JP5479094B2 - Synchronous motor control method and control apparatus - Google Patents

Synchronous motor control method and control apparatus Download PDF

Info

Publication number
JP5479094B2
JP5479094B2 JP2009521582A JP2009521582A JP5479094B2 JP 5479094 B2 JP5479094 B2 JP 5479094B2 JP 2009521582 A JP2009521582 A JP 2009521582A JP 2009521582 A JP2009521582 A JP 2009521582A JP 5479094 B2 JP5479094 B2 JP 5479094B2
Authority
JP
Japan
Prior art keywords
axis
synchronous motor
current
command
axis armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009521582A
Other languages
Japanese (ja)
Other versions
JPWO2009004944A1 (en
Inventor
利之 浅生
祐樹 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THK Co Ltd
Original Assignee
THK Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THK Co Ltd filed Critical THK Co Ltd
Priority to JP2009521582A priority Critical patent/JP5479094B2/en
Publication of JPWO2009004944A1 publication Critical patent/JPWO2009004944A1/en
Application granted granted Critical
Publication of JP5479094B2 publication Critical patent/JP5479094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、界磁に永久磁石を用いる同期モータの制御方法及び制御装置に関する。   The present invention relates to a synchronous motor control method and control apparatus using a permanent magnet as a field.

サーボモータに使われる同期モータは、永久磁石で界磁磁束を作り、界磁磁束と合成ベクトルが直交するように3相電機子電流を流すことによって、推力を発生させる。サーボモータのシステムのブロック図を図7に示す。同期モータ31と、それに電力を供給する電圧型PWMインバータ等の電力変換器32、電力変換器32が同期モータ31に供給する電圧、あるいは流す電流の位相を決定するための位相検出器33、及び電流制御を行うための電流制御器34が基本構成になる。速度制御を行う場合はそのための速度検出器35、さらに位置制御を行う場合はそのための位置検出器36が付加される。位相検出器33、速度検出器35、位置検出器36は共用されることが多い。   A synchronous motor used for a servo motor generates a thrust by generating a field magnetic flux with a permanent magnet and passing a three-phase armature current so that the field magnetic flux and the composite vector are orthogonal to each other. A block diagram of the servo motor system is shown in FIG. A synchronous motor 31, a power converter 32 such as a voltage-type PWM inverter that supplies power to the synchronous motor 31, a voltage supplied to the synchronous motor 31 by the power converter 32, or a phase detector 33 for determining the phase of the flowing current; A current controller 34 for performing current control is a basic configuration. A speed detector 35 is added for speed control, and a position detector 36 is added for position control. The phase detector 33, the speed detector 35, and the position detector 36 are often shared.

同期モータの回路方程式の中で最も扱い易いのは、電圧、電流などを直流量であるd−q座標で表したものである。d−q座標においては、界磁の作る磁束の方向がd軸であり、d軸に対してπ/2進んだ位相がq軸である。可動部に働く推力はq軸電機子に流れる電流に比例する。位相検出器33を用いた従来のサーボモータにおいて、q軸電機子電流は、必要なトルクが得られるように制御される。d軸は、界磁の磁束の方向であるので、d軸電機子電流は、通常は流れないように制御される。電流制御器34は、位相検出器33から現在の磁極の位置(d軸の位置)を算出し、磁極位置からπ/2ずれた位置にあるq軸電機子へ電流を流し、可動部が滑らかに動作するように制御する。サーボモータを用いると、正確な位置決め制御ができるし、トルクに応じて電流の大小を制御できるので、モータ効率がよく、消費電力を小さくすることができるという利点がある。   In the circuit equation of the synchronous motor, the easiest to handle is the voltage, current, etc., expressed in dq coordinates, which are direct current quantities. In the dq coordinate, the direction of the magnetic flux generated by the field is the d axis, and the phase advanced by π / 2 with respect to the d axis is the q axis. The thrust acting on the movable part is proportional to the current flowing through the q-axis armature. In the conventional servo motor using the phase detector 33, the q-axis armature current is controlled so as to obtain a necessary torque. Since the d-axis is the direction of the magnetic flux of the field, the d-axis armature current is normally controlled so as not to flow. The current controller 34 calculates the current magnetic pole position (d-axis position) from the phase detector 33, and flows current to the q-axis armature that is shifted by π / 2 from the magnetic pole position, so that the movable part is smooth. Control to work. When a servo motor is used, accurate positioning control can be performed, and since the magnitude of the current can be controlled according to the torque, there are advantages that the motor efficiency is good and the power consumption can be reduced.

しかし、d−q座標を用いたフィードバック制御を行うためには、エンコーダやパルスジェネレータなどの高価な位置検出器(又は磁気センサなどの位相検出器)が必要になる。磁極の位置(d軸の位置)を知らないと、3相交流/d−q座標変換器37が、3相交流電流をd軸,q軸電機子電流に座標変換することができないし、d−q座標/3相交流変換器38が、d軸,q軸電機子電流を3相交流電流に座標変換できないからである。   However, in order to perform feedback control using dq coordinates, an expensive position detector such as an encoder or a pulse generator (or a phase detector such as a magnetic sensor) is required. If the position of the magnetic pole (d-axis position) is not known, the three-phase AC / dq coordinate converter 37 cannot coordinate-convert the three-phase AC current into the d-axis and q-axis armature current, and d This is because the -q coordinate / 3-phase AC converter 38 cannot coordinate-convert the d-axis and q-axis armature currents into 3-phase AC currents.

