JPS6359556B2 - - Google Patents

Info

Publication number
JPS6359556B2
JPS6359556B2 JP17908381A JP17908381A JPS6359556B2 JP S6359556 B2 JPS6359556 B2 JP S6359556B2 JP 17908381 A JP17908381 A JP 17908381A JP 17908381 A JP17908381 A JP 17908381A JP S6359556 B2 JPS6359556 B2 JP S6359556B2
Authority
JP
Japan
Prior art keywords
pps
printed wiring
adhesive
metal foil
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17908381A
Other languages
Japanese (ja)
Other versions
JPS5880890A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17908381A priority Critical patent/JPS5880890A/en
Publication of JPS5880890A publication Critical patent/JPS5880890A/en
Publication of JPS6359556B2 publication Critical patent/JPS6359556B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は絶縁基板と金属箔との接合強度、半田
耐熱性および機械的強度がすぐれたプリント配線
板を効率的に製造する方法に関するものである。 絶縁基板上に接着剤を介して銅箔などの金属箔
からなる導体を平面的に貼り合せて構成したいわ
ゆるプリント配線板は、各種家電製品、電子計算
機、通信機、各種計器類などの分野で大量に使用
されている。 従来からプリント配線板用絶縁基板としては、
エポキシ樹脂、フエノール樹脂、不飽和ポリエス
テル樹脂等の熱硬化性樹脂と紙、ガラス繊維合成
繊維等の基材を組み合せた複合シートが用いられ
ている。これらはいずれも熱硬化性樹脂を使用す
るため、基板の製造時に溶媒の回収および処理が
繁雑であるばかりか、溶媒が大気中に飛散して作
業環境を著しく悪化させ、しかも樹脂を硬化せし
めるのに多大の時間を要し経済的でないなどの問
題があつた。 本発明者らは上記した如き製造プロセスの欠点
を改良し、熱的、機械的性質が一層すぐれたプリ
ント配線板を容易かつ安価に製造することを目的
として検討した結果、ポリフエニレンスルフイド
樹脂とガラス繊維との複合組成物からなる板状成
形品を絶縁基板として用いることにより、溶媒の
使用や樹脂の硬化に起因するプロセス上の問題が
解消され、しかも従来の熱硬化性樹脂を用いたプ
リント配線板と同等またはそれ以上の特性を有す
るプリント配線板が得られることを見出し先に提
案した。 しかしながらこの方法で用いるポリフエニレン
スルフイド樹脂(以下PPSと略称する)は化学的
安定性および結晶性が高いため、従来からこの分
野で用いられているポリビニルアセタール系、フ
エノリツク―ニトリルゴム系、エポキシ系、酢酸
ビニル系などの接着剤を適用しても絶縁基板と金
属箔との接合強度および半田耐熱性をいまだ十分
に満足することができない。例えば特開昭54−
85380号公報ではPPSからなる基板と金属箔との
接合に際し、エポキシ系接着剤を使用している
が、接着剤の硬化に長時間を要するため効率的な
プロセスとはいえず、しかもエポキシ系接着剤は
耐熱温度が低く、接合温度を高くすることができ
ないため、十分な接合強度や半田耐熱性が得られ
ないという問題がある。 そこで本発明者らはPPSとガラス繊維との複合
材を絶縁基板とするプリント配線板における絶縁
基材と金属箔との接合強度および半田耐熱性をさ
らに改良し、その生産性を一層高めることを目的
として検討した結果、接着剤としてエポキシシラ
ン系接着剤を用い、かつ接合温度としてPPSの融
点以上の高温を採用することにより、上記目的が
効果的に達成できることを見出した。 すなわち、本発明はPPS 85〜20重量%および
長さが0.1mm以上のガラス繊維15〜80重量%から
なる複合基板と金属箔とを面接合により積層せし
めるに際し、接合部へエポキシシラン系接着剤を
存在させ、ポリフエニレンスルフイド樹脂の融点
以上の温度で加熱、加圧することを特徴とするプ
リント配線板の製造方法を提供するものである。 本発明で用いるPPSとは、構造式
The present invention relates to a method for efficiently manufacturing a printed wiring board with excellent bonding strength between an insulating substrate and metal foil, solder heat resistance, and mechanical strength. So-called printed wiring boards, which are constructed by laminating conductors made of metal foil such as copper foil on an insulating substrate with adhesive, are used in fields such as various home appliances, computers, communications devices, and various instruments. Used in large quantities. Conventionally, as insulating substrates for printed wiring boards,
