JPS6359786B2 - - Google Patents
Info
- Publication number
- JPS6359786B2 JPS6359786B2 JP59165492A JP16549284A JPS6359786B2 JP S6359786 B2 JPS6359786 B2 JP S6359786B2 JP 59165492 A JP59165492 A JP 59165492A JP 16549284 A JP16549284 A JP 16549284A JP S6359786 B2 JPS6359786 B2 JP S6359786B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- cooling
- molten metal
- casting
- solidification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005266 casting Methods 0.000 claims description 53
- 238000001816 cooling Methods 0.000 claims description 52
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 238000000034 method Methods 0.000 claims description 29
- 238000007711 solidification Methods 0.000 claims description 27
- 230000008023 solidification Effects 0.000 claims description 27
- 239000002826 coolant Substances 0.000 claims description 5
- 230000000149 penetrating effect Effects 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
Landscapes
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
Description
〔産業上の利用分野〕
本発明は強制冷却式鋳造方法に関し、特に溶湯
を部分的に強制冷却すると共に指向性凝固を促進
し、高品質な鋳物を効率よく得る強制冷却式鋳造
方法に関する。
〔従来の技術〕
鋳造欠陥等のない信頼性のあるアルミニウム合
金鋳物、例えば、シリンダヘツド等を製造するた
めには、溶湯の凝固が迅速に行われ、また溶湯が
指向性凝固をすることが望ましい。従来、主に重
力鋳造法や低圧鋳造法においては、金型を水冷あ
るいは空冷することにより溶湯の凝固を促進する
ことが行われている。しかし、この場合には金型
の過冷却により注湯時に湯回り不良が生じないよ
うに金型温度を比較的厳格に調整する必要がある
が、金型温度は鋳造サイクルと共に周期的に変動
するため、金型の温度制御には比較的高度な制御
技術が必要である。また、金型に冷却手段を組み
込むため金型構造が複雑化し、金型の費用がアツ
プする。
また、鋳造欠陥をなくすために指向性凝固を行
わせるべく押湯の設置場所や形状、容量等を経験
的に選択設定することが行われている。しかし、
鋳物の形状的制約により、押湯の設置場所や形
状、容量等の選択設定には限界があり、押湯のみ
によつて良好な指向性凝固を行わせることが不可
能な場合がしばしば生じる。
更に、従来の方法では溶湯の凝固速度が遅く、
得られた鋳物の機械的強度が劣る。
そこで、本件出願人は、鋳造時鋳物に余肉部を
設け、この余肉部を強制冷却することにより指向
性凝固を促進する鋳物直冷式鋳造方法を提案した
(特開昭57−109559号公報)。この鋳物直冷式鋳造
方法により、指向性凝固が促進され、鋳物の高品
質化が図れると共に、鋳造サイクルの短縮化が図
れるという優れた効果が得られた。
また、本件出願人は、鋳型のキヤビテイに管部
材を配置し、この管部材に冷却媒体を通すことに
より溶湯を強制冷却して凝固を速める強制冷却鋳
造法を提案した(特開昭58−86966号公報)。この
強制冷却鋳造法により、溶湯の凝固速度が速くな
り、得られた鋳物の機械的強度が向上すると共
に、鋳造サイクルの短縮化が図れるという優れた
効果が得られた。
〔発明が解決しようとする問題点〕
しかしながら、上記鋳物直冷式鋳造方法では、
強制冷却のために鋳物に余肉部を設けたため、鋳
物の歩留りが悪くなり、また鋳造後余肉部を除去
するのに時間が掛かるという問題がある。
また、上記強制冷却鋳造法においては、シリン
ダヘツド等の大物部品を鋳造する際には、形状に
よつては十分に指向性凝固を図れないという問題
がある。
〔問題点を解決するための手段〕
上記問題は、次に述べる本発明の強制冷却式鋳
造方法によつて解決される。
即ち、本発明の強制冷却式鋳造方法は、従来か
らしばしば用いられている冷し金を指向性凝固に
利用し、溶湯により鋳ぐるむ管部材を強制冷却に
利用するとともに分割型の構成に工夫を凝らした
もので、分割型からなる鋳型により郭定されたキ
ヤビテイ内に溶湯を注ぎ、この溶湯の凝固過程で
溶湯を強制冷却することにより指向性凝固を行う
強制冷却式鋳造方法であつて、
溶湯の凝固を速めたい部位の分割型を金型とし
して、この金型を貫通させて冷し金を設置すると
共に、別の分割型を低熱伝導性材で構成して、こ
の別の分割型を貫通して金型へ鋳型のキヤビテイ
に管部材を配置し、溶湯の充填中あるいは溶湯の
充填完了後にこの冷し金を直接冷却すると共に、
管部材に冷却媒体を供給することを特徴としてい
る。
本発明の分割型からなる鋳型において、冷し金
側の分割型は、金型からなる。また、冷し金は設
けられず、管部材が設けられる方の分割型は、有
機熱硬化性材料や、砂型等の金型に対しての低熱
伝導性材からなる。
管部材としては、溶湯に溶けない材料であれば
よいが、銅合金等のように熱伝導率の良いものの
方が望ましい。この管部材の断面形状は円でも四
角でもよく、任意の形状でよい。
冷し金としては、溶湯に溶けない材料であれば
よいが、銅合金等のように熱伝導率の良いものの
方が望ましい。この冷し金の熱伝導をよくするた
めに、冷し金に溝やフインを設けてもよい。
〔作用〕
本発明の強制冷却式鋳造方法によれば、従来か
ら凝固を速めるために用いていた冷し金を鋳型を
貫通させて設け、その一端を鋳型外へ延在させた
ことにより、直接冷し金を冷却することが可能と
なつた。この結果、従来の冷し金では、溶湯の充
填中に、冷し金が加熱され、また溶湯の凝固過程
においても溶湯から冷し金へ熱伝達を生じるが、
実際は冷し金の熱容量の限界から次第に熱移動量
は少なくなり、全凝固過程で冷却機能を維持する
ことができなかつたのに対し、本発明の強制冷却
式鋳造方法によれば、冷し金を直接冷却できるた
め、常時溶湯の熱を冷し金へ逃がすことができ
る。このため、冷し金が設けられたところを中心
として溶湯が冷却され、指向性凝固が促進される
ことになる。
また、注入された溶湯に鋳ぐるまれた管部材に
水等の冷却媒体を通すことにより、この管部材を
中心として溶湯が強制的に冷却され、凝固速度が
速くなる。
そして、上述の作用は、冷し金側の分割型とし
て金型を配し、冷し金は設けられず管部材が設け