位置検出器を用いることなく、同期モータの位置を制御する回路として、位置センサレス制御回路が知られている(例えば特許文献1参照)。位置センサレス制御は、モータに流れるモータ電流を検出し、モータ電流を用いてモータの回転子位置を推定し、モータを指令に応じた回転速度で回転させるための信号をPWMインバータに与える。   A position sensorless control circuit is known as a circuit for controlling the position of a synchronous motor without using a position detector (see, for example, Patent Document 1). In the position sensorless control, a motor current flowing in the motor is detected, the rotor position of the motor is estimated using the motor current, and a signal for rotating the motor at a rotation speed according to the command is given to the PWM inverter.

この他にも、位置検出器を用いることなく、モータの位置を制御する方法として、駆動回路への入力パルス数によって、モータの回転角度をオープンループ制御するパルスモータも知られている。
特開2006−67656号公報
In addition, as a method for controlling the position of the motor without using a position detector, a pulse motor that performs open-loop control of the rotation angle of the motor based on the number of input pulses to the drive circuit is also known.
JP 2006-67656 A

しかし、位置センサレス制御回路においては、実軸(d−q座標軸)上での電圧方程式を制御軸(δ−γ座標軸)上の電圧方程式に座標変換するなどの必要があり、制御が複雑になるという問題がある。   However, in the position sensorless control circuit, it is necessary to coordinate-transform the voltage equation on the real axis (dq coordinate axis) into the voltage equation on the control axis (δ-γ coordinate axis), and the control becomes complicated. There is a problem.

また、パルスモータは、正確な位置決めを実現できるものの、歯車状の特殊な回転子を必要とするので、モータ自体が高価になったり、大型化したりするという問題がある。   In addition, although the pulse motor can realize accurate positioning, it requires a gear-shaped special rotor, and thus there is a problem that the motor itself becomes expensive or large.

そこで、本発明は、位置検出器を不要とし、制御も容易な新たな同期モータの制御装置及び方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a new synchronous motor control apparatus and method that eliminates the need for a position detector and is easy to control.

上記課題を解決するために、請求項1に記載の発明は、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd−q座標を用いた同期モータの制御方法において、上位からの位置指令から駆動させる永久磁石の磁極位置指令であるd軸指令を算出し前記d軸指令に基づいて、同期モータの帰還電流をd軸電機子電流及びq軸電機子電流に変換し、d軸電機子に一定の電流が流れ、かつq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御して、前記永久磁石の磁極位置を前記磁極位置指令に引き付け、前記上位からの前記位置指令を変化させることによって、前記同期モータを駆動させる同期モータの制御方法である。 In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a dq coordinate having a direction of magnetic flux generated by a field as a d-axis and a phase advanced by π / 2 with respect to the d-axis as a q-axis. In the synchronous motor control method used , a d-axis command, which is a magnetic pole position command of a permanent magnet to be driven, is calculated from a position command from the host, and a feedback current of the synchronous motor is calculated based on the d-axis command. into a current and q-axis armature current, constant current flows in the d-axis armature, and so no current flows in the q-axis armature, by controlling the d-axis armature current and the q-axis armature current The synchronous motor control method drives the synchronous motor by attracting the magnetic pole position of the permanent magnet to the magnetic pole position command and changing the position command from the higher order .

請求項2に記載の発明は、界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd−q座標を用いた同期モータの制御装置において、上位からの位置指令から駆動させる永久磁石の磁極位置指令であるd軸指令を算出する位相生成手段と、同期モータに流れる3相交流電流を検出する電流検出器と、前記位相生成手段が算出した前記d軸指令に基づいて、前記電流検出器が検出した3相交流電流を、d軸電機子電流及びq軸電機子電流に座標変換する3相交流/d−q座標変換手段と、d軸電機子に一定の電流が流れ、かつq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御して、前記永久磁石の磁極位置を前記磁極位置指令に引き付ける電流制御手段と、を備え、前記上位からの前記位置指令を変化させることによって、前記同期モータを駆動させる同期モータの制御装置である。 According to a second aspect of the present invention, there is provided a synchronous motor control apparatus using dq coordinates in which the direction of the magnetic flux generated by the field is d-axis and the phase advanced by π / 2 with respect to the d-axis is q-axis. , a phase generation means for calculating a d-axis command is pole position command of the permanent magnet to be driven from the position command from the host, a current detector for detecting a three-phase alternating current flowing through the synchronous motor, the phase generating means calculates Three-phase alternating current / dq coordinate conversion means for converting the three-phase alternating current detected by the current detector into a d-axis armature current and a q-axis armature current based on the d-axis command , d The d-axis armature current and the q-axis armature current are controlled so that a constant current flows through the shaft armature and no current flows through the q-axis armature, and the magnetic pole position of the permanent magnet is set to the magnetic pole position command. and a current control means for attracting the said from the host By varying the置指age, a control system for a synchronous motor for driving the synchronous motor.

