 1986-08-29 Method and mold for continuously casting stainless steel containing titanium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20351786A JPS6360056A (en) 1986-08-29 1986-08-29 Method and mold for continuously casting stainless steel containing titanium

Publications (1)

Publication Number Publication Date
JPS6360056A true JPS6360056A (en) 1988-03-16

Family

ID=16475462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20351786A Pending JPS6360056A (en) 1986-08-29 1986-08-29 Method and mold for continuously casting stainless steel containing titanium

Country Status (1)

Country Link
JP (1) JPS6360056A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819493A1 (en) * 1988-06-08 1989-12-14 Voest Alpine Ind Anlagen KNUEPPEL- or SPREAD BLOCK CONTINUOUS CHOCOLATE
EP0511465A2 (en) 1991-04-03 1992-11-04 Paul Wurth S.A. Electromagnetic agitating method for continuous casting
JP2007196285A (en) * 2006-01-30 2007-08-09 Nippon Steel Corp Electromagnetic stirring mold for continuous casting and continuous casting method using this mold
JP2009517218A (en) * 2005-11-28 2009-04-30 ロテレツク Adjusting the electromagnetic stirring mode over the height of the continuous casting mold
JP2011218435A (en) * 2010-04-14 2011-11-04 Nippon Steel Corp Continuous casting method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3819493A1 (en) * 1988-06-08 1989-12-14 Voest Alpine Ind Anlagen KNUEPPEL- or SPREAD BLOCK CONTINUOUS CHOCOLATE
US4957156A (en) * 1988-06-08 1990-09-18 Voest-Alpine Industrieanlagenbau Gesellschaft M.B.H. Continuous casting mold arrangement for casting billets and blooms
EP0511465A2 (en) 1991-04-03 1992-11-04 Paul Wurth S.A. Electromagnetic agitating method for continuous casting
EP0511465B2 (en) 1991-04-03 2003-12-03 Paul Wurth S.A. Electromagnetic agitating method for continuous casting
JP2009517218A (en) * 2005-11-28 2009-04-30 ロテレツク Adjusting the electromagnetic stirring mode over the height of the continuous casting mold
JP2007196285A (en) * 2006-01-30 2007-08-09 Nippon Steel Corp Electromagnetic stirring mold for continuous casting and continuous casting method using this mold
JP2011218435A (en) * 2010-04-14 2011-11-04 Nippon Steel Corp Continuous casting method

Similar Documents

Publication Publication Date Title
US7967058B2 (en) Apparatus for controlling flow of molten steel in mold
Tzavaras et al. Electromagnetic stirring and continuous casting—Achievements, problems, and goals
JP2017515687A (en) Non-contact molten metal flow control
US7628196B2 (en) Method and apparatus for continuous casting of metals
JPS6360056A (en) Method and mold for continuously casting stainless steel containing titanium
JP5245800B2 (en) Continuous casting mold and steel continuous casting method
KR870001938B1 (en) Stirring method and its device and electromagnet in mold of horizontal continuous casting
EP0489202B1 (en) Method of controlling flow of molten steel in mold
Li et al. Effect of multielectromagnetic field on meniscus shape and quality of continuously cast metals
DE69110166T3 (en) Method and device for the continuous casting of molten steel.
US3811490A (en) Continuous casting of rimming steel
JP7332885B2 (en) Molten metal continuous casting method and continuous casting apparatus
JP4912945B2 (en) Manufacturing method of continuous cast slab
CA1179825A (en) Methods of pouring metal
JP3257546B2 (en) Steel continuous casting method
JP2014046323A (en) Continuous casting method of steel
CN1049852C (en) Device for realizing semisolid casting
JP2006255759A (en) Method for continuously casting steel
JP4441384B2 (en) Continuous casting method and flow control device in strand pool
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
JP2006122961A (en) Method and device for controlling fluidity in strand pool
JP3149821B2 (en) Continuous casting method
JP4432263B2 (en) Steel continuous casting method
JPS58128253A (en) Method for stirring molten metal which decreases inclusion of continuous casting ingot
JPH05309451A (en) Continuous casting mold and continuous casting method