られる方の分割型を金型に対する低熱伝導性材で
構成したため、管部材による冷却は、後者の分割
型においては妨げられ、逆に前者の前者の分割型
においては促進されるので、冷し金による冷却効
果とあいまつて、極めて十分な指向性凝固が行わ
れる。
〔実施例〕
次に、本発明の実施例を図面を参考にして説明
する。
本実施例はシリンダヘツドを鋳造する例を示
す。
ここで、第1図は本発明の実施例に係る強制冷
却式鋳造方法の一工程を示す断面図、第2図は本
発明の実施例に係る強制冷却式鋳造方法に用いた
鋳型を示す平面図、第3図は本発明の実施例に係
る強制冷却式鋳造方法の指向性凝固の状態を説明
する概略構成図である。
第1図において、1は有機熱硬化性材料からな
る上型であり、2は同じく金型である。この上型
1と下型2および図示しない中子により鋳型3が
形成され、この鋳型3によりシリンダヘツドの製
品キヤビテイ4が郭定される。この鋳型3は定盤
5上に固定されており、下型2と定盤5を貫通し
て10本の冷し金6(第1図では3本のみが見え
る)が取り付けられている。この冷し金6は、下
方に脱落しないよう溶湯と接触する頭部が傘状と
されている。そして、冷し金6は水冷ノズル7に
より冷却される。
また、鋳型3および製品キヤビテイを貫通して
管部材8が取り付けられている。この管部材8は
注入ノズル9に接続されている。
上記鋳型3を用いて次の要領でシリンダヘツド
を鋳造した。なお、下型の型温は80℃に保つた。
即ち、鋳型3の製品キヤビテイ4内にJIS
AC4B相当のアルミニウム合金溶湯を700℃に調
節して注湯した。製品キヤビテイ4に溶湯の充填
が完了すると同時に、下型2に設けられた冷し金
6の定盤5から突出している軸部に、水冷ノズル
7から水を1.5m3/hの割合で噴射すると共に、
管部材8に1.0m3/hの割合で冷却媒体としての
水を注水した。3分間水冷した後、噴射および注
入を中止し、鋳型3から鋳物粗材を取り出した。
上記シリンダヘツドを鋳造する際、第3図に示
すA,B,Cの3点においてアルミニウム合金が
2元共晶を開始する時間を測定した。この測定結
果を、従来法1(強制冷却をしないもの)、従来法
2(管部材による強制冷却のみのもの)および比
較例(下型2を上型と同じ有機熱硬化性材料から
構成して以外は同じ条件で鋳造したもの)と共に
第1表に示す。
[Industrial Field of Application] The present invention relates to a forced cooling casting method, and more particularly to a forced cooling casting method in which molten metal is partially forcedly cooled and directional solidification is promoted to efficiently obtain high quality castings. [Prior Art] In order to produce reliable aluminum alloy castings free from casting defects, such as cylinder heads, etc., it is desirable that the molten metal solidify quickly and that the molten metal solidifies directionally. . Conventionally, mainly in gravity casting methods and low-pressure casting methods, solidification of molten metal has been promoted by cooling the mold with water or air. However, in this case, it is necessary to adjust the mold temperature relatively strictly to prevent poor flow during pouring due to overcooling of the mold, but the mold temperature fluctuates periodically with the casting cycle. Therefore, relatively sophisticated control technology is required to control the temperature of the mold. Furthermore, since a cooling means is incorporated into the mold, the mold structure becomes complicated and the cost of the mold increases. In addition, in order to eliminate casting defects, the installation location, shape, capacity, etc. of the feeder are selected and set empirically in order to perform directional solidification. but,
Due to the shape constraints of the casting, there are limits to the selection and setting of the installation location, shape, capacity, etc. of the feeder, and it is often impossible to achieve good directional solidification using the feeder alone. Furthermore, in the conventional method, the solidification rate of the molten metal is slow;