請求項に記載の発明は、請求項に記載の同期モータの制御装置において、さらに、前記同期モータの位置を検出する位置検出器と、位置指令と前記検出器が検出した前記同期モータの位置とを比較して、前記同期モータが位置指令のとおりに動いていないときに、前記d軸電機子に流れる電流値を大きくするか、又はd軸の電気角を変化させる位置判定手段と、を備えることを特徴とする。 According to a third aspect of the present invention, in the synchronous motor control device according to the second aspect of the present invention, a position detector that detects a position of the synchronous motor, a position command, and the synchronous motor detected by the detector. A position determination means for comparing the position and increasing the value of the current flowing through the d-axis armature or changing the electrical angle of the d-axis when the synchronous motor is not moving according to the position command; It is characterized by providing.

請求項に記載の発明は、請求項1に記載の同期モータの制御方法によって制御された同期モータである。 According the invention described in claim 4 is a synchronous motor controlled by the control method of the synchronous motor according to claim 1.

本発明によれば、位置指令に対応した電気角を生成し、d軸電機子に電流を流し、q軸電機子に電流を流さないように制御するので、位置指令の電気角に磁極の位置(d軸の位置)を引き付けて止めることができる。そして、電気角を連続的に変化させることによって、同期モータを駆動させることができる。   According to the present invention, the electrical angle corresponding to the position command is generated, and the current is supplied to the d-axis armature and the current is not supplied to the q-axis armature. (D-axis position) can be attracted and stopped. And a synchronous motor can be driven by changing an electrical angle continuously.

本発明の実施例である回転界磁形の同期モータを示す概略図Schematic showing a rotating field type synchronous motor that is an embodiment of the present invention 本発明の実施例である可動コイル型の同期リニアモータを示す概略図BRIEF DESCRIPTION OF THE DRAWINGS Schematic which shows the moving coil type synchronous linear motor which is an Example of this invention 本発明の実施例であるd−q座標で表した同期モータの等価回路An equivalent circuit of a synchronous motor represented by dq coordinates according to an embodiment of the present invention 本発明の第一の実施形態の、d−q座標系を用いた制御装置のブロック図The block diagram of the control apparatus using dq coordinate system of 1st embodiment of this invention. 本発明の実施例であるd−q座標で表された同期モータの動作図(図中(a)は従来の同期モータの動作図を示し、図中(b)は本実施形態のモータの動作図を示す)Operational diagram of a synchronous motor represented by dq coordinates according to an embodiment of the present invention ((a) in the figure shows an operation diagram of a conventional synchronous motor, and (b) in the figure shows an operation of the motor of this embodiment) (Show figure) 本発明の第二の実施形態の制御装置のブロック図The block diagram of the control apparatus of 2nd embodiment of this invention 従来のサーボモータのシステムのブロック図Block diagram of a conventional servo motor system

符号の説明Explanation of symbols

11…位置制御器
12…q軸電機子電流制御器(電流制御手段)
13…d軸電機子電流制御器(電流制御手段)
14…位相検出器(位相生成手段)
15…電力変換器
16…ベクトル回転器・3相交流/d−q座標変換器
17…電流検出器
19…ベクトル回転器・d−q座標/3相交流変換器
20…同期モータ
21…位置検出器
24…位置判定器(位置判定手段)
11 ... Position controller 12 ... q-axis armature current controller (current control means)
13 ... d-axis armature current controller (current control means)
14: Phase detector (phase generating means)
DESCRIPTION OF SYMBOLS 15 ... Power converter 16 ... Vector rotator and 3 phase alternating current / dq coordinate converter 17 ... Current detector 19 ... Vector rotator and dq coordinate / 3 phase alternating current converter 20 ... Synchronous motor 21 ... Position detection 24: Position determination device (position determination means)

以下添付図面に基づいて本発明の一実施形態の同期モータの制御装置を詳細に説明する。制御の対象となる同期モータには、界磁に永久磁石を使用する永久磁石同期モータを使用する。永久磁石同期モータには、図1に示されるような回転界磁形の同期モータを用いてもよいし、図2に示されるような可動コイル型の同期リニアモータを使用してもよい。回転界磁形の同期モータにおいては、電機子巻線1に3相交流電流を流すことによって、界磁をつくる永久磁石2が回転する。可動コイル型同期リニアモータにおいては、固定子3側にN極とS極の永久磁石4が交互に配置され、可動子5側にU,V,W相のコイル6が巻かれる。コイル6に3相電機子電流を流すことによって、直線的に移動する移動界磁が発生し、可動子5が固定子3に対して直線的に移動する。   Hereinafter, a synchronous motor control apparatus according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. As a synchronous motor to be controlled, a permanent magnet synchronous motor that uses a permanent magnet as a field magnet is used. As the permanent magnet synchronous motor, a rotating field type synchronous motor as shown in FIG. 1 may be used, or a moving coil type synchronous linear motor as shown in FIG. 2 may be used. In the rotating field type synchronous motor, by passing a three-phase alternating current through the armature winding 1, the permanent magnet 2 that creates the field rotates. In the moving coil type synchronous linear motor, N-pole and S-pole permanent magnets 4 are alternately arranged on the stator 3 side, and U, V, and W-phase coils 6 are wound on the mover 5 side. By passing a three-phase armature current through the coil 6, a moving field that moves linearly is generated, and the mover 5 moves linearly with respect to the stator 3.

界磁が回転する回転界磁形の同期モータでも、界磁が直線的に移動する可動コイル型の同期リニアモータでも、回転座標のd−q座標系を用いて、d,q軸電機子電流を制御することができる。同期モータの固定された部分と可動する部分をともに、回転する直交座標へ変換するのがd−q変換であり、その座標系がd−q座標系である。q軸はd軸に対してπ/2進んだ位相にある。同期モータの場合、d軸は界磁の作る磁束の方向に採るのが一般的である。   Whether a rotating field type synchronous motor in which a field rotates or a moving coil type synchronous linear motor in which a field moves linearly, the d and q axis armature currents are obtained using the dq coordinate system of rotating coordinates. Can be controlled. The dq conversion converts both the fixed part and the movable part of the synchronous motor into rotating orthogonal coordinates, and the coordinate system is the dq coordinate system. The q axis is in a phase advanced by π / 2 with respect to the d axis. In the case of a synchronous motor, the d-axis is generally taken in the direction of the magnetic flux generated by the field.

図3は、d−q座標で表した同期モータの等価回路である。図3において、vda,vqaはd,q軸電機子電圧、ida,iqaはd,q軸電機子電流,φfaは電機子巻線鎖交磁束数,Rは電機子巻線抵抗,Lは電機子巻線の自己インダクタンスである。この等価回路から電圧、電流、インピーダンスの関係式、すなわち回路方程式を求めると、

Figure 0005479094
となる。この式の右辺第2項は、永久磁石の界磁によってd,q軸電機子巻線に誘起する速度起電力eda,eqaを表しており、eda=0,eqa=ωreφfaである。図3は、電機子巻線がDCモータのように整流子に接続されて半径方向に無数にあり、それらに界磁と同じ速度で回転するd,q軸上に配置されたブラシを通してvda,vqaが印加され、ida,iqaが流れるということを示している。vda,vqaを直流電圧にすれば、ida,iqaも直流電圧になり、2軸直流で扱える。FIG. 3 is an equivalent circuit of a synchronous motor represented by dq coordinates. In FIG. 3, v da and v qa are d and q axis armature voltages, i da and i qa are d and q axis armature currents, φ fa is the number of armature winding interlinkage magnetic fluxes, and R a is an armature winding. line resistance, L a is the self-inductance of the armature winding. From this equivalent circuit, a relational expression of voltage, current, impedance, that is, a circuit equation is obtained.
Figure 0005479094
It becomes. The second term on the right side of this equation represents the speed electromotive forces e da and e qa induced in the d and q axis armature windings by the field of the permanent magnet, and e da = 0 and e qa = ω re φ fa . FIG. 3 shows that the armature windings are connected to a commutator like a DC motor and are innumerable in the radial direction, and v da is passed through brushes arranged on the d and q axes rotating at the same speed as the field. , V qa is applied and i da , i qa flows. If v da and v qa are set to DC voltages, i da and i qa also become DC voltages and can be handled by two-axis DC.

数1式を状態方程式(微分方程式)に変形すると、

Figure 0005479094
が得られる。When transforming Equation 1 into a state equation (differential equation),
Figure 0005479094
Is obtained.

この式は、d,q軸電機子電圧であるvdaとvqaで、d,q軸電機子電流であるida,iqaを制御できることを意味している。This equation means that d da and q axis armature currents i da and i qa can be controlled by d da and q axis armature voltages v da and v qa .

図4は、本発明の第一の実施形態の、d−q座標系を用いた制御装置のブロック図を示す。本実施形態の制御装置は、同期モータを駆動するにあたり、位置検出器を使用せず、同期モータのd軸(永久磁石の磁束の方向)に一定の電流を常時流し、オープンループで同期モータを駆動する。   FIG. 4 is a block diagram of a control apparatus using the dq coordinate system according to the first embodiment of the present invention. When driving the synchronous motor, the control device of this embodiment does not use a position detector, and always allows a constant current to flow through the d-axis (the direction of the magnetic flux of the permanent magnet) of the synchronous motor. To drive.

制御装置は、位置指令を受ける位置制御器11、q軸,d軸電機子電流を制御する電流制御手段であるq軸,d軸電機子電流制御器12,13、位置指令に応じた電気角を生成する位相生成手段である位相検出器14、q軸,d軸電機子電圧指令に応じて、同期モータに電力を供給する電圧形PWMインバータなどの電力変換器15を備える。   The control device includes a position controller 11 that receives a position command, q-axis and d-axis armature current controllers 12 and 13 that are current control means for controlling q-axis and d-axis armature currents, and an electrical angle corresponding to the position command. The phase detector 14 is a phase generation means for generating a power converter 15 such as a voltage-type PWM inverter that supplies power to the synchronous motor in accordance with q-axis and d-axis armature voltage commands.