Composite sheets are used that combine thermosetting resins such as epoxy resins, phenolic resins, and unsaturated polyester resins with base materials such as paper and synthetic glass fibers. Since these all use thermosetting resins, not only is it complicated to recover and dispose of the solvent during substrate manufacturing, but the solvent also scatters into the atmosphere, significantly deteriorating the working environment, and also causes the resin to harden. There were problems such as it took a lot of time and was not economical. The inventors of the present invention investigated the purpose of improving the above-mentioned drawbacks of the manufacturing process and easily and inexpensively manufacturing printed wiring boards with even better thermal and mechanical properties, and found that polyphenylene sulfide resin By using a plate-shaped molded product made of a composite composition of glass fibers and glass fibers as an insulating substrate, process problems caused by the use of solvents and curing of resin can be solved, and in addition, it is possible to solve the problem of using conventional thermosetting resins. It was proposed that a printed wiring board with characteristics equal to or better than printed wiring boards could be obtained. However, the polyphenylene sulfide resin (hereinafter abbreviated as PPS) used in this method has high chemical stability and crystallinity, so polyvinyl acetal, phenolic-nitrile rubber, and epoxy Even if a vinyl acetate-based adhesive or a vinyl acetate-based adhesive is used, the bonding strength between the insulating substrate and the metal foil and the soldering heat resistance cannot be sufficiently satisfied. For example, JP-A-54-
Publication No. 85380 uses an epoxy adhesive to bond a PPS substrate and metal foil, but it is not an efficient process because it takes a long time for the adhesive to harden. Since the heat resistance of the adhesive is low and the bonding temperature cannot be increased, there is a problem that sufficient bonding strength and soldering heat resistance cannot be obtained. Therefore, the present inventors aimed to further improve the bonding strength and solder heat resistance between the insulating base material and the metal foil in a printed wiring board whose insulating substrate is a composite material of PPS and glass fiber, and to further increase its productivity. After studying the objectives, we found that the above objectives can be effectively achieved by using an epoxy silane adhesive as the adhesive and by employing a bonding temperature higher than the melting point of PPS. That is, the present invention involves applying an epoxy silane adhesive to the joint when laminating a metal foil and a composite substrate made of 85 to 20% by weight of PPS and 15 to 80% by weight of glass fibers with a length of 0.1 mm or more by face-to-face bonding. The present invention provides a method for producing a printed wiring board, which comprises heating and pressurizing the polyphenylene sulfide resin at a temperature higher than the melting point of the polyphenylene sulfide resin. The PPS used in the present invention has the structural formula

【式】で示されるくり返し単位を90モル %以上、好ましくは95モル%以上含む重合体であ
り、温度300℃、みかけのセン断速度200/secの
条件下で測定した溶融粘度が50ないし50000ポイ
ズ、好ましくは100ないし5000ポイズの範囲にあ
るものが適当である。なお使用するPPSには酸化
防止剤、熱安定剤、滑剤、結晶核剤、紫外線吸収
剤、着色剤、充填剤、離型剤などの通常の添加剤
を添加することができ、また本発明の目的を阻害
しない範囲内で他種ポリマを少割合ブレンドする
こともできる。 本発明で用いるガラス繊維の形態は、複合基板
中における長さが0.1mm以上であればチヨツプド
フアイバー、チヨツプドフアイバーマツト、連続
長繊維マツト、織物、編物およびこれらの二種以
上の組み合せ等いかなる状態で用いても良いが、
マツト状のあるいは編織物等の布帛状のものが取
り扱い易さ、複合基板の機械的強度の点ですぐれ
ており、とくに好適に用い得る。 ガラス繊維の配合量は15〜80重量%、とくに20
〜75重量%が適当であり、15重量%以下では十分
な機械的強度が得られず、80重量%以上でもかえ
つて機械的強度が低下するため好ましくない。ま
た複合基板中に含有されるガラス繊維の長さが
0.1mm以下の場合もその機械的強度が不十分とな
るため好ましくない。 PPSとガラス繊維を複合し、絶縁基材としての
複合基板を製造する方法にはとくに制限がない
が、例えば(1)PPSとガラスチヨツプドフアイバー
を押出機などにより溶融混練し、次いで押出成形
や射出成形により板状成形品を製造する方法およ
び(2)チヨツプドフアイバーからなるマツト、連続
長繊維マツト、織物などの形態のガラス繊維と粉
末状、ペレツト状、シート状などの形態のPPSと
を交互に積み重ねPPSの融点以上に加熱し、加
圧、冷却することにより板状成形品を製造する方
法などが挙げられる。これらの方法によれば熱硬
化性樹脂を用いる従来の方法に比べ、溶媒の回収
等の余分な工程が不要になるばかりか、樹脂を硬
化せしめる必要がないため極めて効率的である。 複合基板の厚さにはとくに制限がなく、通常は
0.1〜5.0mmの範囲が選択される。 この複合基板の少なくとも一面に面接合せしめ
る金属箔としては、銅箔が最も好適であるが、そ
の他にもニツケル、アルミニウム、金、銀、スズ
および亜鉛などの箔も用いることができる。 本発明で用いるエポキシシラン系接着剤とは、
一般式
A polymer containing 90 mol% or more, preferably 95 mol% or more of repeating units represented by the formula, and has a melt viscosity of 50 to 50,000 when measured at a temperature of 300°C and an apparent shear rate of 200/sec. Poise, preferably in the range of 100 to 5000 poise, is suitable. Note that ordinary additives such as antioxidants, heat stabilizers, lubricants, crystal nucleating agents, ultraviolet absorbers, colorants, fillers, and mold release agents can be added to the PPS used. It is also possible to blend small proportions of other types of polymers within a range that does not impede the purpose. The form of the glass fiber used in the present invention is chopped fiber, chopped fiber mat, continuous filament mat, woven fabric, knitted fabric, or two or more types thereof, as long as the length in the composite substrate is 0.1 mm or more. It may be used in any combination, but
Mat-like or fabric-like materials such as knitted fabrics are easy to handle and have excellent mechanical strength of the composite substrate, and are particularly suitable for use. The content of glass fiber is 15 to 80% by weight, especially 20%.
A content of 75% by weight or less is suitable; if it is less than 15% by weight, sufficient mechanical strength cannot be obtained, and if it is more than 80% by weight, the mechanical strength is even lowered, which is not preferable. In addition, the length of the glass fiber contained in the composite substrate is
A thickness of 0.1 mm or less is also not preferable because its mechanical strength will be insufficient. There are no particular restrictions on the method for manufacturing a composite substrate as an insulating base material by combining PPS and glass fibers, but for example, (1) melting and kneading PPS and glass chopped fibers using an extruder or the like, and then extruding A method for producing a plate-shaped molded product by molding or injection molding, and (2) glass fiber in the form of chopped fiber pine, continuous filament pine, woven fabric, etc., and in the form of powder, pellet, sheet, etc. Examples include a method of producing a plate-shaped molded product by alternately piling up PPS and heating it above the melting point of PPS, pressurizing it, and cooling it. Compared to conventional methods using thermosetting resins, these methods not only eliminate the need for extra steps such as recovering a solvent, but also eliminate the need to harden the resin, making them extremely efficient. There is no particular limit to the thickness of the composite board, and it is usually
A range of 0.1 to 5.0 mm is selected. The most suitable metal foil to be surface-bonded to at least one surface of this composite substrate is copper foil, but other foils such as nickel, aluminum, gold, silver, tin, and zinc can also be used. The epoxy silane adhesive used in the present invention is
general formula

【式】および[expression] and

【式】で表わされ、Rは、炭 素数1〜6のアルキル基、R′は炭素数1〜3の
アルキル基を示す。 これらのエポキシシラン系接着剤としては、例
えばγ―グリシドキシプロピルトリメトキシシラ
ン、γ―グリシドキシプロピルトリエトキシシラ
ン、β―(3.4―エポキシシクロヘキシル)エチ
ルトリメトキシシランおよびβ―(3,4―エポ
キシシクロヘキシル)プロピルトリメトキシシラ
ンなどが挙げられる。 このエポキシシラン系接着剤の代りに通常用い
られているようなシラン系、ポリビニルアセター
ル系、フエノリツク―ゴム系、エポキシ系などの
接着剤を用いても複合基板と金属箔との接合強度
が不十分であり、半田耐熱性も十分満足できな
い。 本発明の方法によりプリント配線板を製造する
具体例としては次の二法が挙げられる。 (A) 上記(1)または(2)法で得た複合基板および/ま
たは金属箔上にエポキシシラン系接着剤を約
0.5〜30μの厚さで塗布し、PPSの融点以上、例
えば約280〜350℃の温度で10〜150Kg/cm2の圧
力下に加熱圧着する方法。 (B) 上記(2)法によりPPSとガラス繊維を積層複合
する際に、エポキシシラン系接着剤を約0.5〜
30μの厚さで塗布した金属箔を直接重ね合せ、
PPSの融点以上に加熱、加圧、冷却して直接プ
リント配線板を得る方法などが挙げられる。 この(A)および(B)法において、加熱温度がPPSの
融点以下では、接合に長時間を要し、得られる接
合強度も不十分であるため好ましくない。また、
上記(A)および(B)法において金属箔を予めパターン
状に打抜いて、これにエポキシシラン系接着剤を
塗布して複合基板に接合せしめれば直接目的とす
るプリント配線板が得られ、また接合後に金属箔
をサブトラクテイブ法によりパターンエツチング
することにより目的のプリント配線板を得ること
もできる。なお、上記(A)および(B)法において加熱
加圧に要する時間は、(A)法の場合1分間、とくに
5〜30秒、(B)法の場合5分以下、とくに1〜3分
で十分であり、極めて短時間で効率的な接合が達
成できる。とくに(B)法によれば原材料からプリン
ト配線板が一段で一挙に製造でき、プロセス的に
極めて有利である。 かくして本発明の方法により得られるプリント
配線板は基板と金属箔の接合強度および半田耐熱
性が極めてすぐれ、しかも良好な熱的、機懐的性
質を有するので、電気産業分野への適用が大いに
期待される。 以下実施例により本発明の効果をさらに説明す
る。 実施例 1 PPS(フイリツプス社製“ライトン”P―4)
粉末をガラス連続長繊維マツト(旭フアイバーグ
ラス社製、M9600 目付量600g/m2)に、均一
にまぶしたものと、銅箔にエポキシシラン系接着
剤として、SH6040(東レシリコーン社製、γ―グ
リシドキシプロピルトリメトキシシラン)を希釈
または希釈でずに、約10ミクロンの厚さに塗布し
たものを、重ね合せ、330℃に設定した加熱プレ
ス中の平板状金型間に供給し、5Kg/cm2の圧力を
加えて3分間加熱後、150℃に設定した冷却プレ
スに、金型を移して30Kg/cm2の圧力下に2〜3間
冷却することにより、厚さ1.6mm、ガラス繊維含
有率35重量%のプリント配線板を作成した。 このプリント配線波の銅箔と基板とのはく離強
度および半田耐熱性を、JIS C6481に準じて測定
したところ、はく離強度は、1.8Kg/cm2半田耐熱
性は、>270℃/20秒とすぐれていた。さらには、
プリント配線板を非常に効率的かつ短時間で製造
可能であつた。 実施例 2 PPS(“ライトン”P―4)を押出成形に供し、
厚さ0.7mmのシートを形成した。 次に上記PPSとガラス連続長繊維マツトを、交
互に積層し、実施例1と同様に加熱、加圧、冷却
して厚さ1.6mmガラス繊維含有率40重量%の複合
基板を得た。 一方、銅箔に第1表に示した各種接着剤を希釈
あるいは希釈なしで、約10ミクロンの厚さに塗布
した。 次に、上記PPS複合基板とこれらの銅箔の接着
剤塗布面とを積層し、330℃に加熱したプレスで、
20Kg/cm2の圧力下に30秒間加熱、加圧し、PPS複
合基板の銅箔接合面を、溶融した後、150℃に設
定した冷却プレス内に供給し、30Kg/cm2の圧力で
30〜60秒間冷却し、プリント配線板を作成した。 各プリント配線板について実施例1と同様には
く離強度および半田耐熱性を評価した結果を第1
表に示す。
It is represented by the formula: R represents an alkyl group having 1 to 6 carbon atoms, and R' represents an alkyl group having 1 to 3 carbon atoms. Examples of these epoxysilane adhesives include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, and β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane. -Epoxycyclohexyl)propyltrimethoxysilane, etc. Even if commonly used silane-based, polyvinyl acetal-based, phenolic rubber-based, or epoxy-based adhesives are used instead of this epoxy silane adhesive, the bonding strength between the composite substrate and metal foil is insufficient. Therefore, the soldering heat resistance is also not fully satisfactory. Specific examples of manufacturing printed wiring boards by the method of the present invention include the following two methods. (A) Apply an epoxy silane adhesive on the composite substrate and/or metal foil obtained by method (1) or (2) above.
A method of applying the product to a thickness of 0.5 to 30 μm and heat-pressing it under a pressure of 10 to 150 kg/cm 2 at a temperature above the melting point of PPS, for example, about 280 to 350°C. (B) When laminating PPS and glass fiber using method (2) above, use an epoxy silane adhesive of approximately 0.5 to
Directly overlap metal foil coated with a thickness of 30μ,
Examples include a method of directly obtaining a printed wiring board by heating above the melting point of PPS, pressurizing it, and cooling it. In these methods (A) and (B), if the heating temperature is below the melting point of PPS, it is not preferable because a long time is required for bonding and the resulting bonding strength is insufficient. Also,
In the methods (A) and (B) above, if a metal foil is punched out in advance into a pattern, and an epoxy silane adhesive is applied to it and bonded to a composite board, the desired printed wiring board can be directly obtained. Further, the desired printed wiring board can also be obtained by pattern etching the metal foil by a subtractive method after bonding. The time required for heating and pressurizing in methods (A) and (B) above is 1 minute, especially 5 to 30 seconds in case of method (A), and 5 minutes or less, especially 1 to 3 minutes in case of method (B). is sufficient, and efficient bonding can be achieved in an extremely short time. In particular, method (B) allows printed wiring boards to be manufactured from raw materials in one step, which is extremely advantageous in terms of process. Thus, the printed wiring board obtained by the method of the present invention has extremely excellent bond strength and solder heat resistance between the board and metal foil, and also has good thermal and mechanical properties, so it is highly expected to be applied to the electrical industry field. be done. The effects of the present invention will be further explained below with reference to Examples. Example 1 PPS (“Ryton” P-4 manufactured by Philips)
The powder was evenly sprinkled on glass continuous fiber pine (manufactured by Asahi Fiberglass Co., Ltd., M9600, basis weight 600 g/m 2 ), and then SH6040 (manufactured by Toray Silicone Co., Ltd., γ- Glycidoxypropyltrimethoxysilane) was applied diluted or undiluted to a thickness of about 10 microns, stacked and fed between flat molds in a hot press set at 330°C to produce 5kg. After applying a pressure of / cm2 and heating for 3 minutes, the mold was transferred to a cooling press set at 150℃ and cooled for 2 to 3 minutes under a pressure of 30Kg/ cm2 to form a glass with a thickness of 1.6mm. A printed wiring board with a fiber content of 35% by weight was created. The peel strength and solder heat resistance between the copper foil and the board of this printed wiring wave were measured according to JIS C6481, and the peel strength was 1.8 Kg/cm 2 The solder heat resistance was excellent at >270°C/20 seconds. was. Furthermore,
Printed wiring boards could be manufactured very efficiently and in a short time. Example 2 PPS (“Ryton” P-4) was subjected to extrusion molding,
A sheet with a thickness of 0.7 mm was formed. Next, the above PPS and continuous glass fiber mat were alternately laminated, heated, pressed and cooled in the same manner as in Example 1 to obtain a composite substrate with a thickness of 1.6 mm and a glass fiber content of 40% by weight. On the other hand, various adhesives shown in Table 1 were applied to a copper foil with or without dilution to a thickness of about 10 microns. Next, the above PPS composite substrate and the adhesive coated side of these copper foils were laminated and pressed in a press heated to 330°C.
Heat and pressurize for 30 seconds under a pressure of 20Kg/cm 2 to melt the copper foil bonding surface of the PPS composite board, then feed it into a cooling press set at 150℃ and heat it under a pressure of 30Kg/cm 2.
After cooling for 30 to 60 seconds, a printed wiring board was created. The peel strength and solder heat resistance of each printed wiring board were evaluated in the same manner as in Example 1.
Shown in the table.