The mechanical strength of the obtained casting is poor. Therefore, the present applicant proposed a direct cooling method for casting, which promotes directional solidification by providing an extra wall in the casting during casting and forcing the extra wall to cool. Public bulletin). This direct cooling casting method has the advantageous effects of promoting directional solidification, improving the quality of the casting, and shortening the casting cycle. In addition, the applicant proposed a forced cooling casting method in which a pipe member is placed in the cavity of a mold and a cooling medium is passed through the pipe member to forcibly cool the molten metal and accelerate solidification (Japanese Patent Application Laid-Open No. 58-86966 Publication No.). This forced cooling casting method has the excellent effects of increasing the solidification rate of the molten metal, improving the mechanical strength of the resulting casting, and shortening the casting cycle. [Problems to be solved by the invention] However, in the above direct cooling casting method,
Since extra thickness is provided in the casting for forced cooling, there are problems in that the yield of the casting is poor and it takes time to remove the extra thickness after casting. Further, in the above-mentioned forced cooling casting method, when casting large parts such as cylinder heads, there is a problem that sufficient directional solidification cannot be achieved depending on the shape. [Means for Solving the Problems] The above problems are solved by the forced cooling casting method of the present invention described below. That is, the forced cooling casting method of the present invention utilizes the conventionally often used cooling metal for directional solidification, utilizes the pipe member cast by the molten metal for forced cooling, and devises a split mold configuration. A forced cooling casting method that performs directional solidification by pouring molten metal into a cavity defined by a mold made of split molds and forcibly cooling the molten metal during the solidification process, A split mold for the part where you want to speed up the solidification of the molten metal is used as a mold, and a cooling metal is installed by penetrating this mold, and another split mold is made of a material with low thermal conductivity. A pipe member is placed in the cavity of the mold by passing through the mold, and the cooling metal is directly cooled during filling with molten metal or after filling of the molten metal, and
It is characterized by supplying a cooling medium to the pipe member. In the mold consisting of a split mold according to the present invention, the split mold on the cooling metal side consists of a metal mold. Further, the split mold in which the chiller is not provided and the pipe member is provided is made of an organic thermosetting material or a material with low thermal conductivity for a mold such as a sand mold. The pipe member may be made of any material that does not dissolve in the molten metal, but it is preferable to use a material with good thermal conductivity such as a copper alloy. The cross-sectional shape of this tube member may be circular or square, or may have any arbitrary shape. The cooling metal may be made of any material that does not dissolve in the molten metal, but it is preferable to use a material with good thermal conductivity, such as a copper alloy. In order to improve the heat conduction of this chiller, grooves or fins may be provided in the chiller. [Function] According to the forced cooling casting method of the present invention, the cooling metal, which has been conventionally used to speed up solidification, is provided by penetrating the mold, and one end of the cooling metal is extended outside the mold. It became possible to cool cold metals. As a result, in conventional cooling metals, the cooling metal is heated during filling with molten metal, and heat transfer occurs from the molten metal to the cooling metal during the solidification process of the molten metal.