コンピュータなどの上位制御装置から、位置指令θ rmが位置制御器11に与えられる。位置制御器11は、位置指令θ rmを位相検出器14に出力する。位相検出器14は、位置指令に対応した電気角θ reを算出し、電気角θ reを3相交流/d−q座標変換手段であるベクトル回転器・3相交流/d−q座標変換器16に出力する。ベクトル回転器・3相交流/d−q座標変換器16は、電気角θ reに基づいて、電流検出器17からの3相帰還電流値iu,iv,iwを、q軸電機子電流iqaとd軸電機子電流idaに変換する。A position command θ * rm is given to the position controller 11 from a host control device such as a computer. The position controller 11 outputs the position command θ * rm to the phase detector 14. The phase detector 14 calculates the electric angle theta * re corresponding to the position command, the vector rotator, 3-phase AC / d-q coordinate is a three-phase AC / d-q coordinate conversion unit the electrical angle theta * re Output to the converter 16. The vector rotator / three-phase AC / dq coordinate converter 16 converts the three-phase feedback current values iu, iv, iw from the current detector 17 to the q-axis armature current i based on the electrical angle θ * re. qa and d-axis armature current i da are converted.

q軸電機子電流制御器12は、q軸電機子電流指令とq軸電機子電流iqaとの偏差を取り、q軸電機子電圧の指令値v qaを演算する。ここで、q軸電機子電流指令は、0に設定される。q軸電機子電流制御器12は、q軸電機子電流iqaが0になるように、q軸電機子電流iqaを制御する。従来のサーボモータにおいては、必要とするトルクに応じてq軸電機子電流指令が可変していたが、本実施形態では、q軸電機子電流指令が常に0に設定されることに特徴がある。The q-axis armature current controller 12 calculates a difference between the q-axis armature current command and the q-axis armature current i qa and calculates a command value v * qa of the q-axis armature voltage. Here, the q-axis armature current command is set to zero. The q-axis armature current controller 12 controls the q-axis armature current i qa so that the q-axis armature current i qa becomes zero. In the conventional servo motor, the q-axis armature current command is variable according to the required torque. However, the present embodiment is characterized in that the q-axis armature current command is always set to 0. .

d軸電機子電流制御器13は、d軸電機子電流指令とd軸電機子電流idaとの偏差を取り、d軸電機子電圧の指令値v daを演算する。ここで、d軸電機子電流指令は一定の電流値、例えば同期モータの定格電流に設定される。定格電流とは、同期モータに長時間電流を流しても同期モータが焼けない電流値である。従来のサーボモータにおいては、d軸電流指令i daは通常0に設定されるが、本実施形態では、一定の電流値に設定されることに特徴がある。The d-axis armature current controller 13 calculates a deviation between the d-axis armature current command and the d-axis armature current i da and calculates a command value v * da of the d-axis armature voltage. Here, the d-axis armature current command is set to a constant current value, for example, a rated current of the synchronous motor. The rated current is a current value at which the synchronous motor does not burn even if a current is passed through the synchronous motor for a long time. In the conventional servo motor, the d-axis current command i * da is normally set to 0, but this embodiment is characterized by being set to a constant current value.

ベクトル回転器・d−q座標/3相交流変換器19は、これらの電圧指令v da,v qa及び電気角θ reに基づいて、3相電圧指令v ,v ,v を出力する。電力変換器15は、これらの電圧指令に基づいて、出力電圧をPWM制御し、同期モータ20に流れる電流を制御する。The vector rotator / dq coordinate / 3-phase AC converter 19 is based on the voltage commands v * da , v * qa and the electrical angle θ * re , so that the three-phase voltage commands v * u , v * v , Outputs v * w . The power converter 15 performs PWM control on the output voltage based on these voltage commands, and controls the current flowing through the synchronous motor 20.

図5は、実施形態であるd−q座標で表された同期モータの動作図を示す。図5(a)が位置検出器を用いた従来のフィードバック制御の動作図を示し、図5(b)が位置検出器を使用しない本実施形態のオープンループ制御の動作図を示す。従来のフィードバック制御においては、d軸電機子電流を0にし、q軸電機子電流を必要なトルクに合わせた値になるように制御していた。q軸電機子に電流を流すことで、トルクが発生し、同期モータ20の永久磁石23が回転していた((a1)→(a2)→(a3))。d軸の位置(磁極位置)は、位置検出器が検出した位置情報から算出されていた。   FIG. 5 shows an operation diagram of the synchronous motor represented by dq coordinates according to the embodiment. FIG. 5A shows an operation diagram of the conventional feedback control using the position detector, and FIG. 5B shows an operation diagram of the open loop control of the present embodiment in which the position detector is not used. In conventional feedback control, the d-axis armature current is set to 0, and the q-axis armature current is controlled to a value that matches the required torque. Torque was generated by passing a current through the q-axis armature, and the permanent magnet 23 of the synchronous motor 20 was rotating ((a1) → (a2) → (a3)). The d-axis position (magnetic pole position) has been calculated from position information detected by the position detector.

これに対して、本実施形態のオープンループ制御においては、まず、位置指令から駆動させる永久磁石23の磁極位置指令22(d軸指令)を算出する。そして、d軸電機子に一定の電流を流し、q軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御する。そうすると、永久磁石23の磁極位置(d軸の位置)は、磁極位置指令22に引き付けられて磁極位置指令22の位置で止まる。図5(b)中(b1)→(b2)→(b3)と順番に磁極位置指令22を変化させると、永久磁石23が回転することになる。停止時には、同期モータ20に定格電流を流したときの保持力が発生する。   On the other hand, in the open loop control of this embodiment, first, the magnetic pole position command 22 (d-axis command) of the permanent magnet 23 to be driven is calculated from the position command. Then, the d-axis armature current and the q-axis armature current are controlled so that a constant current flows through the d-axis armature and no current flows through the q-axis armature. Then, the magnetic pole position (d-axis position) of the permanent magnet 23 is attracted to the magnetic pole position command 22 and stops at the position of the magnetic pole position command 22. If the magnetic pole position command 22 is changed in the order of (b1) → (b2) → (b3) in FIG. 5B, the permanent magnet 23 is rotated. When the motor stops, a holding force is generated when a rated current is passed through the synchronous motor 20.

本実施形態のオープンループ制御においては、q軸電機子に電流を流していないので、同期モータ20に発生するトルクが小さい。このため、同期モータ20に負荷がかかっているときは、電気角の変化に同期モータ20が追従しない恐れがある。しかし、同期モータ20に定格電流を流すことで、同期モータ20のトルクを大きくすることができる。また、電気角を+5度、+10度、+15度等徐々に大きくするにつれて、同期モータ20には徐々に大きなトルクが働くので(電気角を+90度にするときに、最も大きなトルクが働く)、電気角を大きくすることで同期モータを動作させることができる。同期モータが一旦動作したときは、後はその慣性によって同期モータが動作し続けるので、最終的に電気角に近づくことができる。   In the open loop control of the present embodiment, since no current is passed through the q-axis armature, the torque generated in the synchronous motor 20 is small. For this reason, when a load is applied to the synchronous motor 20, the synchronous motor 20 may not follow the change in the electrical angle. However, the torque of the synchronous motor 20 can be increased by passing the rated current through the synchronous motor 20. Further, as the electrical angle is gradually increased to +5 degrees, +10 degrees, +15 degrees, etc., the synchronous motor 20 gradually increases in torque (when the electrical angle is increased to +90 degrees, the largest torque is applied). The synchronous motor can be operated by increasing the electrical angle. Once the synchronous motor has operated, the synchronous motor continues to operate due to its inertia, so that it can finally approach the electrical angle.

図6は、本発明の第二の実施形態における制御装置のブロック図を示す。この実施形態の制御装置においては、同期モータ20を確実に動作させるために、上記第一の実施形態の制御装置にさらに、同期モータ20の位置を検出するエンコーダ等の位置検出器21、同期モータ20が動作していないとき同期モータ20のトルクを大きくする位置判定手段である位置判定器24を付加している。その他の、位置制御器11、d軸,q軸電機子電流制御器12,13、ベクトル回転器・3相交流/d−q座標変換器16、ベクトル回転器・d−q座標/3相交流変換器19、位相検出器14、電力変換器15の構成は、上記第一の実施形態と同一なので、同一の符号を付してその説明を省略する。   FIG. 6 shows a block diagram of a control device in the second embodiment of the present invention. In the control device of this embodiment, in order to operate the synchronous motor 20 with certainty, the control device of the first embodiment further includes a position detector 21 such as an encoder that detects the position of the synchronous motor 20, a synchronous motor. A position determiner 24 is added as position determining means for increasing the torque of the synchronous motor 20 when the motor 20 is not operating. Others: position controller 11, d-axis, q-axis armature current controllers 12, 13, vector rotator / three-phase AC / dq coordinate converter 16, vector rotator / dq-coordinate / 3-phase AC Since the configurations of the converter 19, the phase detector 14, and the power converter 15 are the same as those in the first embodiment, the same reference numerals are given and description thereof is omitted.

同期モータ20が動作していないとき、同期モータ20を動作させるためには、同期モータ20に流す電流を増加させるか、または同期モータ20の電気角を変化させる必要がある。例えば、電気角を+5度にするよりも+90度にするほうが大きなトルクが発生する。   In order to operate the synchronous motor 20 when the synchronous motor 20 is not operating, it is necessary to increase the current flowing through the synchronous motor 20 or to change the electrical angle of the synchronous motor 20. For example, a larger torque is generated when the electrical angle is +90 degrees than when the electrical angle is +5 degrees.

