JPS6410557B2 - - Google Patents

Info

Publication number
JPS6410557B2
JPS6410557B2 JP5359180A JP5359180A JPS6410557B2 JP S6410557 B2 JPS6410557 B2 JP S6410557B2 JP 5359180 A JP5359180 A JP 5359180A JP 5359180 A JP5359180 A JP 5359180A JP S6410557 B2 JPS6410557 B2 JP S6410557B2
Authority
JP
Japan
Prior art keywords
brightness
phosphor
blue
color picture
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5359180A
Other languages
Japanese (ja)
Other versions
JPS56156649A (en
Inventor
Nobuyuki Tsuda
Masaaki Tamaya
Takeo Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5359180A priority Critical patent/JPS56156649A/en
Publication of JPS56156649A publication Critical patent/JPS56156649A/en
Publication of JPS6410557B2 publication Critical patent/JPS6410557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/10Screens on or from which an image or pattern is formed, picked up, converted or stored
    • H01J29/18Luminescent screens
    • H01J29/20Luminescent screens characterised by the luminescent material

Landscapes

  • Luminescent Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された青色発光蛍光体を蛍光面に
塗布したカラー受像管に関する。 現在、三色型カラー受像管では、その蛍光面は
赤、緑及び青色発光蛍光体のストライブ又はドツ
トから構成されている。該カラー受像管におい
て、一般には赤色発光蛍光体としてはユーロピウ
ム付活蛍光体、緑色発光蛍光体としては銅付活硫
化亜鉛あるいは銅・金共付活硫化亜鉛蛍光体、青
色発光蛍光体としては銀付活硫化亜鉛蛍光体が用
いられている。 カラーの調整は、通常、ビーム電流を赤、緑、
青の蛍光体に照射し、低電流においてそれらの比
率を加減して白色画面を調整することにより行な
い、その状態で電流を増大させたときの高電流照
射における白色画面の色調により、評価する。し
たがつて、各蛍光体は低電流においても高電流に
おいてもその比率が変化せずに輝度が増大してい
くのが望ましく、そのような輝度―電流特性は、
直線であるのが理想的である。 通常用いられている赤色発光蛍光体(ユーロピ
ウム付活蛍光体)の場合には、蛍光面にビーム電
流を流した場合、該ビーム電流が増大するとその
輝度は直線状に増大する。また、緑色の発光蛍光
体の場合には、ビーム電流の上昇に従つて輝度は
凸型のカーブを描いて上昇し、一定値に飽和して
いく傾向をもつ。 一方、従来より用いられている青色発光蛍光体
(銀付活硫化亜鉛)は緑色発光蛍光体と同様に、
ビーム電流の上昇に従つて輝度は凸型のカーブを
描いて上昇し、一定値に飽和する傾向のある電流
特性を有している。 このような赤、緑、青の三色の蛍光体を用いて
低電流において白色画面を作り、カラー調整を行
なうと、高電流では赤だけが飽和することなく輝
度が増大していき、緑および青は飽和していくた
めに、例えば、文字画面などの高輝度白色を得よ
うとしても十分高輝度にならないのみならず、白
色が赤味がかるという不都合な事態が生ずる。 そのため、緑および青の電流特性曲線の輝度の
飽和現象を小さくし、直線に近付ける試みがなさ
れており、例えば、緑色蛍光体としてテルビウム
付活蛍光体またはテルビウム付活蛍光体と硫化亜
鉛蛍光体の混合蛍光体を用いることが提案されて
いる(特願昭52−44537号、特開昭53−130966号
公報参照)。しかしながら、この緑色蛍光体の電
流特性の改良だけでは、確かに高輝度画面で従来
の白色画面より約10%の輝度上昇があり、また白
色が赤味がかるという欠点もなくなるが、逆に、
白色が黄緑色がかるという欠点が生ずる。 又、英国特許第1203124号には、三色とも輝度
が高電流で飽和しないカラー受像管が提案されて
いる。即ち、それは赤色発光蛍光体にユーロピウ
ム付活蛍光体、緑色発光蛍光体にテルビウム、ホ
ルミウム、エルビウムあるいはマンガン付活蛍光
体、青色発光蛍光体に2価のユーロピウムあるい
はツリウム付活蛍光体を用いるものである。しか
しながら、上記の青色発光蛍光体は、通常のカラ
ー受像管の動作程度のビーム電流(10〜1000μA)
では、その発光効率が50%以下であり輝度も著し
く低下するので通常画面と比較することは実用的
ではない。 本発明者らは、ニツケルを所定量含有する銀付
活硫化亜鉛が、青色発光蛍光体として高電流での
輝度の飽和現象が小さくかつ輝度の低下も希土類
付活蛍光体ほど大きくないという輝度―電流特性
を有する事実を見出し、本発明を完成するに到つ
た。 本発明の目的は、白色画面を形成するとき、高
輝度白色にあつてもその発光色が緑や赤の方向に
ずれないカラー受像管を提供することにある。 本発明のカラー受像管に用いる青色発光蛍光体
は、ニツケルを含有する銀付活硫化亜鉛蛍光体で
ある。該蛍光体において、含有されるニツケルの
量は蛍光体の全重量に対し0.3ppm以上3ppm以下
の範囲に設定される。 ニツケル含有量が0.3ppm未満の場合には、ニ
ツケルを含有しない従来の銀付活硫化亜鉛蛍光体
に比較して、そのビーム電流の増大による輝度の
飽和現象における改善効果は認められず、また
3ppmを超えると消光効果が顕著となり輝度の低
下を招くので高輝度白色が得られない。 このような蛍光体は次のようにして調製され
る。即ち、例えば硫酸ニツケル、硝酸ニツケルな
どのニツケル化合物、硝酸銀、チオ硫酸銀などの
銀化合物及び硫化亜鉛沈澱を出発原料とし、これ
らに例えば塩化ナトリウムなどの融剤を加えて
800〜1000℃の温度域で焼成する方法、あるいは、
予め調製した銀付活硫化亜鉛蛍光体の粉末表面に
上記のようなニツケル化合物を吸着させ、これを
500〜1000℃の温度域で焼成する方法などを挙げ
ることができる。後者の方法で得た蛍光体は、カ
ラー受像管の暗い画面における散乱二次電子の影
響に基づくコントラストの低下に対しては、前者
の方法による蛍光体よりも大きい改善効果を示
し、画面のコントラストを明瞭にする。 上記のようにして調製された青色発光蛍光体を
青色成分として塗布したカラー受像管は、高輝度
白色画面で白色が黄や赤の方向にずれず、更には
暗い画面におけるコントラストが向上する効果を
示す。なお、この場合、緑色発光蛍光体を従来の
銅付活硫化亜鉛蛍光体あるいは銅・金共付活硫化
亜鉛蛍光体にかえてテルビウム付活蛍光体を含む
蛍光体を用いると高輝度白色画面における輝度が
より高くなり、好ましい結果が得られる。 以下に、本発明を実施例に基づいて説明する。 実施例 1 硫化亜鉛沈澱100gに対し、硝酸銀を銀の重量
に換算して0.02%(0.031g)、塩化ナトリウム
0.05%(0.05g)、塩化マグネシウム1%(1g)
を加え、更に硫酸ニツケルをニツケルの重量に換
算してそれぞれ0.2ppm(0.053mg):試料1、
0.3ppm(0.079mg):試料2、1ppm(0.26mg):試料
3、3ppm(0.79mg):試料4、4ppm(1.04mg):試
料5をそれぞれ湿式混合した後乾燥し、950℃で
2時間焼成して5種類の蛍光体粉末:a、b、
c、d、eを調製した。aの粉末は試料1を混合
したもの、bは試料2、cは試料3、dは試料
4、eは試料5に混合したものに対応する。 ここで、b、cおよびdは本発明の実施例であ
り、aおよびeはこれらとの比較のために調製し
た比較例である。 次いで、該青色発光蛍光体を、赤色発光蛍光体
としてユーロピウム付活酸硫化イツトリウム
(Y2O2S:Eu)、緑色発光蛍光体として金・銅付
活硫化亜鉛(ZnS:Au、Cu)とともに常法によ
り蛍光面に塗布した18インチカラー受像管5個を
作成した。 これら5個のカラー受像管の蛍光面に電子ビー
ムを照射し、この時の青色光の輝度を測定した。
該測定値と青色発光蛍光体が従来のニツケルを含
まない銀付活硫化亜鉛蛍光体である場合の青色光
の輝度との比を相対輝度(%)として算出した。
該相対輝度(%)とビーム電流との関係を第1図
に示した。 また、第1図において、ビーム電流100μA(低
電流)および1000μA(高電流)における相対輝度
の値を読取り、その相対輝度の上昇度を比較し、
表1に示した。
The present invention relates to a color picture tube whose phosphor screen is coated with an improved blue-emitting phosphor. Currently, in trichroic color picture tubes, the phosphor screen is comprised of stripes or dots of red, green and blue emitting phosphors. In the color picture tube, the red-emitting phosphor is generally a europium-activated phosphor, the green-emitting phosphor is a copper-activated zinc sulfide or copper-gold co-activated zinc sulfide phosphor, and the blue-emitting phosphor is silver. An activated zinc sulfide phosphor is used. Color adjustment typically changes the beam current to red, green, or
This is done by irradiating blue phosphor and adjusting the white screen by adjusting the ratio at low current, and then evaluating by the tone of the white screen at high current irradiation when the current is increased in that state. Therefore, it is desirable that the luminance of each phosphor increases without changing its ratio at both low and high currents, and such luminance-current characteristics are as follows:
Ideally, it should be a straight line. In the case of commonly used red-emitting phosphors (europium-activated phosphors), when a beam current is passed through the phosphor screen, the brightness increases linearly as the beam current increases. In addition, in the case of a green light-emitting phosphor, the brightness tends to increase in a convex curve as the beam current increases and saturate to a constant value. On the other hand, the conventionally used blue-emitting phosphor (silver-activated zinc sulfide), like the green-emitting phosphor,
As the beam current increases, the brightness increases in a convex curve, and has a current characteristic that tends to be saturated at a constant value. When a white screen is created at low currents using these three-color phosphors of red, green, and blue, and color adjustment is performed, at high currents only the brightness of red increases without being saturated, while the brightness of green and blue increases. Since blue becomes saturated, for example, even if an attempt is made to obtain a high-brightness white color for a character screen, not only will the brightness not be sufficiently high, but an inconvenient situation will occur in which the white color will take on a reddish tinge. Therefore, attempts have been made to reduce the brightness saturation phenomenon of the green and blue current characteristic curves and make them closer to straight lines. It has been proposed to use a mixed phosphor (see Japanese Patent Application No. 44537/1983 and Japanese Patent Application Laid-open No. 130966/1983). However, by simply improving the current characteristics of this green phosphor, it is true that the brightness of a high-brightness screen is about 10% higher than that of a conventional white screen, and the disadvantage of white color becoming reddish is also eliminated, but on the other hand,
The disadvantage is that the white color becomes yellowish-greenish. Furthermore, British Patent No. 1203124 proposes a color picture tube in which the brightness of all three colors does not saturate at high currents. That is, it uses a europium-activated phosphor as a red-emitting phosphor, a terbium, holmium, erbium, or manganese-activated phosphor as a green-emitting phosphor, and a divalent europium- or thulium-activated phosphor as a blue-emitting phosphor. be. However, the blue-emitting phosphor described above has a beam current (10 to 1000 μA) that is about the same as that of a normal color picture tube.
However, since the luminous efficiency is less than 50% and the brightness is significantly reduced, it is not practical to compare it with a normal screen. The present inventors have discovered that silver-activated zinc sulfide containing a predetermined amount of nickel has a brightness that, as a blue-emitting phosphor, exhibits less brightness saturation at high currents and does not decrease as much as rare-earth-activated phosphors. The present invention was completed by discovering the fact that the present invention has current characteristics. SUMMARY OF THE INVENTION An object of the present invention is to provide a color picture tube in which, when forming a white screen, the color of the emitted light does not shift toward green or red even when the color is high brightness white. The blue-emitting phosphor used in the color picture tube of the present invention is a silver-activated zinc sulfide phosphor containing nickel. In the phosphor, the amount of nickel contained is set in the range of 0.3 ppm or more and 3 ppm or less based on the total weight of the phosphor. When the nickel content is less than 0.3 ppm, compared to conventional silver-activated zinc sulfide phosphors that do not contain nickel, no improvement in brightness saturation due to increased beam current is observed, and
If it exceeds 3 ppm, the quenching effect becomes significant, resulting in a decrease in brightness, making it impossible to obtain a high-brightness white color. Such a phosphor is prepared as follows. That is, nickel compounds such as nickel sulfate and nickel nitrate, silver compounds such as silver nitrate and silver thiosulfate, and zinc sulfide precipitates are used as starting materials, and a fluxing agent such as sodium chloride is added to these.
A method of firing in a temperature range of 800 to 1000℃, or
The above nickel compound is adsorbed onto the surface of the silver-activated zinc sulfide phosphor powder prepared in advance.
Examples include a method of firing in a temperature range of 500 to 1000°C. The phosphor obtained by the latter method shows a greater improvement effect than the phosphor obtained by the former method in reducing the contrast caused by the influence of scattered secondary electrons on the dark screen of a color picture tube, and the contrast of the screen is improved. Make it clear. A color picture tube coated with the blue-emitting phosphor prepared as described above as a blue component has the effect of not shifting the white color toward yellow or red on a high-brightness white screen, and improving the contrast on a dark screen. show. In this case, if a phosphor containing a terbium-activated phosphor is used instead of a conventional copper-activated zinc sulfide phosphor or a copper-gold co-activated zinc sulfide phosphor as the green-emitting phosphor, the brightness of the white screen will be improved. The brightness will be higher and a favorable result will be obtained. The present invention will be explained below based on examples. Example 1 For 100 g of zinc sulfide precipitate, 0.02% (0.031 g) of silver nitrate and sodium chloride were added in terms of silver weight.
0.05% (0.05g), magnesium chloride 1% (1g)
and further 0.2 ppm (0.053 mg) of nickel sulfate in terms of the weight of nickel: Sample 1,
0.3ppm (0.079mg): sample 2, 1ppm (0.26mg): sample 3, 3ppm (0.79mg): sample 4, 4ppm (1.04mg): sample 5 were wet mixed and dried at 950°C for 2 hours. Fired to produce 5 types of phosphor powder: a, b,
c, d, and e were prepared. Powder a corresponds to a mixture of sample 1, b corresponds to sample 2, c corresponds to sample 3, d corresponds to sample 4, and e corresponds to a mixture of sample 5. Here, b, c and d are examples of the present invention, and a and e are comparative examples prepared for comparison with these. Next, the blue-emitting phosphor was combined with europium-activated yttrium oxysulfide (Y 2 O 2 S: Eu) as a red-emitting phosphor and gold/copper-activated zinc sulfide (ZnS: Au, Cu) as a green-emitting phosphor. Five 18-inch color picture tubes were made by coating the phosphor screen using a conventional method. The fluorescent screens of these five color picture tubes were irradiated with electron beams, and the brightness of the blue light at this time was measured.
The ratio of the measured value to the brightness of blue light when the blue light-emitting phosphor was a conventional silver-activated zinc sulfide phosphor containing no nickel was calculated as relative brightness (%).
The relationship between the relative brightness (%) and beam current is shown in FIG. In addition, in Fig. 1, the values of relative brightness at beam currents of 100 μA (low current) and 1000 μA (high current) are read, and the degree of increase in relative brightness is compared.
It is shown in Table 1.