In reality, the amount of heat transfer gradually decreases due to the limit of the heat capacity of the chilled metal, making it impossible to maintain the cooling function during the entire solidification process.However, according to the forced cooling casting method of the present invention, Since the molten metal can be directly cooled, the heat of the molten metal can be constantly released to the cooling metal. Therefore, the molten metal is cooled mainly in the area where the chiller is provided, and directional solidification is promoted. Furthermore, by passing a cooling medium such as water through a pipe member cast into the injected molten metal, the molten metal is forcibly cooled around this pipe member, and the solidification rate becomes faster. The above-mentioned effect is achieved because the mold is arranged as a split mold on the chiller side, and the split mold on the side where the chiller is not installed and the pipe member is installed is made of a material with low thermal conductivity for the mold. Cooling by the member is hindered in the latter split type, and conversely promoted in the former split type, so that combined with the cooling effect of the chiller, extremely sufficient directional solidification is achieved. [Example] Next, an example of the present invention will be described with reference to the drawings. This embodiment shows an example of casting a cylinder head. Here, FIG. 1 is a cross-sectional view showing one step of the forced cooling casting method according to the embodiment of the present invention, and FIG. 2 is a plan view showing a mold used in the forced cooling casting method according to the embodiment of the present invention. 3 are schematic configuration diagrams illustrating the state of directional solidification of the forced cooling casting method according to the embodiment of the present invention. In FIG. 1, 1 is an upper mold made of an organic thermosetting material, and 2 is also a mold. A mold 3 is formed by the upper mold 1, the lower mold 2, and a core (not shown), and this mold 3 defines a product cavity 4 of the cylinder head. This mold 3 is fixed on a surface plate 5, and ten chillers 6 (only three are visible in FIG. 1) are attached to the mold 3 passing through the lower mold 2 and the surface plate 5. The head of the chiller 6 that comes into contact with the molten metal is shaped like an umbrella so that it does not fall downward. The chiller 6 is then cooled by a water cooling nozzle 7. Further, a pipe member 8 is attached to pass through the mold 3 and the product cavity. This tube member 8 is connected to an injection nozzle 9. A cylinder head was cast using the above mold 3 in the following manner. The temperature of the lower mold was maintained at 80°C. In other words, JIS in the product cavity 4 of the mold 3.
