JPS6359783A - Driving method for ac servo control system - Google Patents

Driving method for ac servo control system

Info

Publication number
JPS6359783A
JPS6359783A JP61202659A JP20265986A JPS6359783A JP S6359783 A JPS6359783 A JP S6359783A JP 61202659 A JP61202659 A JP 61202659A JP 20265986 A JP20265986 A JP 20265986A JP S6359783 A JPS6359783 A JP S6359783A
Authority
JP
Japan
Prior art keywords
phase
excitation
count value
origin
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61202659A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Hirai
淳之 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP61202659A priority Critical patent/JPS6359783A/en
Publication of JPS6359783A publication Critical patent/JPS6359783A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To dispense with a pole sensor, by locking a motor by DC excitation in only a short period in power supply and by detecting the pole position with the positioning pulse at that time as its origin. CONSTITUTION:After the power supply, a switch 9 is turned so that the phase-U current command iuref may be switched to the current equivalent to rated torque and the phase-V current command ivref to-iuref, reading the count value PO from a counter 3 when a rotor is stopped. Then, after the base block is released, DC excitation is performed. There, when the rotor is stopped the count value PZ of the counter 3 is read to and the electric angle origin PORG from the count values PO and PZ. In normal operation, from a ROM 13 a phase angle phi is read against the difference between the electric angle origin PORG and every moment's count value Pi and from a ROM 12 sin phi and sin(phi+2/3pi) is read against the phase angle.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は永久磁石形同期機を用いたへCサーボ制御系に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a C servo control system using a permanent magnet type synchronous machine.

〔従来の技術〕[Conventional technology]

永久磁石形同期機のACサーボコントロールには磁極の
位置の検出が必要であり、通常の場合、モータシャフト
に取りつけられたボールセンサーの信号で誘起電圧の位
相を基準とする信号を作っている。
AC servo control of a permanent magnet synchronous machine requires detection of the position of the magnetic pole, and normally a signal based on the phase of the induced voltage is generated using a signal from a ball sensor attached to the motor shaft.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来、このボールセンサーにはインクリメンタルパルス
に加えて、磁極位置に位相を合わせた相パルスあるいは
GRAYコードパルスなどが用いられているが、いずれ
もセンサーの外形を大きくするばかりか、位相合わせに
かなりの時間と技術を要している。ボールセンサーを使
わずに投入時の短期間に、磁極位置と位相合わせされた
原点パルスがとらえられるまで、定格電流程度で加速す
るという方法も有るが、この場合にしても、原点パルス
の位相合わせが不可欠である。
Conventionally, in addition to incremental pulses, this ball sensor uses phase pulses or GRAY code pulses whose phase is matched to the magnetic pole position, but both of these methods not only increase the size of the sensor, but also require a considerable amount of time to adjust the phase. It requires time and skill. There is also a method of accelerating at about the rated current for a short period of time at the time of input without using a ball sensor until the origin pulse whose phase is aligned with the magnetic pole position is captured, but even in this case, the phase alignment of the origin pulse is essential.

〔問題点を解決す、るための手段〕[Means for solving problems]

本発明のACサーボ制御系の駆動方式は、正規駆動に先
立って同期機を二相直流励磁することにより安定点に停
止させ、その時のインクリメンタルエンコーダのカウン
ト値と直流励磁開始時点のカウント値から一相励磁原点
に相当するエンコーダカウントを計算し、以後このエン
コーダカウントからの偏差で同期機の電気角位相を求め
駆動するものである。
The driving method of the AC servo control system of the present invention is to stop the synchronous machine at a stable point by excitation with two-phase DC current prior to normal driving, and to make a difference between the count value of the incremental encoder at that time and the count value at the start of DC excitation. An encoder count corresponding to the origin of phase excitation is calculated, and thereafter, the electrical angle phase of the synchronous machine is determined and driven based on the deviation from this encoder count.