【表】 第1図および表1から明らかなように、本発明
のカラー受像管(実施例b、実施例c、実施例d
の蛍光体を塗布したもの)においては、輝度が大
巾に低下することもなく、(低電流領域において
も相対輝度の低下が30%以内)、かつ高電流を流
しても輝度の飽和現象が小さい(相対輝度が正の
勾配を持つ)ことが判明した。 すなわち、比較例aを用いたカラー受像管にお
いては、図1を見ると明らかなように、電流に対
する相対輝度の値がほとんど傾きを持たず(表1
より輝度の上昇度は1.1)、従来のカラー受像管の
場合とほとんど変わらない電流特性を有すること
が分かる。この従来型のカラー受像管は、ビーム
電流の上昇に従つて凸型のカーブを描いて輝度が
上昇し、やがて飽和する傾向を有する輝度―電流
特性を示すので、低電流における赤、緑、青の比
率が、高電流において大きく変化してしまい、高
電流における白が、赤みがかつたり、黄緑がかつ
たりして理想的な白を出すことができなくなる。
それに対して、実施例b、c、dのカラー受像管
では、相対輝度が有意の正の勾配を持つ(実施例
b、c、dにおける輝度の上昇度は、表1から分
かるように、aに対してbが6倍、cが11倍、d
が17倍となつている)、つまり、その輝度―電流
特性が従来型のそれに比べて、低電流における輝
度が若干低下しているために、特性曲線の凸型の
カーブの曲率が緩和されることになり、理想型の
直線に近付いているわけである。 そのため、低電流における白の調整の際の赤、
緑、青の比率が、高電流においても大きく変化す
ることがなくなるので、高電流における白がはつ
きりとした白になり、赤味がかつたり、黄緑がか
つたりすることなく、しかも高電流における輝度
は従来のものに比べて遜色なく、コントラストよ
く見えることになる。 一方、比較例eを用いたカラー受像管において
は、相対輝度の勾配はより直線に近付いている
が、従来のカラー受像管よりその輝度が大巾に低
下しており(低電流領域―100μAで約50%、高電
流領域―1000μAで約20%)、これでは使用に耐え
ない。 又、実施例b、実施例c、実施例dの蛍光体を
青色発光蛍光体として、ユーロピウム付活酸硫化
イツトリウム蛍光体を赤色発光蛍光体、銅付活硫
化亜鉛とテルビウム付活酸硫化イツトリウムを
1:1に混合した蛍光体を緑色発光蛍光体とする
3個のカラー受像管を作製した。 これら3個のカラー受像管に8mAの電流を流
して蛍光面の白色輝度を測定し、青色発光蛍光体
に銀付活硫化亜鉛、赤色発光蛍光体にユーロピウ
ム付活酸硫化イツトリウム、緑色発光蛍光体に
金・銅付活硫化亜鉛を用いた従来のカラー受像管
の同電流値における白色輝度と比較したところ、
それぞれ10%、3%、1%の輝度の向上が認めら
れた。このことから、本発明にかかる青色蛍光体
が従来のものより多少輝度の低下がみられても、
その影響はほとんどみられないことがわかる。
又、その時の白色は低電流(300μA)励起の場合
に比べて、黄や赤の方向にずれず、むしろ青の方
向にずれたため、高輝度白色がより白く見え、画
面をひきたたせる効果が得られた。 実施例 2 銀付活硫化亜鉛蛍光体100gに対し、硫酸ニツ
ケルをニツケル重量に換算して0.3ppm(0.079
mg):試料6、1ppm(0.26mg):試料7、3ppm
(0.79mg):試料8をそれぞれに加え、更に水を加
えて湿式混合し、乾燥後750℃で2時間焼成し、
3種類の蛍光体粉末:実施例f、実施例g、実施
例hを調製した。 これら実施例f、g、hの蛍光体を青色発光蛍
光体とし、実施例1と同様にしてカラー受像管3
個を作製した。これらカラー受像管について実施
例1と同様に輝度測定し、その相対輝度とビーム
電流との関係を第2図に示した。また第2図にお
いて、ビーム電流100μA(低電流)および1000μA
(高電流)における相対輝度の値を読取り、その
相対輝度の上昇度を比較し、表2に示した。
[Table] As is clear from FIG. 1 and Table 1, the color picture tubes of the present invention (Example b, Example c, Example d)
(coated with phosphor), there is no significant decrease in brightness (relative brightness decreases within 30% even in low current range), and brightness saturation does not occur even when high current is applied. It turned out to be small (relative brightness has a positive slope). In other words, in the color picture tube using Comparative Example a, as is clear from FIG.
It can be seen that the luminance increase rate is 1.1), and the current characteristics are almost the same as those of conventional color picture tubes. This conventional color picture tube exhibits a brightness-current characteristic in which the brightness increases in a convex curve as the beam current increases, and then tends to saturate. The ratio changes greatly at high currents, and white at high currents becomes reddish or yellowish-green, making it impossible to produce ideal white.
On the other hand, in the color picture tubes of Examples b, c, and d, the relative brightness has a significant positive gradient (as can be seen from Table 1, the degree of increase in brightness in Examples b, c, and d is a b is 6 times, c is 11 times, d
(17 times higher than that of the conventional type), in other words, the brightness at low current is slightly lower than that of the conventional type, so the curvature of the convex curve of the characteristic curve is relaxed. Therefore, it is approaching the ideal straight line. Therefore, red during adjustment of white at low current,
The ratio of green and blue does not change significantly even at high currents, so the white at high currents becomes a bright white without a reddish or yellowish-green tinge, and even at high currents. The brightness in terms of current is comparable to that of conventional ones, and the contrast is good. On the other hand, in the color picture tube using Comparative Example e, the gradient of relative brightness is closer to a straight line, but the brightness is significantly lower than that of the conventional color picture tube (low current region - 100μA). (approximately 50%, high current region - approximately 20% at 1000μA), which is not usable. Further, the phosphors of Example b, Example c, and Example d were used as a blue-emitting phosphor, the europium-activated yttrium oxysulfide phosphor was used as a red-emitting phosphor, and the copper-activated zinc sulfide and terbium-activated yttrium oxysulfide were used as a red-emitting phosphor. Three color picture tubes were fabricated using a 1:1 mixture of phosphors as green-emitting phosphors. A current of 8 mA was applied to these three color picture tubes to measure the white brightness of the phosphor screen, and the blue-emitting phosphor was silver-activated zinc sulfide, the red-emitting phosphor was europium-activated yttrium oxysulfide, and the green-emitting phosphor was When compared with the white brightness at the same current value of a conventional color picture tube using gold and copper activated zinc sulfide,
An improvement in brightness of 10%, 3%, and 1% was observed, respectively. From this, even if the blue phosphor according to the present invention shows a slight decrease in brightness compared to the conventional one,
It can be seen that the effect is almost negligible.
Also, compared to the case of low current (300μA) excitation, the white color at that time does not shift toward yellow or red, but rather shifts toward blue, so the high-brightness white appears whiter and the effect of making the screen stand out is enhanced. Obtained. Example 2 For 100g of silver-activated zinc sulfide phosphor, nickel sulfate was converted to nickel weight to be 0.3ppm (0.079
mg): Sample 6, 1ppm (0.26mg): Sample 7, 3ppm
(0.79mg): Add sample 8 to each, add water, wet mix, dry and bake at 750℃ for 2 hours,
Three types of phosphor powders were prepared: Example f, Example g, and Example h. The phosphors of Examples f, g, and h were used as blue-emitting phosphors, and the color picture tube 3 was prepared in the same manner as in Example 1.
I made one. The luminance of these color picture tubes was measured in the same manner as in Example 1, and the relationship between the relative luminance and beam current is shown in FIG. Also, in Figure 2, the beam current is 100μA (low current) and 1000μA.
The relative brightness values at (high current) were read and the relative brightness increases were compared and shown in Table 2.

【表】 第2図および表2より、本発明の実施例である
f、g、hのカラー受像管においては、実施例1
と同様に、輝度の低下も小さく、かつ相対輝度が
正の勾配を持つので輝度の飽和現象も小さいこと
がわかり、従来の電流飽和特性に比べてその改善
が認められた。 又、白色輝度についても、実施例1と同様の効
果が得られ、更には暗い画面での暗さが極だちそ
のコントラストが向上した。
[Table] From FIG. 2 and Table 2, in the f, g, and h color picture tubes that are examples of the present invention, Example 1
Similarly, it was found that the decrease in brightness was small, and since the relative brightness had a positive slope, the saturation phenomenon of brightness was also small, and an improvement was observed compared to the conventional current saturation characteristics. In addition, the same effect as in Example 1 was obtained with respect to white luminance, and furthermore, the darkness on a dark screen was extremely high, and the contrast was improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、実施例および比較例のカラ
ー受像管における青色発光出力(輝度)のビーム
電流に対する依存性を、従来のカラー受像管の青
色発光出力(輝度)に対する割合(相対輝度:
%)で示した関係曲線である。
Figures 1 and 2 show the dependence of the blue light emitting output (brightness) on the beam current in the color picture tubes of the example and the comparative example, and the ratio (relative brightness) to the blue light emitting output (brightness) of the conventional color picture tube. :
%).

Claims (1)

【特許請求の範囲】[Claims] 1 蛍光面が赤、緑及び青色発光蛍光体のストラ
イプ又はドツトから成るカラー受像管において、
青色発光蛍光体がニツケルを0.3〜3ppm含む銀付
活硫化亜鉛蛍光体であるカラー受像管。
1. In a color picture tube whose phosphor screen consists of stripes or dots of red, green and blue emitting phosphors,
A color picture tube whose blue-emitting phosphor is a silver-activated zinc sulfide phosphor containing 0.3 to 3 ppm of nickel.
JP5359180A 1980-04-24 1980-04-24 Color picture tube Granted JPS56156649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5359180A JPS56156649A (en) 1980-04-24 1980-04-24 Color picture tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5359180A JPS56156649A (en) 1980-04-24 1980-04-24 Color picture tube

Publications (2)

Publication Number Publication Date
JPS56156649A JPS56156649A (en) 1981-12-03
JPS6410557B2 true JPS6410557B2 (en) 1989-02-22

Family

ID=12947107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5359180A Granted JPS56156649A (en) 1980-04-24 1980-04-24 Color picture tube

Country Status (1)

Country Link
JP (1) JPS56156649A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60156787A (en) * 1984-01-27 1985-08-16 Toshiba Corp Cathode ray tube
JP3239677B2 (en) * 1995-03-23 2001-12-17 ソニー株式会社 Cathode ray tube
JPWO2011142385A1 (en) * 2010-05-14 2013-07-22 株式会社クラレ Zinc sulfide blue phosphor and method for producing the same

Also Published As

Publication number Publication date
JPS56156649A (en) 1981-12-03

Similar Documents

Publication Publication Date Title
US4151442A (en) Color television cathode ray tube
GB1602622A (en) Zinc sulphide phosphor coactivated with copper gold and aluminium
US4199707A (en) Fluorescent lamp
US5231328A (en) Phosphor and ultraviolet ray excited fluorescent tube employing it
JPS6410557B2 (en)
EP0030853B1 (en) Phosphor and method of manufacturing the phosphor
US4263530A (en) Warm white fluorescent lamp having good efficacy and color rendering
JPH0425991B2 (en)
JPH0460511B2 (en)
JP2856895B2 (en) Green light-emitting phosphor with pigment
JPS6038431B2 (en) color cathode ray tube
JP2589491B2 (en) Fluorescent lamp
JP2863643B2 (en) Phosphors and fluorescent lamps
US5185553A (en) Green emitting phosphor and cathode ray tube using said phosphor
JPS6021676B2 (en) Blue-emitting phosphors and color television cathode ray tubes
JPH06103915A (en) Color cathode-ray tube
JPS6228539B2 (en)
KR100263303B1 (en) Blue-color phosphorescence composition
JPH0472873B2 (en)
KR930010522B1 (en) Green luminous phosphor
JPH0115556B2 (en)
JPS6351480B2 (en)
JP3327959B2 (en) Blue light emitting composition
JPS6154077B2 (en)
JPS6215221Y2 (en)