A molten aluminum alloy equivalent to AC4B was poured at a temperature of 700°C. At the same time as the filling of the product cavity 4 with molten metal is completed, water is injected from the water cooling nozzle 7 at a rate of 1.5 m 3 /h onto the shaft of the chiller 6 provided in the lower mold 2 that protrudes from the surface plate 5. At the same time,
Water as a cooling medium was poured into the pipe member 8 at a rate of 1.0 m 3 /h. After cooling with water for 3 minutes, the injection and injection were stopped, and the casting material was taken out from the mold 3. When casting the cylinder head, the time required for the aluminum alloy to start forming binary eutectic formation was measured at three points A, B, and C shown in FIG. These measurement results were compared to conventional method 1 (no forced cooling), conventional method 2 (only forced cooling using pipe members), and comparative example (lower mold 2 made of the same organic thermosetting material as the upper mold). These are shown in Table 1 along with those cast under the same conditions except for the following.
以上より、本発明の強制冷却式鋳造方法によれ
ば、以下の効果を奏する。
(イ) 冷し金と管部材とそれらが配置される分割型
との組合せにより極めて十分な指向性凝固が促
進されると共に凝固速度が速められるため、引
け巣等の鋳造欠陥が抑止されると共に機械的強
度が向上し、高品質な鋳物が得られる。
(ロ) 従来の鋳物直冷式鋳造方法のように、鋳物に
強制冷却用の余肉を設ける必要がないため、製
品(鋳物)の歩留りが大幅に向上する。
(ハ) 従来の鋳物直冷式鋳造方法のように、鋳物の
余肉部を後処理工程で除去する必要がないた
め、全体としての鋳造サイクルが短縮できる。
(ニ) 塗型、型温等の鋳造管理条件が緩和される。
As described above, the forced cooling casting method of the present invention provides the following effects. (b) The combination of the chilled metal, the pipe member, and the split mold in which they are arranged promotes extremely sufficient directional solidification and accelerates the solidification rate, thereby suppressing casting defects such as shrinkage cavities, and Mechanical strength is improved and high quality castings can be obtained. (b) Unlike the conventional direct cooling casting method, there is no need to provide extra wall for forced cooling in the casting, so the yield of the product (casting) is greatly improved. (c) Unlike the conventional direct-cooling casting method, there is no need to remove the excess thickness of the casting in a post-processing step, so the overall casting cycle can be shortened. (d) Casting control conditions such as coating mold and mold temperature will be relaxed.
第1図は本発明の実施例に係る強制冷却式鋳造
方法の一工程を示す断面図、第2図は本発明の実
施例に係る強制冷却式鋳造方法に用いた鋳型を示
す平面図、第3図は本発明の実施例に係る強制冷
却式鋳造方法の指向性凝固の状態を説明する概略
構成図である。
1…上型、2…下型、3…鋳型、4…製品キヤ
ビテイ(キヤビテイ)、5…定盤、6…冷し金、
7…水冷ノズル、8…管部材、9…注入ノズル。
FIG. 1 is a sectional view showing one step of the forced cooling casting method according to the embodiment of the present invention, FIG. 2 is a plan view showing a mold used in the forced cooling casting method according to the embodiment of the invention, and FIG. FIG. 3 is a schematic configuration diagram illustrating the state of directional solidification of the forced cooling casting method according to the embodiment of the present invention. 1...Upper mold, 2...Lower mold, 3...Mold, 4...Product cavity (cavity), 5...Surface plate, 6...Cold metal,
7...Water cooling nozzle, 8...Pipe member, 9...Injection nozzle.