位置判定器24は、位置指令と位置検出器21が検出した同期モータ20の位置とを比較する。そして、同期モータ20が位置指令のとおりに動作していないとき、d軸電機子電流の電流指令を増加させるか、又はd軸の電気角を変化させる。d軸の電気角を変化させる場合、位相検出器14を操作して、例えばベクトル回転器を+90度にする指令を送る。同期モータ20に流す電流を増加させるか、または同期モータ20の電気角を変化させることで、同期モータ20のトルクが大きくなるので、同期モータ20を動作させることができる。   The position determiner 24 compares the position command with the position of the synchronous motor 20 detected by the position detector 21. When the synchronous motor 20 is not operating in accordance with the position command, the d-axis armature current command is increased or the d-axis electrical angle is changed. When changing the electrical angle of the d axis, the phase detector 14 is operated to send a command to set the vector rotator to +90 degrees, for example. Since the torque of the synchronous motor 20 is increased by increasing the current flowing through the synchronous motor 20 or changing the electrical angle of the synchronous motor 20, the synchronous motor 20 can be operated.

同期モータ20は一旦動作したら、後はその慣性によって所定の電気角まで回転する。位置判定器は、同期モータ20の動作を確認したならば、d軸電機子電流を一定の電流値に戻したり、電気角を位置指令に対応した元の電気角に戻したりすればよい。   Once the synchronous motor 20 is operated, the synchronous motor 20 is rotated to a predetermined electrical angle by its inertia. If the operation of the synchronous motor 20 is confirmed, the position determiner may return the d-axis armature current to a constant current value or return the electrical angle to the original electrical angle corresponding to the position command.

なお、本発明は上記実施形態に限られることなく、本発明の要旨を変更しない範囲で様々な実施形態に変更できる。例えば、サーボモータは、アナログサーボ系であっても、ソフトウェアサーボ系であってもよい。ソフトウェアサーボ系の場合、制御装置には、制御を行うマイクロコンピュータが組み込まれる。   In addition, this invention is not restricted to the said embodiment, It can change into various embodiment in the range which does not change the summary of this invention. For example, the servo motor may be an analog servo system or a software servo system. In the case of a software servo system, the control device incorporates a microcomputer that performs control.

Claims (4)

界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd−q座標を用いた同期モータの制御方法において、
上位からの位置指令から駆動させる永久磁石の磁極位置指令であるd軸指令を算出し
前記d軸指令に基づいて、同期モータの帰還電流をd軸電機子電流及びq軸電機子電流に変換し、
d軸電機子に一定の電流が流れ、かつq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御して、前記永久磁石の磁極位置を前記磁極位置指令に引き付け、
前記上位からの前記位置指令を変化させることによって、前記同期モータを駆動させる同期モータの制御方法。
In a synchronous motor control method using dq coordinates, in which the direction of the magnetic flux generated by the field is d-axis and the phase advanced by π / 2 with respect to the d-axis is q-axis,
Calculate a d-axis command that is a magnetic pole position command of a permanent magnet to be driven from a position command from the upper level,
Based on the d-axis command , the synchronous motor feedback current is converted into a d-axis armature current and a q-axis armature current,
By controlling the d-axis armature current and the q-axis armature current so that a constant current flows through the d-axis armature and no current flows through the q-axis armature, the magnetic pole position of the permanent magnet is changed to the magnetic pole position. Attracted to the directive,
A synchronous motor control method for driving the synchronous motor by changing the position command from the host .
界磁の作る磁束の方向をd軸とし、d軸に対してπ/2進んだ位相をq軸とするd−q座標を用いた同期モータの制御装置において、
上位からの位置指令から駆動させる永久磁石の磁極位置指令であるd軸指令を算出する位相生成手段と、
同期モータに流れる3相交流電流を検出する電流検出器と、
前記位相生成手段が算出した前記d軸指令に基づいて、前記電流検出器が検出した3相交流電流を、d軸電機子電流及びq軸電機子電流に座標変換する3相交流/d−q座標変換手段と、
d軸電機子に一定の電流が流れ、かつq軸電機子に電流が流れないように、d軸電機子電流及びq軸電機子電流を制御して、前記永久磁石の磁極位置を前記磁極位置指令に引き付ける電流制御手段と、を備え
前記上位からの前記位置指令を変化させることによって、前記同期モータを駆動させる同期モータの制御装置。
In a synchronous motor control apparatus using dq coordinates in which the direction of the magnetic flux generated by the field is d-axis and the phase advanced by π / 2 with respect to the d-axis is q-axis,
A phase generation means for calculating a d-axis command which is a magnetic pole position command of a permanent magnet driven from a position command from a higher level;
A current detector for detecting a three-phase alternating current flowing in the synchronous motor;
Based on the d-axis command calculated by the phase generation means, the three-phase AC / dq that converts the three-phase AC current detected by the current detector into a d-axis armature current and a q-axis armature current. Coordinate transformation means;
By controlling the d-axis armature current and the q-axis armature current so that a constant current flows through the d-axis armature and no current flows through the q-axis armature, the magnetic pole position of the permanent magnet is changed to the magnetic pole position. Current control means to attract to the command ,
A control device for a synchronous motor that drives the synchronous motor by changing the position command from the host .
前記同期モータの制御装置はさらに、
前記同期モータの位置を検出する位置検出器と、
位置指令と、前記検出器が検出した前記同期モータの位置と、を比較して、前記同期モータが位置指令のとおりに動いていないときに、前記d軸電機子に流れる電流値を大きくするか、又はd軸の電気角を変化させる位置判定手段と、
を備えることを特徴とする請求項2に記載の同期モータの制御装置。
The synchronous motor control device further includes:
A position detector for detecting the position of the synchronous motor;
Whether the current value flowing in the d-axis armature is increased when the position command is compared with the position of the synchronous motor detected by the detector and the synchronous motor is not moving according to the position command. Or position determining means for changing the electrical angle of the d axis;
The control apparatus of the synchronous motor of Claim 2 characterized by the above-mentioned.
請求項1に記載の同期モータの制御方法によって制御された同期モータ。   A synchronous motor controlled by the synchronous motor control method according to claim 1.
JP2009521582A 2007-06-29 2008-06-23 Synchronous motor control method and control apparatus Expired - Fee Related JP5479094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009521582A JP5479094B2 (en) 2007-06-29 2008-06-23 Synchronous motor control method and control apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007173058 2007-06-29
JP2007173058 2007-06-29
PCT/JP2008/061416 WO2009004944A1 (en) 2007-06-29 2008-06-23 Synchronous motor control method and device
JP2009521582A JP5479094B2 (en) 2007-06-29 2008-06-23 Synchronous motor control method and control apparatus