〔作 用〕[For production]

永久磁極形同期機モータの合成トルクでは、仮想的なト
ルク定数Ku 、Kv 、Kwを想定して、各相電流i
u、iv、iwとの空間位相に応じて次式で与えられる
In the composite torque of a permanent magnetic pole type synchronous machine motor, each phase current i is calculated by assuming virtual torque constants Ku, Kv, and Kw.
It is given by the following equation depending on the spatial phase of u, iv, and iw.

τ=Real  (Ku  iu  +Kv  iv 
 +Kw  iw )Kuを空間の基準ベクトルに取る
とKu=Ku、Xv=Kvej%π、Xw =Kw e
jy3πとなる。
τ=Real (Ku iu +Kv iv
+Kw iw ) Taking Ku as the reference vector of space, Ku=Ku, Xv=Kvej%π, Xw =Kw e
It becomes jy3π.

iuを時間的に変化しない直流とし、Kuどの位相角θ
だけを考える場合、了u =iej0と なる。ここで
、了v=−iej%q 、 −+、 = 0とすると(
1)式より合成トルクでは r=Real  (Ku iejθ−Kuie”π j
O=Ku  jReai  (cosO+ j  si
nθ−cos(θ十2π) + j 5in(θ十%π)) =にu  1(cosθ−cos (θ+yarc>>
=−IKu i  5in(θ+%π)sin(−%π
)= AKu  i  sin (θ+%π)    
   −−−(2)となる。
Let iu be a direct current that does not change over time, and the phase angle θ of Ku
When considering only Here, if we set 了v=-iej%q, -+, = 0(
From formula 1), the resultant torque is r=Real (Ku iejθ−Kuie”π j
O=Ku jReai (cosO+ j si
nθ−cos(θ12π) + j 5in(θ10%π)) = u 1(cosθ−cos (θ+yarc>>
=-IKu i 5in(θ+%π) sin(-%π
) = AKu i sin (θ+%π)
---(2) becomes.

すなわち、第3図におけるようにU相ボールの位置から
電気角θをなす空間にU相剋磁力を直流で作り、■相に
その逆極性の電流を流し、W相の電流二〇とすると、(
2)式で与えられるトルクでか発生する。ここで、合成
トルクでの符号はθ=nπ−%πで切替わる。この切替
わりがポテンシャルの安定状点く極大となる点)となる
That is, as shown in Fig. 3, if a U-phase magnetic force is created with direct current in a space forming an electrical angle θ from the position of the U-phase ball, and a current with the opposite polarity is passed through the ■ phase, and the W-phase current is 20, (
2) It is generated with the torque given by Eq. Here, the sign of the resultant torque changes as θ=nπ−%π. This switching is the point at which the potential reaches a stable state (the point at which it reaches a maximum).

ここで、外からトルクを与えない限り、このように二相
直流励磁した永久磁石形の同期電動機は値θにロータを
停止させる。
Here, unless torque is applied from the outside, the permanent magnet type synchronous motor excited with two-phase DC current will stop the rotor at the value θ.

更にθの前後で減速トルクを生じる条件より0くθ〈2
π(電気角一回転中)での停止位置は従って、極対数P
の同期機に対しては機械角一回転に対して、P個の停止
点を持つ。たたし、直流電流をステップ状に印加した時
はエネルギー最小で移動可能な近接点1点のみが選ばれ
停止する。いずれにせよ、これにより相の起点が判るか
ら、相パルスなしに同期機のドライブができる。
Furthermore, from the condition that generates deceleration torque before and after θ, θ〈2
Therefore, the stopping position at π (during one electrical rotation) is the number of pole pairs P
For a synchronous machine, there are P stopping points per mechanical rotation. However, when direct current is applied in a stepwise manner, only one nearby point that can be moved with the minimum energy is selected and stopped. In any case, this allows the starting point of the phase to be determined, allowing the synchronous machine to be driven without phase pulses.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明する
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の駆動方式が適用されたサーボモータ制
御系の一実施例のブロック図、第2図は本実施例におけ
る直流励磁による電気角原点PORG算出のフローチャ
ートである。
FIG. 1 is a block diagram of an embodiment of a servo motor control system to which the drive method of the present invention is applied, and FIG. 2 is a flowchart of calculating the electrical angle origin PORG by direct current excitation in this embodiment.