Claims (1)
テイ内に溶湯を注ぎ、この溶湯の凝固過程で溶湯
を強制冷却することにより指向性凝固を行う強制
冷却式鋳造方法であつて、 溶湯の凝固を速めたい部位の分割型を金型とし
て、該金型を貫通させて冷し金を設置すると共
に、別の分割型を低熱伝導性材で構成して、該別
の分割型を貫通して金型へ鋳型のキヤビテイに管
部材を配置し、溶湯の充填中あるいは溶湯の充填
完了後にこの冷し金を直接冷却すると共に、管部
材に冷却媒体を供給することを特徴とする強制冷
却式鋳造方法。[Scope of Claims] 1. A forced cooling casting method that performs directional solidification by pouring molten metal into a cavity defined by a mold made of split molds and forcibly cooling the molten metal during the solidification process. , A split mold for the part where the solidification of the molten metal is desired to be accelerated is used as a mold, a cooling metal is installed by penetrating the mold, and another split mold is made of a low thermal conductive material. A pipe member is disposed in the cavity of the mold through the mold, and the chiller is directly cooled during or after filling with molten metal, and a cooling medium is supplied to the pipe member. Forced cooling casting method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16549284A JPS6142471A (en) | 1984-08-07 | 1984-08-07 | Forcedly cooling type casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16549284A JPS6142471A (en) | 1984-08-07 | 1984-08-07 | Forcedly cooling type casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6142471A JPS6142471A (en) | 1986-02-28 |
JPS6359786B2 true JPS6359786B2 (en) | 1988-11-21 |
Family
ID=15813425
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16549284A Granted JPS6142471A (en) | 1984-08-07 | 1984-08-07 | Forcedly cooling type casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6142471A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102672111B (en) * | 2012-04-28 | 2014-07-09 | 浙江坤博机械制造有限公司 | Method for casting hydraulic oil cylinder of die-casting machine |
JP5675696B2 (en) * | 2012-05-17 | 2015-02-25 | モディアクリエイト株式会社 | Method of cooling molten metal and control of metal structure in casting |
JP2018163995A (en) * | 2017-03-27 | 2018-10-18 | 三菱電機株式会社 | Semiconductor mounting heat dissipation base board, and manufacturing method and manufacturing apparatus thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438583A (en) * | 1977-09-01 | 1979-03-23 | Nippon Telegr & Teleph Corp <Ntt> | Bracketing device for cable with alarm core |
JPS5886966A (en) * | 1981-11-17 | 1983-05-24 | Toyota Motor Corp | Casting method by forced cooling |
-
1984
- 1984-08-07 JP JP16549284A patent/JPS6142471A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5438583A (en) * | 1977-09-01 | 1979-03-23 | Nippon Telegr & Teleph Corp <Ntt> | Bracketing device for cable with alarm core |
JPS5886966A (en) * | 1981-11-17 | 1983-05-24 | Toyota Motor Corp | Casting method by forced cooling |
Also Published As
Publication number | Publication date |
---|---|
JPS6142471A (en) | 1986-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02205232A (en) | Method and apparatus for drawing-up continuous casting | |
JPH0138590B2 (en) | ||
JPS6359786B2 (en) | ||
AU633154B2 (en) | Method of controlling the rate of heat extraction in mould casting | |
US3485291A (en) | Method of casting by directional solidification | |
CN102350485A (en) | Device and process for repairing shrinkage holes during steel billet casting through intermediate-frequency electric heating | |
JPH07155897A (en) | Mold structure and casting method | |
JPS6359785B2 (en) | ||
JPS5850167A (en) | Prevention for clogging of sprue | |
JPH0456708B2 (en) | ||
US3287772A (en) | T-shaped external chill | |
SU453238A1 (en) | METHOD OF CASTING OF IRON ROLLS | |
JPH06304736A (en) | Heat insulating die for die cast or squeeze cast | |
JP2003010945A (en) | Device of casting wheel for automobile | |
JPS5952019B2 (en) | Small cylinder liner manufacturing method | |
KR100679313B1 (en) | Apparatus for continuous casting of Magnesium billet or slab using high frequency electromagnetic field | |
JP3339333B2 (en) | Method for forming molten metal | |
JPS62203660A (en) | Production of casting having fine crystal structure | |
JPH0242420Y2 (en) | ||
JPH03204163A (en) | Method and apparatus for casting sprue part by rapid cooling | |
SU1069942A1 (en) | Method of producing castings with structure axial orientation | |
Umemura | Controlled Solidification of Iron-Copper and Aluminum Castings by Using a Vibrator in the Mold | |
JPH0744374Y2 (en) | Aluminum alloy casting mold | |
SU1052322A1 (en) | Method of producing nonchilled iron castings | |
SU1068218A1 (en) | Method of producing hollow castings |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |