JPS6359502B2 - - Google Patents

Info

Publication number
JPS6359502B2
JPS6359502B2 JP2115181A JP2115181A JPS6359502B2 JP S6359502 B2 JPS6359502 B2 JP S6359502B2 JP 2115181 A JP2115181 A JP 2115181A JP 2115181 A JP2115181 A JP 2115181A JP S6359502 B2 JPS6359502 B2 JP S6359502B2
Authority
JP
Japan
Prior art keywords
phosphor
color
light
face plate
fluorescent surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2115181A
Other languages
Japanese (ja)
Other versions
JPS57134850A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2115181A priority Critical patent/JPS57134850A/en
Priority to KR8200134A priority patent/KR860001676B1/en
Priority to GB8202537A priority patent/GB2093268B/en
Priority to DE19823204895 priority patent/DE3204895A1/en
Publication of JPS57134850A publication Critical patent/JPS57134850A/en
Priority to US06/607,729 priority patent/US4728856A/en
Publication of JPS6359502B2 publication Critical patent/JPS6359502B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/24Supports for luminescent material

Description

【発明の詳細な説明】 この発明は陰極線管の螢光面に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fluorescent surface of a cathode ray tube.

陰極線管の螢光面の映像コントラストを増大せ
しめる有用な手段として螢光面のフエースプレー
トガラスの光透過率を下げる事が行われる。この
原理について第1図により詳しく説明する。
A useful means of increasing the image contrast of the fluorescent surface of a cathode ray tube is to reduce the light transmittance of the face plate glass of the fluorescent surface. This principle will be explained in detail with reference to FIG.

第1図はカラー陰極線管の螢光面の断面モデル
である。1はフエースプレートガラスでありその
内面には赤(R),緑(G),青(B)の3色螢光体素子
群2が設けられている。今、この様に構成された
カラー陰極線管のフエースプレートガラス1に入
射する外来光の強さを(E0)、螢光面で反射され
た後再びフエースプレートガラス1の外部へ出て
来た反射光の強さを(E1)、フエースプレートガ
ラス1の光透過率を(T)、赤(R)緑(G)青(B)の
3色螢光体素子群2の反射率を(Rp)、螢光体素
子群の発光の強さを(F0)、フエースプレートガ
ラス1の外部に出て来る螢光面出力を(F1)と
すると E1=E0・Rp・T2 ……() F1=F0・T ……() となる。又コントラストCは C=E1+F1/E1 ……() と定義出来るので()へ()()を代入す
ると C=1+F0/E0・Rp・T ……() となる。厳密に言うならばフエースプレートガラ
ス1の表面での外来光の反射、フエースプレート
ガラス1内での多重反射、散乱電子によるハレー
シヨン等の影響によるフアクターも導入されねば
ならないが、ここではこれらの影響は十分小さい
として無視した。陰極線管の映像のコントラスト
を向上させるにはフエースプレートガラス1の光
透過率(T)を下げれば良い事は()式によ
り明らかである。従来より陰極線管用のフエース
プレートガラス1として使用されるガラスは一般
に可視域の光透過率が75%以上のクリアーガラ
ス、60〜75%のグレイガラス、60%以下のテイン
トガラスとして区別されて使用されており、第2
図aはクリアーガラン、eはグレイガラス、cは
テイントガラスの各々代表的な分光透過率曲線を
カラー陰極線管の赤(R)緑(G)青(B)の3色螢光体
素子の発光スペクトルと合わせて示すものであ
る。
FIG. 1 is a cross-sectional model of the fluorescent surface of a color cathode ray tube. Reference numeral 1 denotes a face plate glass, and on its inner surface, a group of three-color phosphor elements 2 of red (R), green (G), and blue (B) are provided. Now, the intensity of the external light incident on the face plate glass 1 of the color cathode ray tube configured in this way is (E 0 ), and after being reflected by the fluorescent surface, it comes out again to the outside of the face plate glass 1. The intensity of the reflected light is (E 1 ), the light transmittance of the face plate glass 1 is (T), and the reflectance of the three-color phosphor element group 2 of red (R), green (G, and blue) is ( Rp), the intensity of light emission from the phosphor element group is (F 0 ), and the output of the phosphor surface coming out of the face plate glass 1 is (F 1 ), then E 1 = E 0・Rp・T 2 ...() F 1 = F 0・T ...() becomes. Also, the contrast C can be defined as C=E 1 + F 1 / E 1 . Strictly speaking, factors such as reflection of external light on the surface of the face plate glass 1, multiple reflections within the face plate glass 1, and halation due to scattered electrons must also be introduced, but here these effects will be considered. I ignored it as it was small enough. It is clear from equation () that in order to improve the contrast of the cathode ray tube image, it is sufficient to lower the light transmittance (T) of the face plate glass 1. Conventionally, the glass used as face plate glass 1 for cathode ray tubes is generally classified into clear glass with a visible light transmittance of 75% or more, gray glass with a light transmittance of 60 to 75%, and taint glass with a light transmittance of 60% or less. The second
Figure a shows the typical spectral transmittance curves for clear galan, e for gray glass, and c for tainted glass. This is shown together with the spectrum.

一方この第2図及び()式を見ても明らかな
如く螢光面の光出力即ち螢光面の輝度はコントラ
ストとは逆にフエースプレートガラス1の光透過
率(T)が低くなればなるほど低くなつてしま
う。即ち映像のコントラスト性能と輝度性能はフ
エースプレートガラス1の光透過率(T)で見
る限りは両立し難いものであり、どちらの性能を
より重視するかによりフエースプレートガラス1
の種類の選択が行なわれていた。
On the other hand, as is clear from Fig. 2 and equation (), the light output of the fluorescent surface, that is, the brightness of the fluorescent surface, is different from the contrast as the light transmittance (T) of the face plate glass 1 becomes lower. It gets lower. In other words, contrast performance and brightness performance of images are difficult to reconcile as far as the light transmittance (T) of the face plate glass 1 is concerned, and it depends on which performance is more important.
A selection of types was made.

この様な輝度性能とコントラスト性能に関する
ジレンマを解消し、両性能共に向上させる手段と
して第2図で示した如く従来可視域でほぼフラツ
トな光透過性を有するフエースプレートガラスに
かえて螢光面の3色螢光体素子の各々の発光スペ
クトルの谷間の波長域即ち発光エネルギーの少い
領域に於て選択的にフエースプレートガラス1に
光吸収性を持たせる事が提案されている。第3図
はこの様な目的にほぼ叶うものとして提案されて
いるフエースプレートガラス1の分光透過率曲線
を示すものであり従来のクリアーガラスにほぼ類
似した組成を有するガラス素材に酸化ネオジウム
(Nd2O3)を0.5重量%添加して形成したものであ
る。(以下ネオジウム入りガラスを称す。) このネオジウム入りガラスは酸化ネオジウム
(Nd2O3)の固有の特性により約580nmにピーク
を有する急峻な主吸収帯と、約530nmにピークを
有する副吸収帯とを有する。これらの吸収帯は非
常に急峻である為、これらの吸収帯以外の部分で
はネオジウム入りガラスはほぼ従来のクリアーガ
ラスなみの高い光透過率を有するにもかかわらず
可視域全体の平均的な光透過率はほぼグレイガラ
ス相当となり、螢光面の輝度特性を損う事なく映
像コントラストの改善に究与するものである。
As a means to solve this dilemma regarding brightness performance and contrast performance and to improve both performances, a fluorescent surface was used instead of the conventional face plate glass, which has almost flat light transmittance in the visible range, as shown in Figure 2. It has been proposed to selectively provide the face plate glass 1 with light absorbing properties in the wavelength region between the valleys of the emission spectra of the three-color phosphor elements, that is, in the region of low emission energy. Figure 3 shows the spectral transmittance curve of face plate glass 1, which has been proposed as a material that almost satisfies these purposes . It was formed by adding 0.5% by weight of O 3 ). (Hereinafter referred to as neodymium-containing glass.) Due to the unique characteristics of neodymium oxide (Nd 2 O 3 ), this neodymium-containing glass has a steep main absorption band with a peak at about 580 nm and a sub-absorption band with a peak at about 530 nm. has. These absorption bands are very steep, so even though neodymium-containing glass has a high light transmittance that is almost as high as conventional clear glass in areas other than these absorption bands, the average light transmission throughout the visible range is low. The ratio is almost equivalent to that of gray glass, and it contributes to improving image contrast without impairing the brightness characteristics of the fluorescent surface.

第4図はこの様なネオジウム入りガラスの分光
透過率曲線dを従来のクリアーガラスの分光透過
率曲線aとを合わせて示すものである。(カラー
陰極線管の赤(R)緑(G)青(B)の3色螢光体素子の
発光スペクトルも同時に示している。) この様なネオジウム入りガラスをフエースプレ
ートガラスとして使用した場合螢光面の輝度・コ
ントラスト特性は前述した如く大巾に改善される
が螢光面の体色が従来の陰極線管と大きく異なり
外観上観視者に違和観を生じやすい欠点がある。
この螢光面の体色について第5図により更に詳し
く説明する。第5図ABCの各点はテレビジヨン
セツトを家庭等で観視する場合の代表的な種類の
白色外来光の色度点をCIE色度図上にプロツトし
たものでありA点は標準光源であるA光源の色度
点であり家庭で使用する白熱灯の光の色度点にほ
ぼ近い値を示す。B点は家庭で使用する白色螢光
灯の光の色度点の一例を示す。C点は標準光源で
あるC光源の色度点であり平均昼光色を示すもの
である。螢光面の螢光体素子群2の分光反射率が
可視光領域でほぼフラツトで且つフエースプレー
トガラス1の分光透過率が従来のクリアーガラス
等の様に可視光領域でほぼフラツトな分布を有す
る場合螢光面で反射されて出て来る反射外来光の
色度点即ち螢光面の体色はこれら外来光の色度点
にほぼ近い値を示す。一方ネオジウム入りガラス
を螢光面のフエースプレートガラスとして使用す
る場合にはフエースプレートガラスの分光透過率
が可視光領域でフラツトではなく前述した如く複
雑な起伏を有する為螢光面で反射されて出て来る
反射外来光の色度点即ち螢光面の体色はこれら白
色来外光の色度点とは相違して来る。即ち第5図
のA光源(A点)の場合について説明すると、外
来光がA光源による光の場合には螢光面へ入射し
た外来光は螢光体素子群2では可視光領域でほぼ
フラツトな反射が行われるもののネオジウム入り
ガラスの580nmの主吸収帯に於ける急峻な吸収と
530nmの副吸収帯に於ける吸収とによりの反射外
来光の波長成分が元々の入射外来光のそれとは異
なつて来る。これらの影響を色度図上で見ると
580nmの主吸収帯により外来光の中のこの波長成
分の光が減少し色度点は580nmの単色色度点(馬
蹄型上のQ点)とA光源の色度点Aを結ぶ線分β
上を580nmの単色々度点Qから遠ざかる様に影響
を受ける(これをベクトルa2で示す。)。同様に
530nmの副吸収帯により外来光の中の波長成分の
光が減少し反射外来光の色度点は530nmの単色々
度点(馬蹄型上のR点)とA光源の色度点Aを結
ぶ線分α上を530nmの単色々度点Rから遠ざかる
様な影響を受ける。(これをベクトルa1で示す。)
従つてこれらa1及びa2の2つのベクトルを合成し
たベクトルa3方向へ反射外来光の色度点即ち螢光
面の体色は移動する。又主吸収帯の吸収は副吸収
帯の吸収に比べて非常に大きいのでベクトルa2
絶対値はベクトルa1の絶対値に比べて十分大きく
なる。白色螢光灯(B点)及びC光源(C点)の
場合も同様に反射外来光の色度点即ち螢光面の体
色は各々ベクトルb3及びc3方向へ移動する。この
場合も同様に主吸収帯と副吸収帯の吸収の大きさ
の違いによりベクトルb2及びc2の絶対値はベクト
ルb1及びc1の絶対値に比べて十分大きくなる。以
上述べた如くネオジウム入りガラスを螢光面のフ
エースプレートガラスとして使用した場合螢光面
の体色が白色外来光の色調からずれてしまい不安
点なものとなり螢光面の外観上好ましくない。
FIG. 4 shows the spectral transmittance curve d of such neodymium-containing glass together with the spectral transmittance curve a of conventional clear glass. (The emission spectrum of the red (R), green (G), and blue (B) three-color phosphor elements of the color cathode ray tube is also shown at the same time.) When such neodymium-containing glass is used as face plate glass, the fluorescence Although the brightness and contrast characteristics of the surface are greatly improved as described above, the color of the fluorescent surface is significantly different from that of conventional cathode ray tubes, which has the disadvantage that it tends to give a strange appearance to the viewer.
The body color of this fluorescent surface will be explained in more detail with reference to FIG. The points in Figure 5 ABC are plotted on the CIE chromaticity diagram of the chromaticity points of a typical type of white extraneous light when viewing a television set at home, etc., and point A is the standard light source. This is the chromaticity point of a certain A light source, and it shows a value that is almost close to the chromaticity point of light from an incandescent lamp used at home. Point B shows an example of the chromaticity point of light from a white fluorescent lamp used at home. Point C is the chromaticity point of light source C, which is a standard light source, and indicates the average daylight color. The spectral reflectance of the phosphor element group 2 on the fluorescent surface is almost flat in the visible light region, and the spectral transmittance of the face plate glass 1 has a nearly flat distribution in the visible light region, like conventional clear glass. In this case, the chromaticity point of the reflected external light reflected by the fluorescent surface, that is, the body color of the fluorescent surface, exhibits a value almost close to the chromaticity point of the external light. On the other hand, when neodymium-containing glass is used as a face plate glass for a fluorescent surface, the spectral transmittance of the face plate glass is not flat in the visible light range but has complex undulations as described above, so the light is reflected from the fluorescent surface and the light is emitted. The chromaticity point of the reflected external light, that is, the body color of the fluorescent surface, is different from the chromaticity point of the white external light. That is, to explain the case of light source A (point A) in FIG. 5, when the external light is from light source A, the external light incident on the phosphor surface is almost flat in the visible light region in phosphor element group 2. Although some reflection occurs, the steep absorption in the 580 nm main absorption band of neodymium-containing glass
Due to the absorption in the sub-absorption band of 530 nm, the wavelength component of the reflected external light becomes different from that of the originally incident external light. Looking at these effects on a chromaticity diagram
Due to the main absorption band of 580nm, the light of this wavelength component in the external light is reduced, and the chromaticity point is the line segment β connecting the 580nm monochromatic chromaticity point (point Q on the horseshoe shape) and the chromaticity point A of the A light source.
The upper surface is influenced to move away from the monochromatic point Q at 580 nm (this is shown by vector a2 ). similarly
The 530nm sub-absorption band reduces the wavelength component of the external light, and the chromaticity point of the reflected external light connects the monochromaticity point of 530nm (point R on the horseshoe shape) and the chromaticity point A of the A light source. It is affected in such a way that it moves away from the monochromatic point R of 530 nm on the line segment α. (This is shown by vector a 1. )
Therefore, the chromaticity point of the reflected extraneous light, that is, the body color of the fluorescent surface moves in the direction of vector a3 , which is the combination of these two vectors a1 and a2 . Also, since the absorption in the main absorption band is much larger than that in the sub-absorption band, the absolute value of vector a 2 is sufficiently larger than the absolute value of vector a 1 . Similarly, in the case of a white fluorescent lamp (point B) and a light source C (point C), the chromaticity point of the reflected extraneous light, that is, the body color of the fluorescent surface, moves in the directions of vectors b3 and c3 , respectively. In this case as well, the absolute values of vectors b 2 and c 2 are sufficiently larger than the absolute values of vectors b 1 and c 1 due to the difference in the magnitude of absorption between the main absorption band and the sub absorption band. As mentioned above, when neodymium-containing glass is used as the face plate glass of the fluorescent surface, the body color of the fluorescent surface deviates from the color tone of the white external light, which is a source of concern and is not desirable in terms of the appearance of the fluorescent surface.

この発明はこの様なネオジウム入りガラスをカ
ラー陰極線管のフエースプレートガラスとして使
用する場合に必然的に生じて来る螢光面の体色の
不安定化の問題に鑑みなされたものであり、ネオ
ジウム入りガラスをフエースプレートガラスとし
て使用しても螢光面の体色が安定しているカラー
陰極線管を提供するものである。
This invention was made in view of the problem that the color of the fluorescent surface becomes unstable when such neodymium-containing glass is used as the face plate glass of a color cathode ray tube. To provide a color cathode ray tube in which the body color of a fluorescent surface is stable even when glass is used as a face plate glass.

以下第5図〜第13図によりこの発明の実施例
について説明する。先ず前述した第5図によりこ
の発明の原理を説明する。前述した如くネオジウ
ム入りガラスを螢光面のフエースプレートガラス
として使用すると580nmの主吸収帯によつて生じ
る色度図上のベクトル(a2,b2,c2)と530nmの
副吸収帯によつて生じるベクトル(a1,b1,c1
とにより螢光面の体色が変化するのであるがベク
トル(a1,b1,c1)の大きさは(a2,b2,c2)の
大きさに比べて十分小さい。従つて本発明ではこ
のベクトル(a2,b2,c2)に着目して螢光面の体
色の安定化を計ろうとするものである。この様な
ベクトル(a2,b2,c2)の影響を無くすにはこれ
らのベクトルの逆ベクトル即ち(―a2,―b2,―
c2)を生じさせるとよいことは明らかである。こ
の逆ベクトルの発生方法についてA光源の色度点
Aの場合について詳明する。580nmの主吸収帯の
単色色度点QとA光源の色度点Aとを結ぶ線分β
が再び馬蹄型曲線と交わる点(Qa点)は約
470nmの単色色度点であるが、今何らかの方法に
より反射外来光の波長成分の中でこの約470nmの
波長成分の光を適当量減じれば色度点は約470nm
の単色色度点QaとA光源の色度点(A)を結ぶ線分
β上を単色色度点Qaから遠ざかる影響を受け、
―a2のベクトルが生じる事は明らかである。他の
種類の白色外来光の場合もこの線分εδの馬蹄型曲
線との交点Qb,Qcは480nm近辺に位置し反射来
外光中のこれらの波長成分の光を適当量減じれば
―b2及び―c2のベクトルを生じる事が出来る。即
ち、ネオジウム入りガラスを螢光面のフエースプ
レートガラスとして使用する場合には反射外来光
中の470〜480nmの波長成分の光を適当量減じれ
ば螢光面の体色の変化をほとんど無くす事が可能
である。
Embodiments of the present invention will be described below with reference to FIGS. 5 to 13. First, the principle of this invention will be explained with reference to FIG. 5 mentioned above. As mentioned above, when neodymium-containing glass is used as the face plate glass of the fluorescent surface, the vector (a 2 , b 2 , c 2 ) on the chromaticity diagram caused by the main absorption band at 580 nm and the sub absorption band at 530 nm are vector (a 1 , b 1 , c 1 )
However, the size of the vector (a 1 , b 1 , c 1 ) is sufficiently small compared to the size of (a 2 , b 2 , c 2 ). Therefore, the present invention attempts to stabilize the body color of the fluorescent surface by focusing on these vectors (a 2 , b 2 , c 2 ). To eliminate the influence of such vectors (a 2 , b 2 , c 2 ), the inverse vectors of these vectors, ie (-a 2 , -b 2 , -
It is clear that it is better to generate c 2 ). The method for generating this inverse vector will be explained in detail for the case of chromaticity point A of light source A. Line segment β connecting the monochromatic chromaticity point Q of the main absorption band of 580 nm and the chromaticity point A of the A light source
The point where Qa intersects with the horseshoe curve again (point Qa) is approximately
The monochromatic chromaticity point is 470nm, but if we somehow reduce the amount of light with a wavelength component of about 470nm among the wavelength components of reflected external light, the chromaticity point will be about 470nm.
Under the influence of moving away from the monochromatic chromaticity point Qa on the line segment β connecting the monochromatic chromaticity point Qa of and the chromaticity point (A) of the A light source,
It is clear that a vector of -a 2 is generated. In the case of other types of white external light, the intersection points Qb and Qc of this line segment εδ with the horseshoe curve are located around 480 nm, and if the light of these wavelength components in the reflected external light is reduced by an appropriate amount, -b 2 and −c 2 vectors can be generated. In other words, when neodymium-containing glass is used as a face plate glass for a fluorescent surface, if the light with a wavelength component of 470 to 480 nm in the reflected external light is reduced by an appropriate amount, changes in the body color of the fluorescent surface can be almost eliminated. is possible.

反射外来光中の470〜480nmの波長成分の光を
減じる方法としては3色螢光体素子群2の分光反
射率を470〜480nmの波長帯に於いて減衰させれ
ば良い事は明らかである。本発明者はその発光ス
ペクトル上カラー陰極線管の螢光面の3色螢光体
素子として使用可能な種々の螢光体についてネオ
ジウム入りガラスのフエースプレートガラスと組
み合わせた場合のその螢光面の体色の安定性につ
いて検討した結果3色螢光体素子群2の内緑(G)色
発光螢光体素子として銅付活,アルミニウム共付
活硫化亜鉛(ZnS:Cu,Al)螢光体を使用すれ
ばより体色の安定した螢光面を得られる事を見い
出した。以下第6図〜第13図についてこの発明
を更に詳しく説明する。
It is clear that the way to reduce the light in the wavelength range of 470 to 480 nm in the reflected external light is to attenuate the spectral reflectance of the three-color phosphor element group 2 in the wavelength range of 470 to 480 nm. . The present inventors have proposed various phosphors that can be used as three-color phosphor elements in the fluorescent surface of color cathode ray tubes based on their emission spectra, and have investigated the structure of the fluorescent surface when combined with a neodymium-containing face plate glass. As a result of examining color stability, a copper-activated, aluminum-coactivated zinc sulfide (ZnS:Cu,Al) phosphor was selected as the green (G) color-emitting phosphor element of the three-color phosphor element group 2. It was discovered that by using this method, a fluorescent surface with more stable body color could be obtained. The present invention will be explained in more detail with reference to FIGS. 6 to 13 below.

第6図は好ましくない3色螢光体素子群2の組
み合わせの場合のその分光反射特性について示す
ものである。即ち3色螢光体素子群2の内緑(G)色
発光螢光体素子としてテルビユウム付活酸硫化ガ
ドリウム(Gd2O2S:Tb)螢光体を青(B)色発光螢
光光体素子として銀付活硫化亜鉛(ZnS:Ag)
螢光体を又赤(R)色発光螢光体素子としてユー
ロピユーム付活酸硫化イツトリウム(Y2O2S:
Eu)螢光体を使用した場合の各々の螢光体の分
光反射特性とこれらの螢光体により3色螢光体素
子群2を形成した場合の3色螢光体素子群2の分
光反射特性を示すものであり図中イはGd2O2S:
Tb螢光体、ロはZnS:Ag螢光体、ハはY2O2S:
Eu螢光体、ニはこれら3色螢光体が総合された
3色螢光体素子群2の各々分光反射率曲線であ
る。これらの螢光体の組み合わせの場合3色螢光
体素子群2の分光反射曲線ニは470〜480nmの波
長帯でほとんど減衰を示さない為前述した理由に
より螢光面の体色上好ましくないものである。第
7図は好ましく3色螢光体素子群2の組み合わせ
の場合のその分光反射特性について示すものであ
る。この場合は青(B)色及び赤(R)色発光螢光体
は第6図により示した螢光体即ち各々ZnS:Ag
螢光体及びY2O2S:Eu螢光体と同じであるが緑
(G)色発光螢光体としてZnS:Cu,Al螢光体を使
用しており図中ホはこの螢光体の分光反射率曲線
を示すものである。この場合の総合された3色螢
光体素子群2の分光反射率曲線は図中ヘの如くに
なり470〜480nmの波長帯で減衰を示すのでネオ
ジウム入りガラスのフエースプレートガラスと組
み合わせた場合の螢光面の体色上好ましいもので
ある。これは3色螢光体素子群2の内緑(G)色発光
螢光体として使用したZnS:Cu,Al螢光体の分
光反射率曲線ホが図の如く可視光領域の短波長側
で大きく減衰している為である。又このZnS:
Cu,Al螢光体の分光反射率の可視光領域短波長
側での減衰はこの螢光体の付活剤である銅(Cu)
の量に大きく依存する。分光反射率曲線ホで示し
たZnS:Cu,Al螢光体の場合は母体である硫化
亜鉛(ZnS)1gに対して銅(Cu)の付活剤を
約1×10-4g付活したものであり銅(Cu)の付
活剤濃度が増大するほど螢光体の分光反射率の可
視光領域短波長側の減衰は大きくなる。第8図は
緑(G)色発光螢光体として使用したZnS:Cu,Al
の銅(Cu)の付活剤濃度を更に増大させた場合
の例であり青(B)色及び赤(R)色発光螢光体につ
いては各々第6図及び第7図と同じZnS:Ag螢
光体及びY2O2S:Eu螢光体である。この場合の
銅(Cu)の付活剤は母体である硫化亜鉛1gに
対して約5×10-4g付活したものである。この場
合のZnS:Cu,Al螢光体の分光反射率曲線は図
中トの如くであり第7図ホの場合よりも可視光領
域の短波長側の減衰が更に大きくなる。この結果
として総合された3色螢光体素子群2の分光反射
率曲線は図中チの如くになり第7図ヘの場合より
も可視光領域短波長側での減衰が増大する。
FIG. 6 shows the spectral reflection characteristics of an unfavorable combination of the three-color phosphor element group 2. That is, a terbium-activated gadolinium oxysulfide (Gd 2 O 2 S:Tb) phosphor is used as a green (G) color emitting phosphor element of the three-color phosphor element group 2 to produce a blue (B) color emitting fluorescent light. Silver-activated zinc sulfide (ZnS:Ag) as a body element
The phosphor is also made of europium-activated yttrium oxysulfide (Y 2 O 2 S:
Spectral reflection characteristics of each phosphor when Eu) phosphors are used and spectral reflection of three-color phosphor element group 2 when these phosphors form three-color phosphor element group 2 This shows the characteristics of Gd 2 O 2 S in the figure.
Tb phosphor, B is ZnS: Ag phosphor, C is Y 2 O 2 S:
2 is a spectral reflectance curve for each of the three-color phosphor element group 2, which is a combination of these three-color phosphors. In the case of a combination of these phosphors, the spectral reflection curve 2 of the three-color phosphor element group 2 shows almost no attenuation in the wavelength range of 470 to 480 nm, which is unfavorable due to the color of the phosphor surface for the reasons mentioned above. It is. FIG. 7 shows the spectral reflection characteristics of a preferred combination of three-color phosphor element group 2. In this case, the blue (B) and red (R) color emitting phosphors are the phosphors shown in FIG.
Fluorophor and Y2O2S : Same as Eu fluorophore but green
(G) A ZnS:Cu,Al phosphor is used as the color-emitting phosphor, and E in the figure shows the spectral reflectance curve of this phosphor. In this case, the spectral reflectance curve of the integrated three-color phosphor element group 2 is as shown in the figure below, and it shows attenuation in the wavelength band of 470 to 480 nm, so when combined with a neodymium-containing face plate glass, This is preferable in terms of the body color of the fluorescent surface. This is because the spectral reflectance curve H of the ZnS:Cu,Al phosphor used as the green (G) color emitting phosphor in the three-color phosphor element group 2 is on the short wavelength side of the visible light region as shown in the figure. This is because it is greatly attenuated. Also this ZnS:
The attenuation of the spectral reflectance of Cu and Al phosphors on the short wavelength side of the visible light region is due to copper (Cu, the activator of this phosphor).
Much depends on the amount of In the case of the ZnS:Cu,Al phosphor shown in the spectral reflectance curve E, approximately 1×10 -4 g of copper (Cu) activator was activated for 1 g of zinc sulfide (ZnS) as the base material. As the activator concentration of copper (Cu) increases, the attenuation of the spectral reflectance of the phosphor on the short wavelength side of the visible light region increases. Figure 8 shows ZnS:Cu,Al used as a green (G) color emitting phosphor.
This is an example in which the copper (Cu) activator concentration is further increased, and the blue (B) and red (R) color emitting phosphors are the same as in Figures 6 and 7, respectively. Fluorescent material and Y2O2S :Eu fluorescent material. In this case, the copper (Cu) activator was activated in an amount of approximately 5×10 −4 g per gram of zinc sulfide, which was the base material. The spectral reflectance curve of the ZnS:Cu,Al phosphor in this case is as shown in (G) in the figure, and the attenuation on the short wavelength side of the visible light region is even greater than in the case (E) of FIG. As a result, the spectral reflectance curve of the three-color phosphor element group 2 is as shown in FIG.

以上述べた様な3色螢光体素子群2の組み合わ
せを従来のクリアーガラス及びネオジウム入りガ
ラスのフエースプレートガラス内面に形成した場
合の螢光面の体色を白色外来光がA光源からの光
の場合についてCIE色度図上にプロツトしたもの
が第9図である。図中AはA光源の光の色度点で
ある。Pは従来のクリアーガラスのフエースプレ
ートガラス1内面にGd2O2S:Tb緑(G)色発光螢光
体、ZnS:Ag青(B)色螢光体及び、Y2O2S:Eu赤
(R)色発光螢光体の組み合わせから成り第6図
ニで示した様に可視光領域でほぼフラツトな分光
反射率を有する3色螢光体素子群2を形成した場
合の螢光面からの反射外来光の色度点即ち螢光面
の体色を示す。AとPに若干ズレを生じるのは第
2図aで示した如くクリアーガラスの分光透過率
が現実には可視光領域で完全にフラツトではねく
少し凹凸を有することと3色螢光体素子群2の分
光反射率を少し凹凸を有する為である。一方ネオ
ジウム入りガラスのフエースプレートガラス1の
内面に前記第6図の好ましくない3色螢光体素子
群2の組み合わせ例で述べたGd2O2S:Tb緑(G)色
発光螢光体、ZnS:Ag青(B)色発光螢光体及び
Y2O2S:Eu赤(R)色発光螢光体の組み合わせ
から成る3色螢光体素子群2を形成した場合の螢
光面からの反射外来光の色度点即ち螢光面の体色
の色度点を示すのがE点である。この場合螢光面
の体色が白色外来光即ちA光源の色度点Aから大
巾にズレてしまい不安点な色調となり螢光面の外
観上好ましくない。F点は前記第7図の好ましい
3色螢光体素子群2の組み合わせ例で述べた
ZnS:Cu,Al緑(G)色発光螢光体、ZnS:Ag青(B)
色発光螢光体及びY2O2S:Eu赤(R)色発光螢
光体に組み合わせから成る3色螢光体素子群2を
ネオジウム入りガラスのフエースプレートガラス
1の内面に形成した場合の螢光面の体色を示し前
述した如く反射外来光中の470〜480nmの波長帯
の光の成分が減じられA光源の色度点Aからのズ
レがE点の場合よりも大巾に小さくなつている。
G点は第8図で説明した如く緑(G)色螢光螢光体と
して更に銅(Cu)の付活剤濃度を増大させた
ZnS:Cu,Al螢光体を3色螢光体素子群2に適
用した場合の螢光面の光色を示しA光源の色度点
Aからのズレは前記F点よりも更に小さくなる。
When the combination of the three-color phosphor element group 2 as described above is formed on the inner surface of a face plate glass of conventional clear glass and neodymium-containing glass, the body color of the phosphor surface is determined by the white external light from the light source A. Figure 9 shows the case plotted on the CIE chromaticity diagram. In the figure, A is the chromaticity point of light from the A light source. P is a conventional clear glass face plate glass 1 with Gd 2 O 2 S: Tb green (G) color emitting phosphor, ZnS: Ag blue (B) color phosphor, and Y 2 O 2 S: Eu Fluorescent surface when a three-color phosphor element group 2 is formed, which is composed of a combination of red (R) color-emitting phosphors and has an almost flat spectral reflectance in the visible light region, as shown in FIG. 6D. This shows the chromaticity point of the external light reflected from the surface, that is, the body color of the fluorescent surface. The reason why there is a slight difference between A and P is that the spectral transmittance of clear glass is actually not completely flat in the visible light range, but has slight irregularities, as shown in Figure 2a, and the fact that the three-color phosphor element This is because the spectral reflectance of group 2 is slightly uneven. On the other hand, on the inner surface of the face plate glass 1 made of neodymium-containing glass, the Gd 2 O 2 S:Tb green (G) color emitting phosphor described in the example of the combination of the undesirable three-color phosphor element group 2 shown in FIG. ZnS: Ag blue (B) color emitting phosphor and
Y 2 O 2 S: The chromaticity point of the external light reflected from the fluorescent surface when forming the three-color phosphor element group 2 consisting of a combination of Eu red (R) color emitting phosphors, that is, the chromaticity point of the fluorescent surface. Point E indicates the chromaticity point of the body color. In this case, the body color of the fluorescent surface deviates greatly from the chromaticity point A of the white extraneous light, that is, the light source A, resulting in an unstable color tone, which is unfavorable in terms of the appearance of the fluorescent surface. Point F is described in the preferred combination example of three-color phosphor element group 2 in FIG. 7 above.
ZnS: Cu, Al green (G) color emitting phosphor, ZnS: Ag blue (B)
A case where a three-color phosphor element group 2 consisting of a combination of a color-emitting phosphor and a Y 2 O 2 S:Eu red (R) color-emitting phosphor is formed on the inner surface of a face plate glass 1 made of neodymium-containing glass. This shows the body color of the fluorescent surface, and as mentioned above, the light component in the wavelength band of 470 to 480 nm in the reflected external light is reduced, and the deviation from the chromaticity point A of the A light source is much smaller than that at the E point. It's summery.
As explained in Figure 8, the G point is a green (G) fluorescent phosphor with an increased concentration of copper (Cu) activator.
This shows the light color of the phosphor surface when ZnS:Cu,Al phosphor is applied to the three-color phosphor element group 2, and the deviation from the chromaticity point A of the A light source is even smaller than the above-mentioned point F.

ZnS:Cu,Al螢光体の銅(Cu)付活剤の量の
ネオジウム入りガラスのフエースプレートガラス
を使用した螢光面の体色の安定性への寄与の点か
ら言えば母体の硫化亜鉛1gに対して付加剤の銅
(Cu)を5×10-5g以上にする事が望ましい。よ
り好ましくは付加剤の銅(Cu)を3×10-4g以
上にすれば螢光面の体色の安定性は更に大巾に高
まる。
ZnS: Cu, Al In terms of the amount of copper (Cu) activator in the phosphor contributing to the stability of the body color of the phosphor surface using neodymium-containing glass face plate glass, zinc sulfide as the matrix It is desirable that the additive amount of copper (Cu) be 5×10 -5 g or more per 1 g. More preferably, if the amount of copper (Cu) used as an additive is 3×10 -4 g or more, the stability of the body color of the fluorescent surface can be greatly increased.

第10図〜第13図は最近螢光面のコントラス
トを向上させる目的で最近広く使用される様にな
つて来た青色顔料付銀付活硫化亜鉛(青色顔料付
ZnS:Ag)螢光体を青色発光螢光体として又赤
色顔料付ユーロピユーム付活酸硫化イツトリウム
(赤色顔料付Y2O2S:Eu)螢光体を赤色発光螢光
体として使用しこれらと前述した各種緑(G)色発光
螢光体を組み合わせた時の3色螢光体素子群2の
分光反射率(第10図〜第12図)及びこれらの
3色螢光体素子群2の従来のクリアーガラス及び
ネオジウム入りガラスのフエースプレートガラス
1内面に形成した場合の螢光面の体色を白色外来
光がA光源からの光の場合についてClE色度図上
にプロツトしたもの(第13図)を前記第6図〜
第9図と同様に示すものである。図中リは青色顔
料付ZnS:Ag螢光体の分光反射率曲線、ヌは赤
色顔料付Y2O2S:Eu螢光体の分光反射率曲線で
ありこれらの螢光体と前記Gd2O2S:Tb螢光体と
を組み合わせた3色螢光体素子群2の分光反射率
曲線は第10図ルの如く470〜480nmの波長帯で
ほとんど減衰を示さないが、ZnS:Cu,Al螢光
体と組み合わせた場合は第11図ヲの如く470〜
480nmの波長帯で減衰を生じる。又前記と同様銅
(Cu)付活剤濃度を増大させたZnS:Cu,Al螢光
体とこれら螢光体を組み合わせた場合は第12図
ワの如く3色螢光体素子群2の470〜480nmの波
長帯に於ける分光反射率が更に減衰を生じる。こ
れらの組み合わせの3色螢光体素子群2を従来の
クリアーガラス及びネオジウム入りガラスのフエ
ースプレートガラス1の内面に形成した場合の螢
光面の体色を白色外来光がA光源からの光の場合
についてCIE色度図上に示したものが第13図で
ありAはA光源の色度点、HはGd2O2S:Tb螢光
体、青色顔料付ZnS:Ag螢光体及び赤色顔料付
Y2O2S:Eu螢光体の組み合わせから成る3色螢
光体素子群2を従来のクリアーガラスのフエース
プレートガラス1の内面に形成した場合の螢光面
からの反射外来光の色度点、即ち螢光面の体色の
色度点、IはGd2O2S:Tb螢光体、青色顔料付
ZnS:Ag螢光体及び赤色顔料付Y2O2S:Eu螢光
体の組み合わせから成る3色螢光体素子群2をネ
オジウム入りガラスのフエースプレートガラス1
内面に形成した場合の螢光面からの反射外来光の
色度点、即ち螢光面の体色の色度点、JはZnS:
Cu,Al螢光体、青色顔料付ZnS:Ag螢光体及び
赤色顔料付Y2O2S:Eu螢光体の組み合わせから
成る3色螢光体素子群2をネオジウム入りガラス
のフエースプレートガラス1内面に形成した場合
の螢光面からの反射外来光の色度点即ち螢光面の
体色の色度点、Kは銅(Cu)付活剤濃度を増大
させたZnS:Cu,Al螢光体、青色顔料付ZnS:
Ag螢光体及び赤色顔料付Y2O2S:Eu螢光体の組
み合わせから成る3色螢光体素子群2をネオジウ
ム入りガラスのフエースプレートガラス1内面に
形成した場合の螢光面からの反射外来光の色度点
即ち螢光面の体色の色度点である。これらの色度
点を見ても明らかな如く、顔料付の青(B)色発光螢
光体及び赤(R)色発光螢光体を使用する時も緑
(G)色発光螢光体としてZnS:Cu,Al螢光体を組
み合わせれば前述した如く反射外来光中の470〜
480nmの波長帯の光の成分が減じられネオジウム
入りガラスのフエースプレートガラス1と組み合
わせた時に生じる体色の不安定さが大巾に改善さ
れる。即ち体色の色度点がIからJへ復帰する。
又ZnS:Cu,Al螢光体の銅(Cu)付活剤濃度を
増大させれば反射外来光中の470〜480nmの波長
帯の光の成分は更に減じられ螢光面の体色の安定
性は更に増大する。即ち体色の色度点がKまで復
帰する。
Figures 10 to 13 show blue-pigmented silver-activated zinc sulfide (blue-pigmented silver-activated zinc sulfide), which has recently become widely used for the purpose of improving the contrast of the fluorescent surface.
A ZnS:Ag) phosphor was used as a blue-emitting phosphor, and a europium-activated yttrium oxysulfide ( Y2O2S :Eu) phosphor with a red pigment was used as a red-emitting phosphor . The spectral reflectance of the three-color phosphor element group 2 when the various green (G) color-emitting phosphors described above are combined (Figures 10 to 12) and the spectral reflectance of the three-color phosphor element group 2 The body color of the fluorescent surface formed on the inner surface of the face plate glass 1 of conventional clear glass and neodymium-containing glass is plotted on the ClE chromaticity diagram when the white external light is from light source A (No. 13). ) to the above-mentioned figure 6~
This is shown similarly to FIG. 9. In the figure, R is the spectral reflectance curve of the blue pigmented ZnS:Ag phosphor, and N is the spectral reflectance curve of the red pigmented Y 2 O 2 S:Eu phosphor . The spectral reflectance curve of the three-color phosphor element group 2 in combination with the O 2 S:Tb phosphor shows almost no attenuation in the wavelength band of 470 to 480 nm, as shown in Figure 10. When combined with Al phosphor, 470 ~ as shown in Figure 11
Attenuation occurs in the 480nm wavelength band. Similarly to the above, when these phosphors are combined with a ZnS:Cu,Al phosphor with an increased concentration of copper (Cu) activator, the 470 of three-color phosphor element group 2 as shown in FIG. The spectral reflectance in the ~480 nm wavelength band is further attenuated. When the three-color phosphor element group 2 of these combinations is formed on the inner surface of the conventional face plate glass 1 made of clear glass and neodymium-containing glass, the body color of the phosphor surface is the same as that of the light from the light source A. Figure 13 shows the case on the CIE chromaticity diagram, where A is the chromaticity point of the A light source, H is the Gd 2 O 2 S:Tb phosphor, the ZnS:Ag phosphor with blue pigment, and the red color. With pigment
Y 2 O 2 S: Chromaticity of external light reflected from the phosphor surface when the three-color phosphor element group 2 consisting of a combination of Eu phosphors is formed on the inner surface of the conventional clear glass face plate glass 1 point, that is, the chromaticity point of the body color of the fluorescent surface, I is Gd 2 O 2 S:Tb phosphor, with blue pigment
A three-color phosphor element group 2 consisting of a combination of a ZnS:Ag phosphor and a red pigmented Y 2 O 2 S:Eu phosphor is attached to a face plate glass 1 made of neodymium-containing glass.
The chromaticity point of reflected external light from the fluorescent surface when formed on the inner surface, that is, the chromaticity point of the body color of the fluorescent surface, J is ZnS:
A three-color phosphor element group 2 consisting of a combination of Cu, Al phosphor, blue pigmented ZnS:Ag phosphor, and red pigmented Y 2 O 2 S:Eu phosphor is attached to a neodymium-containing face plate glass. 1. When formed on the inner surface, the chromaticity point of reflected external light from the fluorescent surface, that is, the chromaticity point of the body color of the fluorescent surface, K is ZnS with increased concentration of copper (Cu) activator: Cu, Al Phosphor, blue pigmented ZnS:
When a three-color phosphor element group 2 consisting of a combination of an Ag phosphor and a red pigmented Y 2 O 2 S:Eu phosphor is formed on the inner surface of the neodymium-containing face plate glass 1, This is the chromaticity point of reflected external light, that is, the chromaticity point of the body color of the fluorescent surface. As is clear from these chromaticity points, even when using a pigmented blue (B) color emitting phosphor and a red (R) color emitting phosphor, the color is green.
(G) If ZnS:Cu, Al phosphors are combined as color-emitting phosphors, 470~
The light component in the 480 nm wavelength band is reduced, and the instability of body color that occurs when combined with the face plate glass 1 made of neodymium-containing glass is greatly improved. That is, the chromaticity point of the body color returns from I to J.
In addition, by increasing the copper (Cu) activator concentration in the ZnS:Cu,Al phosphor, the light component in the wavelength band of 470 to 480 nm in the reflected external light is further reduced, and the body color of the phosphor surface is stabilized. The sex will further increase. That is, the chromaticity point of the body color returns to K.

以上は白色外来光の光源がA光源の場合につい
て述べたが白色螢光灯やC光源による白色外来光
の場合も同様に緑(G)色発光螢光体としてZnS:
Cu,Al螢光体を使用する事により反射外来光中
の470〜480nmの波長帯の光の成分が減じられ同
様の効率を得る事が出来る。
The above description is based on the case where the light source of white external light is A light source, but in the case of white external light from a white fluorescent lamp or C light source, ZnS is used as a green (G) color emitting phosphor.
By using Cu and Al phosphors, the light component in the wavelength band of 470 to 480 nm in the reflected external light is reduced, making it possible to obtain similar efficiency.

又、最近螢光面のコントラストを上げる目的で
螢光面の3色螢光体素子の間に光吸収層を設けた
ブラリツクマトリツクス型螢光面が一般に使用さ
れる様になつて来たが本発明はこの様な螢光面に
も同様に適用する事が出来る。
In addition, recently, a Brarritz matrix type fluorescent surface, in which a light absorption layer is provided between the three-color phosphor elements of the fluorescent surface, has come into general use for the purpose of increasing the contrast of the fluorescent surface. However, the present invention can be similarly applied to such fluorescent surfaces.

以上の様に本発明によれば、ネオジウム入りガ
ラスをフエースプレートガラスとして使用した場
合の螢光面の体色の不安定化の問題が、緑(G)色発
光螢光体としてZnS:Cu,Al螢光体を使用した
3色螢光体素子群の組み合わせにより改善され十
分安定した落ち着いた体色を有する螢光面が得ら
れるコントラスト・輝度特性の改善とも合わせて
非常に高品位の陰極線管を供する事が可能とな
る。
As described above, according to the present invention, the problem of instability of the body color of the fluorescent surface when neodymium-containing glass is used as a face plate glass can be solved by using ZnS:Cu as a green (G) color emitting phosphor. A cathode ray tube of very high quality, with improved contrast and brightness characteristics that have been improved by combining a group of three-color phosphor elements using Al phosphors to obtain a phosphor surface with a sufficiently stable and calm body color. It becomes possible to provide

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は陰極線管の螢光面の断面モデルを示す
図、第2図は各種ガラスの代表的な分光透過率曲
線を示す図、第3図はネオジウム入りガラスの分
光透過率曲線を示す図、第4図はネオジウム入り
ガラスとクリアーガラスの分光透過率曲線を示す
図、第5図はCIE色度図上の白色図上の白色来外
光の色度点を示す図、第6図〜第8図は各種螢光
体の組み合わせによる3色螢光体素子群等の分光
反射特性を示す図、第9図はCIE色度図上に各種
螢光面の体色の色度点をプロツトした図、第10
図〜第12図は各種螢光体の組み合わせによる3
色螢光体素子群等分光反射特性を示す図、第13
図はCIE色度図上に各種螢光面の体色の色度点を
プロツトした図である。 図中、1はフエースプレートガラス、2は赤
(R)緑(G)青(B)の3色螢光体素子群である。
Figure 1 is a diagram showing a cross-sectional model of the fluorescent surface of a cathode ray tube, Figure 2 is a diagram showing typical spectral transmittance curves of various glasses, and Figure 3 is a diagram showing a spectral transmittance curve of neodymium-containing glass. , Figure 4 is a diagram showing the spectral transmittance curves of neodymium-containing glass and clear glass, Figure 5 is a diagram showing the chromaticity point of white external light on the white diagram on the CIE chromaticity diagram, and Figures 6~ Figure 8 is a diagram showing the spectral reflection characteristics of a group of three-color phosphor elements based on combinations of various phosphors, and Figure 9 plots the chromaticity points of the body colors of various phosphor surfaces on the CIE chromaticity diagram. Figure 10
Figures 1 to 12 show 3 combinations of various phosphors.
Diagram showing the spectral reflection characteristics of color phosphor element groups, No. 13
The figure shows the chromaticity points of the body colors of various fluorescent surfaces plotted on the CIE chromaticity diagram. In the figure, 1 is a face plate glass, and 2 is a group of three-color phosphor elements of red (R), green (G), and blue (B).

Claims (1)

【特許請求の範囲】 1 酸化ネオジウム(Nd2O3)を含有して成るフ
エースプレートガラスと該フエースプレートガラ
スの内面に設けられた複数色の螢光体素子群等に
より螢光面が構成されると共に該螢光面の緑色発
光螢光体素子として銅付活アルミニウム共付活硫
化亜鉛(ZnS:Cu,Al)螢光体を使用した事を
特徴とする陰極線管。 2 付活剤である銅(Cu)の量を母体である硫
化亜鉛(ZnS)1gに対して3×10-4g以上とな
した事を特徴とする特許請求の範囲第1項記載の
陰極線管。
[Claims] 1. A fluorescent surface is constituted by a face plate glass containing neodymium oxide (Nd 2 O 3 ) and a group of phosphor elements of multiple colors provided on the inner surface of the face plate glass. 1. A cathode ray tube characterized in that a copper-activated aluminum co-activated zinc sulfide (ZnS:Cu,Al) phosphor is used as a green-emitting phosphor element of the phosphor surface. 2. The cathode ray according to claim 1, characterized in that the amount of copper (Cu) as an activator is 3×10 -4 g or more per 1 g of zinc sulfide (ZnS) as a base material. tube.
JP2115181A 1981-01-29 1981-02-13 Cathode-ray tube Granted JPS57134850A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2115181A JPS57134850A (en) 1981-02-13 1981-02-13 Cathode-ray tube
KR8200134A KR860001676B1 (en) 1981-01-29 1982-01-14 A cathode ray tube
GB8202537A GB2093268B (en) 1981-02-13 1982-01-29 Cathode ray tube
DE19823204895 DE3204895A1 (en) 1981-02-13 1982-02-12 CATHODE RAY TUBE
US06/607,729 US4728856A (en) 1981-02-13 1984-05-09 Cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2115181A JPS57134850A (en) 1981-02-13 1981-02-13 Cathode-ray tube

Publications (2)

Publication Number Publication Date
JPS57134850A JPS57134850A (en) 1982-08-20
JPS6359502B2 true JPS6359502B2 (en) 1988-11-18

Family

ID=12046903

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2115181A Granted JPS57134850A (en) 1981-01-29 1981-02-13 Cathode-ray tube

Country Status (1)

Country Link
JP (1) JPS57134850A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987338A (en) * 1988-03-31 1991-01-22 Kabushiki Kaisha Toshiba Cathode ray tube with film on face-plate
EP1089316A4 (en) * 1998-06-19 2005-11-16 Toshiba Kk Cathode-ray tube and method for manufacturing the same

Also Published As

Publication number Publication date
JPS57134850A (en) 1982-08-20

Similar Documents

Publication Publication Date Title
JPH0744018B2 (en) Projection type television display tube
US7492083B2 (en) Alkaline earth aluminate phosphor for a cold cathode fluorescent lamp and cold cathode fluorescent lamp
JPH07120515B2 (en) Color cathode ray tube with light selective absorption film
US4728856A (en) Cathode ray tube
JPH01320742A (en) Cathode-ray tube
JPS6359502B2 (en)
JPS6359503B2 (en)
JPS5993784A (en) Color projection type image device
JP2751413B2 (en) Phosphor screen for cathode ray tube
KR870001634B1 (en) Color crt
KR930006273B1 (en) Color cathode-ray tube
JPH0115556B2 (en)
KR860000969B1 (en) Color cathode ray tube
KR860001676B1 (en) A cathode ray tube
JPH0472873B2 (en)
JP3032280B2 (en) Color cathode ray tube
JPS6359504B2 (en)
JPS6219794B2 (en)
JPS6212952B2 (en)
JPS633419B2 (en)
JP3327959B2 (en) Blue light emitting composition
JPH0433009B2 (en)
JPS6410557B2 (en)
JPS58175240A (en) Cathode-ray tube
JPS6359500B2 (en)