永久磁石形同期機1にはインクリメンタルシャフトエン
コーダ2か取付けられ、90°位相差のパルスPへ、 
PBと磁極位置に無関係な原点パルスPCを出力する。
An incremental shaft encoder 2 is attached to the permanent magnet type synchronous machine 1, which outputs pulses P with a 90° phase difference.
Outputs origin pulse PC that is unrelated to PB and magnetic pole position.

PGカウンタ3はP^、 PBパルスの位相関係を見て
アップカウント/ダウンカウントをするカウンタである
。乗算器7,8は補償器5、リミッタ6を経た電流指令
iにそれぞれsinφ。
The PG counter 3 is a counter that counts up/down by looking at the phase relationship between the P^ and PB pulses. Multipliers 7 and 8 apply sinφ to current command i that has passed through compensator 5 and limiter 6, respectively.

5in(φ+%π)を乗算してU相、■相の電流指令i
ur。f、1vrefとして出力する。乗算器10は直
流用電流指令1refに−1を乗算して、こわを■相′
屯電流指令1 verfとするものである。電流アンプ
11と乗算器7,8、乗算器IOの間にスイッチ9が設
けられており、直流励磁のときは乗算器lO1正規運転
のときは乗算器7.8が電流アンプ11に接続される。
Multiply by 5in (φ + %π) to obtain current command i for U phase and ■ phase.
ur. f, output as 1vref. The multiplier 10 multiplies the DC current command 1ref by -1 to reduce the stiffness to phase 1.
This is the current command 1 verf. A switch 9 is provided between the current amplifier 11, the multipliers 7 and 8, and the multiplier IO, and during DC excitation, the multiplier IO1 is connected to the multiplier 7.8 during normal operation. .

なお、このスイッチ9の切換えはソフトウェアにより行
なわれる。CPU4は直流励磁時、PGカウンタ3に割
込みをかけてロータ始点のカウント値Poとその後のカ
ウント値Pi(i=1.2.・・・。
Note that this switching of the switch 9 is performed by software. During DC excitation, the CPU 4 interrupts the PG counter 3 to set the count value Po at the rotor starting point and the subsequent count value Pi (i=1.2...).

n)を順次、読込んで、ロータ停止位置のカウント値P
sを求め、カウント値PoとPsから電機川原点P O
RGを求めて以後の正規運転時の制御に使う。
n) sequentially to obtain the count value P of the rotor stop position.
s is calculated, and from the count values Po and Ps, the electric river origin P O
RG is determined and used for control during normal operation thereafter.

ROM+3はこのようにして求められた電気角原点PO
RGとそれ以後の時々刻々のカウント値Piの符号も含
めた差(Pi−PORG)に対する位相角φの値が格納
されている。ROM12には位相角φに対する正弦関数
sinφ、 5in(φ+%π)の値か格納されている
ROM+3 is the electrical angle origin PO obtained in this way.
The value of the phase angle φ with respect to the difference (Pi−PORG) including the sign between RG and the subsequent count value Pi every moment is stored. The ROM 12 stores the value of a sine function sinφ, 5in(φ+%π) for the phase angle φ.

次に、本実施例における直流励磁による電気角原点算出
を第2図のフローチャートにより説明する。
Next, the calculation of the electrical angle origin by direct current excitation in this embodiment will be explained with reference to the flowchart of FIG.

電源投入後(ステップ21) 、 CPU4を含めた全
体の初期化を行なう(ステップ22)。次に、U相の電
流iur。fをj rated(定格トルク相当の電流
)、■相の電流指令1 vrefを−1uref(°、
−iw= O)としくステップ23) 、 PGカウン
タ3からロータ停止時のカウント値Poを読込み(ステ
ップ24)、ベースブロックを解除した後(ステップ2
5)、直流励磁を行なう(ステップ26)。このとき、
スイッチ9は当然のことながら、乗算器IO側に切換え
られている。そして、PGカウンタ3のカウント値Pi
を順次読込み(ステップ27)、前回の値との差の絶対
値が設定値βより小さいかどうかを判定しくステップ2
8)、小さければロータが停止したものとしてこの時の
カウント値Piをカウント値Psとする(ステップ29
)。次に、このパルスカウント値Psと始点のカウント
値POから電気角原点PORGを求める(ステップ30
〜32)。初期の直流励磁によりロータは最大でl/2
P回転(Pはボール対数)して停止するが、回転の方向
により、パルスカウントで表現した電気角原点P OR
Gの算出を分ける必要がある。すなわち、第4図におい
て、パルスカウントがCCWにてアップ、CWにてダウ
ンであり電気角360°相当のパルスカウントをP 3
60とすると、ケースA (COWに加速して停止)・
・−Ps−Pol。
After the power is turned on (step 21), the entire system including the CPU 4 is initialized (step 22). Next, the U-phase current iur. f is j rated (current equivalent to rated torque), ■ phase current command 1 vref is -1 uref (°,
-iw=O), then read the count value Po when the rotor is stopped from the PG counter 3 (step 24), and then release the base block (step 2).
5) Perform DC excitation (step 26). At this time,
The switch 9 is naturally switched to the multiplier IO side. Then, the count value Pi of the PG counter 3
are sequentially read (step 27), and it is determined whether the absolute value of the difference from the previous value is smaller than the set value β.Step 2
8), if it is smaller, it is assumed that the rotor has stopped, and the count value Pi at this time is set as the count value Ps (step 29).
). Next, the electrical angle origin PORG is determined from this pulse count value Ps and the count value PO at the starting point (step 30
~32). Due to initial DC excitation, the rotor is at most l/2
It rotates P (P is the logarithm of the ball) and stops, but depending on the direction of rotation, the electrical angle origin P OR expressed as a pulse count
It is necessary to separate the calculation of G. That is, in Fig. 4, the pulse count is up in CCW and down in CW, and the pulse count corresponding to 360 degrees of electrical angle is P3.
60, case A (accelerates to COW and stops)・
-Ps-Pol.

PORG =Ps+ P360 /3 ケースB(GWに加速して停止)・・・Ps −Po<
 0PORG =pS−P360 /3 と判別する必要がある。これは直流励磁のiwのベクト
ルの向きが180°反転する時を想定するものである。
PORG = Ps + P360 /3 Case B (accelerates to GW and stops)...Ps - Po<
It is necessary to determine that 0PORG=pS-P360/3. This assumes that the direction of the vector of DC excitation iw is reversed by 180 degrees.

この後、ベースブロックしくステップ33)、求められ
た電気角原点PORGとそれ以後の時々刻々のパルスカ
ウント値Piとの符号も含めた差(Pi−PORG)か
らl(OMI3を参照し、その出力φでl(0M12を
参照することにより sinφ、 5in(φ+2π/
3)の値が求められ、スムーズな正弦波電流駆動が可能
となる。なお、多回転にわたる位置の累積誤差は、原点
パルスとの相対位置で洗うことにより避けられる。
After this, in base block step 33), from the difference (Pi-PORG) including the sign between the electrical angle origin PORG and the subsequent pulse count value Pi at every moment, l (with reference to OMI3) is output. By referring to l(0M12) in φ, sinφ, 5in(φ+2π/
The value of 3) is determined, and smooth sinusoidal current driving becomes possible. Incidentally, the cumulative error in position over multiple rotations can be avoided by checking the position relative to the origin pulse.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、電源投入時のわずかな間
の直流励磁によりモータをロックし、その点の位置パル
スを原点としてポール位置検出を行なうことにより以下
のような効果がある。
As explained above, the present invention has the following effects by locking the motor by direct current excitation for a short time when the power is turned on, and detecting the pole position using the position pulse at that point as the origin.

■シャフトエンコーダから相パルス信号発生器分のハー
ドウェアが除去でき、軽量化が画られる。
■The hardware for the phase pulse signal generator can be removed from the shaft encoder, resulting in weight reduction.

■位相合わせの作業の工数が低減される。■Reduced man-hours for phase matching work.

■あらゆるポール数の永久磁石形同期機の運転がソフト
ウェアによる対応にて可能となる。
■It is possible to operate permanent magnet type synchronous machines with any number of poles using software.

■直流励磁したもとで、モータシャフト軸を負荷器で回
し、負荷器電流の変動を監視し、直流励磁によるポテン
シャルの鞘状点を数える(負荷入力電流の山の数がポテ
ンシャルの鞘状点の個数に対応)ことによりポール数が
不明なモータもそのポール数が判るため、インクリメン
タルエンコーダの1回転当りのパルス数さえわかれば、
どんな永久磁石形同期機にも適用可能である。
■ Rotate the motor shaft shaft with a load device under DC excitation, monitor the fluctuation of the load device current, and count the potential sheath points due to DC excitation (the number of peaks of the load input current is the potential sheath point (corresponds to the number of poles), so even if the number of poles is unknown for a motor, the number of poles can be determined.As long as the number of pulses per rotation of the incremental encoder is known,
It can be applied to any permanent magnet type synchronous machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の駆動方式が適用されたサーボモータ制
御系の一実施例のブロック図、第2図は第1図の実施例
における直流励磁による電気角原点P ORG算出のフ
ローチャート、第3図はトルク定数と電流ベクトルの位
相関係を示す図、第4図は直流励磁による停止位置と電
気角原点P 0f(Gを示す図である。 1・・・同期機、 2・・・インクリメンタルシャフトエンコーダ、3・・
・PGカウンタ、    4・・・cpu 。
FIG. 1 is a block diagram of an embodiment of a servo motor control system to which the drive method of the present invention is applied, FIG. 2 is a flowchart for calculating the electrical angle origin P ORG by DC excitation in the embodiment of FIG. The figure shows the phase relationship between the torque constant and the current vector, and Fig. 4 shows the stop position due to DC excitation and the electrical angle origin P0f (G. 1...Synchronous machine, 2...Incremental shaft Encoder, 3...
・PG counter, 4...cpu.

Claims (1)

【特許請求の範囲】[Claims] 永久磁石形同期機を用いたACサーボ制御系において、
正規駆動に先立って同期機を二相直流励磁することによ
り安定点に停止させ、その時のインクリメンタルエンコ
ーダのカウント値と直流励磁開始時点のカウント値から
一相励磁原点に相当するエンコーダカウントを計算し、
このエンコーダカウント以後からの偏差で同期機の電気
角位相を求め駆動することを特徴とするACサーボ制御
系の駆動方式。
In an AC servo control system using a permanent magnet type synchronous machine,
Prior to normal driving, the synchronous machine is stopped at a stable point by two-phase DC excitation, and the encoder count corresponding to the one-phase excitation origin is calculated from the incremental encoder count value at that time and the count value at the start of DC excitation.
A driving method for an AC servo control system characterized in that the electrical angle phase of the synchronous machine is determined and driven based on the deviation after the encoder count.
JP61202659A 1986-08-30 1986-08-30 Driving method for ac servo control system Pending JPS6359783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202659A JPS6359783A (en) 1986-08-30 1986-08-30 Driving method for ac servo control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202659A JPS6359783A (en) 1986-08-30 1986-08-30 Driving method for ac servo control system

Publications (1)

Publication Number Publication Date
JPS6359783A true JPS6359783A (en) 1988-03-15

Family

ID=16461013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202659A Pending JPS6359783A (en) 1986-08-30 1986-08-30 Driving method for ac servo control system

Country Status (1)

Country Link
JP (1) JPS6359783A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088164A (en) * 2001-09-12 2003-03-20 Shi Control Systems Ltd Detecting method for phase of synchronous motor and controller for synchronous motor
US7800336B2 (en) 2007-03-14 2010-09-21 Sanyo Denki Co., Ltd. Control system for synchronous electric motor
JP2012522476A (en) * 2009-03-27 2012-09-20 ベックホフ オートメーション ゲーエムベーハー Method and amplifier for operating a synchronous motor
JP2013066324A (en) * 2011-09-20 2013-04-11 Panasonic Corp Motor control device
JP2016039666A (en) * 2014-08-06 2016-03-22 株式会社デンソー Control apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446525A (en) * 1977-09-20 1979-04-12 Hitachi Denshi Ltd Driving device for dc motor
JPS6082092A (en) * 1983-10-11 1985-05-10 Sanyo Electric Co Ltd Starting method of motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5446525A (en) * 1977-09-20 1979-04-12 Hitachi Denshi Ltd Driving device for dc motor
JPS6082092A (en) * 1983-10-11 1985-05-10 Sanyo Electric Co Ltd Starting method of motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003088164A (en) * 2001-09-12 2003-03-20 Shi Control Systems Ltd Detecting method for phase of synchronous motor and controller for synchronous motor
JP4659298B2 (en) * 2001-09-12 2011-03-30 住友重機械工業株式会社 Synchronous motor phase detection method and synchronous motor control device
US7800336B2 (en) 2007-03-14 2010-09-21 Sanyo Denki Co., Ltd. Control system for synchronous electric motor
JP2012522476A (en) * 2009-03-27 2012-09-20 ベックホフ オートメーション ゲーエムベーハー Method and amplifier for operating a synchronous motor
JP2013066324A (en) * 2011-09-20 2013-04-11 Panasonic Corp Motor control device
JP2016039666A (en) * 2014-08-06 2016-03-22 株式会社デンソー Control apparatus

Similar Documents

Publication Publication Date Title
JP3408468B2 (en) Method for detecting rotor magnetic pole position of synchronous motor
US5296794A (en) State observer for the permanent-magnet synchronous motor
US8330403B2 (en) Method for determining the position of the flux vector of a motor
US6639371B2 (en) Method and system for controlling start of a permanent magnet machine
US6566830B2 (en) Method and system for controlling a permanent magnet machine
US6738718B2 (en) Method and apparatus for measuring torque and flux current in a synchronous motor
KR20050083958A (en) Motor and drive control device therefor
US6774592B2 (en) Method and system for controlling a permanent magnet machine
JP4010195B2 (en) Control device for permanent magnet synchronous motor
US6498452B1 (en) Starting procedure of open-loop vector control in synchronous machine
JP2003284389A (en) Drive unit for stepping motor
JP3526846B2 (en) Driving device for stepping motor
US10807640B2 (en) Motor control apparatus and method of motor driven power steering system
JP2006158198A (en) Motor drive control device and electric power steering apparatus
JP3503894B2 (en) Driving device for stepping motor
JPS6359783A (en) Driving method for ac servo control system
JP2004274855A (en) Method and device for detection and adjustment of rotor position
JP2003079185A (en) Permanent magnet type synchronous motor control equipment
JP2764002B2 (en) Position control system
JP5479094B2 (en) Synchronous motor control method and control apparatus
JP3649329B2 (en) Stepping motor drive device
Chretien et al. Position sensorless control of non-salient pmsm from very low speed to high speed for low cost applications
JP2019129600A (en) Control device
WO2022168340A1 (en) Motor control device
JP5095277B2 (en) Synchronous motor drive device