【表】【table】

【表】 第1表から明らかなように、本発明のエポキシ
シラン系接着剤を用いたプリント配線板(No.1,
2)は、他のシラン系接着剤を用いたもの(No.
3,4)および、他の接着剤を用いたもの(No.
5,6)に、比較して、はく離強度および半田耐
熱性が著しくすぐれていた。 実施例 3 PPS(“ライトン”P―4)粉末と長さ10mmのガ
ラスチヨツプドフアイバー(旭フアイバーグラス
製、CS10MA404)とを、ガラス繊維の配合量
が、40重量%になるようにヘンシエルミキサーに
供給し、20分間混合し、PPS粉末とガラスチヨツ
プドフアイバーからなる綿状外観の混合物を得
た。 この混合物を加熱プレス間に供給し、実施例1
と同様の条件でプレス、冷却することにより、厚
さ1.6mmの複合基板を得た。 一方、銅箔にエポキシシラン系接着剤として、
SH6040を、希釈あるいは、希釈なしで約1ミク
ロンの厚さに塗布した。 次に、上記PPS複合基板とこの銅箔の接着剤塗
布面とを積層し、150,200,250,300,330℃の
各温度に設定した加熱プレスで、200Kg/cm2の圧
力下に30秒間加熱、圧着した後、150℃に設定し
た冷却プレス内に供給し、30Kg/cm2の圧力で20〜
60秒間冷却し、プリント配線板を作成した。これ
らを実施例1と同様に評価した結果を第2表に示
す。
[Table] As is clear from Table 1, printed wiring boards (No. 1,
2) uses another silane adhesive (No.
3, 4) and those using other adhesives (No.
5 and 6), the peel strength and soldering heat resistance were significantly superior. Example 3 PPS (“Ryton” P-4) powder and 10 mm long glass chopped fibers (Asahi Fiber Glass, CS10MA404) were mixed so that the glass fiber content was 40% by weight. It was fed into a shell mixer and mixed for 20 minutes to obtain a flocculent appearance mixture consisting of PPS powder and glass chopped fibers. This mixture was fed between a hot press and Example 1
By pressing and cooling under the same conditions as above, a composite substrate with a thickness of 1.6 mm was obtained. On the other hand, as an epoxy silane adhesive on copper foil,
SH6040 was applied with or without dilution to a thickness of approximately 1 micron. Next, the above PPS composite substrate and the adhesive-coated side of this copper foil were laminated, and heated at temperatures of 150, 200, 250, 300, and 330°C for 30 minutes under a pressure of 200 kg/cm 2 . After being heated and crimped for seconds, it is fed into a cooling press set at 150℃, and heated at a pressure of 30Kg/ cm2 for 20 to 30 minutes.
After cooling for 60 seconds, a printed wiring board was created. These were evaluated in the same manner as in Example 1, and the results are shown in Table 2.

【表】 第2表の結果から明らかなように、PPSの融点
以下(No.7〜9)では、銅箔とPPS複合基板との
接着性は、全く認められないが、PPSの融点以上
で接着したもの(No.10,11)は、はく離強度およ
び半田耐熱性が非常にすぐれていた。
[Table] As is clear from the results in Table 2, below the melting point of PPS (Nos. 7 to 9), there is no adhesion between the copper foil and the PPS composite board, but above the melting point of PPS, no adhesion is observed. The adhesives (Nos. 10 and 11) had excellent peel strength and soldering heat resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリフエニレンスルフイド樹脂85〜20重量%
および長さが0.1mm以上のガラス繊維15〜80重量
%からなる複合基板と金属箔とを面接合により積
層せしめるに際し、接合部へエポキシシラン系接
着剤を存在させ、ポリフエニレンスルフイド樹脂
の融点以上の温度で加熱、加圧することを特徴と
するプリント配線板の製造方法。
1 Polyphenylene sulfide resin 85-20% by weight
When laminating a composite substrate made of 15 to 80% by weight of glass fiber with a length of 0.1 mm or more and a metal foil by surface bonding, an epoxy silane adhesive is present in the joint, and a polyphenylene sulfide resin is applied. A method for manufacturing a printed wiring board, characterized by heating and pressurizing at a temperature above the melting point.
JP17908381A 1981-11-10 1981-11-10 Method of producing printed circuit board Granted JPS5880890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17908381A JPS5880890A (en) 1981-11-10 1981-11-10 Method of producing printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17908381A JPS5880890A (en) 1981-11-10 1981-11-10 Method of producing printed circuit board

Publications (2)

Publication Number Publication Date
JPS5880890A JPS5880890A (en) 1983-05-16
JPS6359556B2 true JPS6359556B2 (en) 1988-11-21

Family

ID=16059780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17908381A Granted JPS5880890A (en) 1981-11-10 1981-11-10 Method of producing printed circuit board

Country Status (1)

Country Link
JP (1) JPS5880890A (en)

Also Published As

Publication number Publication date
JPS5880890A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
JP3355142B2 (en) Film for heat-resistant laminate, base plate for printed wiring board using the same, and method of manufacturing substrate
US4389453A (en) Reinforced polyphenylene sulfide molded board, printed circuit board including this molded board and process for preparation thereof
EP0434013B1 (en) Epoxy resin-impregnated glass cloth sheet having adhesive layer
CN107964203A (en) A kind of low dielectric prepreg composition, copper-clad plate and preparation method thereof
WO2000059274A1 (en) Method for manufacturing three-dimensional printed wiring board
CN108382047A (en) A kind of hot melt preparation method of copper-clad plate
JP3514656B2 (en) Surface smooth wiring board and its manufacturing method
JPS6359556B2 (en)
JPS593991A (en) Printed circuit board
EP0096122B1 (en) Reinforced polyphenylene sulphide board, printed circuit board made therefrom and process for making them
JPS5968990A (en) Printed circuit board
JPS6128545A (en) Resin composition, laminate, and their preparation
JP3001400B2 (en) High frequency printed wiring board and method of manufacturing the same
JPS6052943B2 (en) printed wiring board
JPS5816588A (en) Printed circuit board
JPS61199689A (en) Substrate for printed circuit
JPS5921774B2 (en) Manufacturing method of cyanate resin laminate
JPS6079080A (en) Adhesive composition
JPS61102243A (en) Dielectric substrate
JPS6295325A (en) Production of laminated sheet
JPS6260640A (en) Laminate of metal and resin
JPH0453180A (en) Manufacture of high-frequency copper-plated board
JPS5969989A (en) Printed circuit board
JPS6122629B2 (en)
KR101652174B1 (en) Prepreg, and metal-clad laminate and printed circuit board comprising the same