Publications (2)

Publication Number Publication Date
JPWO2009004944A1 JPWO2009004944A1 (en) 2010-08-26
JP5479094B2 true JP5479094B2 (en) 2014-04-23

Family

ID=40225992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009521582A Expired - Fee Related JP5479094B2 (en) 2007-06-29 2008-06-23 Synchronous motor control method and control apparatus

Country Status (3)

Country Link
JP (1) JP5479094B2 (en)
TW (1) TWI474607B (en)
WO (1) WO2009004944A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI401863B (en) * 2010-04-13 2013-07-11 Shihlin Electric & Eng Corp Apparatus and method of suppressing the regenerative voltage of motor
TWI634748B (en) * 2017-12-05 2018-09-01 財團法人工業技術研究院 Measuring apparatus including phase locked loop and measuring method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095279A (en) * 2000-09-11 2002-03-29 Matsushita Electric Ind Co Ltd Coasting controller for permanent magnet synchronous motor
JP2003164198A (en) * 2001-11-29 2003-06-06 Nissan Motor Co Ltd Motor control device
JP2003219693A (en) * 2002-01-23 2003-07-31 Japan Servo Co Ltd Drive unit for stepping motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095279A (en) * 2000-09-11 2002-03-29 Matsushita Electric Ind Co Ltd Coasting controller for permanent magnet synchronous motor
JP2003164198A (en) * 2001-11-29 2003-06-06 Nissan Motor Co Ltd Motor control device
JP2003219693A (en) * 2002-01-23 2003-07-31 Japan Servo Co Ltd Drive unit for stepping motor

Also Published As

Publication number Publication date
TW200919938A (en) 2009-05-01
WO2009004944A1 (en) 2009-01-08
JPWO2009004944A1 (en) 2010-08-26
TWI474607B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
JP5487105B2 (en) Linear synchronous motor control method and control apparatus
JP5870591B2 (en) Control device and control method for synchronous motor
JP5243651B2 (en) Motor control device for controlling d-axis current of permanent magnet synchronous motor
WO2016035298A1 (en) Motor drive device and brushless motor
JP2009136085A (en) Controller of ac motor
JP2007189766A (en) Motor drive controller and motor drive system
JP2009038921A (en) Sensorless controller for brushless motor
JP3661864B2 (en) Stepping motor drive device
JP2007259551A (en) Controller of motor
JP5224372B2 (en) Magnetic pole position detection method for permanent magnet synchronous motor
JP2015119600A (en) Control device for power converter, and electric vehicle
JP4010195B2 (en) Control device for permanent magnet synchronous motor
JP2014075931A (en) Drive control device for stepping motor
KR101225165B1 (en) Method to control starting of sensorless Permanent Magnet Synchronous Motor
JP4652176B2 (en) Control device for permanent magnet type rotating electrical machine
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP4053511B2 (en) Vector controller for wound field synchronous machine
JP3971978B2 (en) Electric motor control device
JP5479094B2 (en) Synchronous motor control method and control apparatus
JP6307223B2 (en) Three-phase synchronous motor control device, three-phase synchronous motor drive system using the same, integrated motor system, pump system, compressor system, and three-phase synchronous motor control method
JP2006050705A (en) Motor control unit
JP2007089336A (en) Revolution detection device and revolution detection method of turbocharger with electric motor
JP2009165333A (en) Controller of synchronous electric motor
JP2019161875A (en) Motor controller
WO2022172472A1 (en) Motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140212

R150 Certificate of patent or registration of utility model

Ref document number: 5479094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees