JPS6359483B2 - - Google Patents

Info

Publication number
JPS6359483B2
JPS6359483B2 JP56087827A JP8782781A JPS6359483B2 JP S6359483 B2 JPS6359483 B2 JP S6359483B2 JP 56087827 A JP56087827 A JP 56087827A JP 8782781 A JP8782781 A JP 8782781A JP S6359483 B2 JPS6359483 B2 JP S6359483B2
Authority
JP
Japan
Prior art keywords
resin powder
adhesive
ultrafine
weight
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56087827A
Other languages
Japanese (ja)
Other versions
JPS57202608A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56087827A priority Critical patent/JPS57202608A/en
Publication of JPS57202608A publication Critical patent/JPS57202608A/en
Publication of JPS6359483B2 publication Critical patent/JPS6359483B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気・通信機器等の機器コイル用電線と
して広範囲な目的に使用される自己接着性絶縁電
線に関するものである。 自己接着性絶縁電線は、電気・通信機器等の製
造工程における省力化,簡略化あるいは機器類の
ワニス含浸処理工程における安全衛生および環境
汚染対策の上で有効な事からその実用化と用途の
拡大に著しいものがある。 しかし、自己接着性絶縁電線は一般の絶縁電線
と比較して、耐摩耗性が劣るという欠点を保有し
ており、かつ近年の巻線速度のスピードアツプ化
に伴ない、巻線時の加工劣化が問題となつてお
り、自己接着性絶縁電線の耐摩耗性の大巾な改善
が望まれている。 この種の自己接着性絶縁電線としては、従来か
らポリビニルプチラール樹脂,ポリビニルホルマ
ール樹脂,ポリアミド樹脂,フエノキシ樹脂等の
直鎖状高分子化合物を単独もしくは2種類以上を
適宜組合わせ、適当な溶剤に溶かしてなる接着塗
料(但し、ポリビニルホルマール樹脂の場合は、
その接着性が悪い事から単独では用いられない。)
を導体に直接、もしくは他の絶縁皮膜を介して塗
布焼付を施すか、或いは耐熱性の向上を目的とし
て、前記直鎖状高分子化合物の単独もしくは2種
類以上を適宜組合わせたものに、エポキシ樹脂,
安定化イソシアナート樹脂,フエノールホルムア
ルデヒド縮合物,メラミンホルムアルデヒド縮合
物等の中から、そのいくつかを適宜組合わせ、配
合してなる塗料を前記同様導体に直接もしくは他
の絶縁皮膜を介して塗布焼付を施したものであ
る。 しかし、前記直鎖状高分子化合物だけからなる
塗料を導体に直接、もしくは他の絶縁物を介して
塗布,焼付してなる自己接着性絶縁電線は一般の
エナメル線と比較した場合、その耐摩耗性の低下
度合は比較的小さく、実用に供されている。しか
し近年巻線工程における巻線のスピードアツプ化
に伴ない、巻線機のノズル,プーリー等によつて
発生する傷が増加する傾向にあり、これによつて
生ずるレヤーシヨート等に対する対策が問題とな
つている。 また、この自己接着性絶縁電線の耐熱性を向上
させる為に、前記直鎖状高分子化合物の単独もし
くは2種類以上を適宜組合わせたものにエポキシ
樹脂、安定化イソシアナート樹脂、フエノールホ
ルムアルデヒド縮合物、メラミンホルムアルデヒ
ド縮合物等の中から単独、もしくはそのいくつか
を適宜組合わせ、配合してなる塗料を直接もしく
は他の絶縁皮膜を介して塗布焼付してなる自己接
着性絶縁電線は、その接着皮膜をBステージ(半
硬化)の状態にとどめる為、その耐摩耗性は前記
直鎖状高分子化合物だけからなる塗料を導体に直
接もしくは他の絶縁皮膜を介して塗布焼付してな
る自己接着性絶縁電線のそれよりも更に低下し、
前記と同様にレヤーシヨート等に対する対策が問
題となつている。 自己接着性絶縁電線の巻線時の加工劣化におけ
る原因は、そのほとんどがノズルやプーリー等に
こすられて出来た傷によつて発生するレヤーシヨ
ートであり、これを防ぐ方法として、自己接着性
絶縁電線の耐摩耗性を優れたものにする事、摩擦
係数を小さくする事が考えられる。これらの事か
ら、従来は前記自己接着性絶縁電線に接着性への
悪影響がない程度の潤滑油を塗布する等の方法が
取られていた。しかし、これらの方法では近年の
苛酷な巻線条件に耐えられず、加工劣化を受ける
のが現状であつた。 これらの情勢をふまえ、発明者らは既に、超微
粒四弗化エチレン樹脂粉末,超微粒ポリプロピレ
ン樹脂粉末を各々単独で前記自己接着性絶縁電線
の接着皮膜中に分散させる事を提案し、耐摩耗性
を優れたものにし、摩擦係数を小さくする事に成
功した。 しかし、前記提案は接着樹脂中に相溶性の悪い
固体粉末が混入する事により発生する問題点が全
くない訳ではなく、未だ完壁なものとは言えなか
つた。すなわち、超微粒四弗化エチレン樹脂粉末
の場合は、耐摩耗性の向上度合が大きく、耐熱性
を全く損わない利点がある反面、自己接着性絶縁
電線の外観が前記粉末の含有量が増加するに従い
悪くなる傾向があり、また接着塗料の状態では比
重の大きい粉末である為、ワニス底面に沈降する
傾向があり、塗装作業性に難点のあるものであつ
た。特に、前記粉末の含有率と外観の問題は、当
該電線の重要特性である耐摩耗性と、商品価値上
重要である外観の問題であり、完壁な製品化が必
要であつた。この問題に対する発明者らのこれま
での検討によると、前記粉末の平均粒子径が10μ
を越えると、いかなる含有率においても外観が悪
く、耐摩耗性もほとんど改善されなかつた。外観
が良好となるのは平均粒子径が10μ以下の場合の
みであつたが、これも粒子径がこの範囲内におい
て大きい程、含有率を低くおさえないと外観が悪
くなる為耐摩耗性の改善度合に限界があつた。ち
なみに、平均粒子径が5μを越え、10μ以下の場合
は、含有率は2重量%以下(好ましくは1重量%
以下)におさえる必要があり、大きな耐摩耗性の
向上は望めず、当発明を用いて耐摩耗性を向上さ
せ、かつ外観を良好とする為には、平均粒子径が
5μ以下の粉末を使用するのが好ましかつた。こ
の場合、含有率は6重量%まで増加させる事が可
能であつた。 一方、超微粒ポリプロピレン樹脂粉末の場合
は、平均粒子径が10μ以下、好ましくは5μ以下の
ものを使用した場合、外観が良好であり、かつ接
着塗料の状態でも塗料中に均一に分散し、底面に
沈降する事もなく、作業性が良好であつた。しか
し当該粉末の場合は、耐摩耗性の改善度合と耐熱
性において、超微粒四弗化エチレン樹脂粉末の場
合に比べ、劣るのが現状であつた。 発明者らは、これらの点を鑑み、鋭意努力した
結果、作業性,外観がよく、耐摩耗性も大きく改
善できる発明をするに至つた。 すなわち、本発明は、平均粒子径が10μ以下の
超微粒ポリプロピレン樹脂粉末と、同じく平均粒
子径が10μ以下の超微粒四弗化エチレン樹脂粉末
との混合比率が重量比で1:10〜10:1である混
合樹脂粉末を、樹脂分に対して6重量%以下、
0.1重量%以上添加してなる接着塗料を直接、も
しくは他の絶縁皮膜を介して塗布焼付ける事によ
り、接着性能を有すると同時に、耐摩耗性に優
れ、外観,作業性が良好な自己接着性絶縁電線を
得る事に成功し、本発明を完成した。 以下、これを更に詳しく説明すると、本発明に
使用される超微粒ポリプロピレン樹脂粉末と、超
微粒四弗化エチレン樹脂粉末は、いずれも平均粒
子径が10μを越えると電線の外観が悪くなり、絶
縁電線として使用出来ない。 また前記2種類の樹脂粉末の混合物の添加量が
皮膜構成樹脂分に対し6重量%を越えると、外観
が悪くなり、自己接着性絶縁電線として使用出来
ない。また前記混合粉末の添加量が0.1重量%を
下回ると耐摩耗性の向上が見られない。好ましく
は、前記2種類の樹脂粉末の平均粒子径が各々
5μ以下添加量が前記2種類の樹脂粉末の混合物
として皮膜構成樹脂分に対し、1.0重量%以上、
5.0重量%以下の範囲であり、この場合、自己接
着性絶縁電線の外観も良好であり高温度での接着
力の保持特性の低下もなく、かつ耐熱性を全く損
なう事なく耐摩耗性が向上する他、作業性も良好
となる。 更に、当該樹脂粉末を接着塗料に添加する場
合、直接添加すると非常に分散しにくいが、高添
加量(50重量%)の接着塗料をボールミル等でよ
く分散させておき、これに無添加の接着塗料を混
合するか、或いはキシレン,ナフサ,シクロヘキ
サノン等の溶剤に当該粉末を分散させ、接着塗料
に混合すると充分分散し、良い結果が得られる。 また、当該樹脂粉末を添加し得る接着塗料とし
ては、フエノキシ樹脂,ポリビニルプチラール樹
脂やポリビニルホルマール樹脂等のポリビニルア
セタール樹脂,ポリアミド樹脂等の直鎖状高分子
化合物を単独もしくは2種類以上を適宜組合わせ
たもの(但し、ポリビニルホルマール樹脂の場合
は、その接着性が悪い事から単独では用いられな
い。)或いは接着時の加熱によつてそれ自身互い
に化学結合を引き起こし、熱的に安定な接着皮膜
とする為に、エポキシ樹脂,安定化イソシアナー
ト樹脂,尿素ホルムアルデヒド縮合物,メラミン
ホルムアルデヒド縮合物,アセトグアナミン・ホ
ルムアルデヒド縮合物,アニリン・ホルムアルデ
ヒド縮合物,ベンゾグアナミン・ホルムアルデヒ
ド縮合物、これらをアルコール変性したアミノ樹
脂,フエノール・クレゾール・キシレノール等の
フエノール類とホルムアルデヒド・アセトアルデ
ヒド・フルフラール等との縮合物,p―ビニルフ
エノール等のフエノール樹脂等を単独もしくは2
種類以上を適宜組合わせ、前記直鎖状高分子化合
物の単独、あるいは2種類以上組合わせたもの
(皮膜構成樹脂分)に配合し、可溶溶剤に溶解し
てなるもの等がある。 以下に、本発明を実施例をあげて説明するが、
本発明はこの実施例に限定されるものではない。 実施例 1 1.0mm〓の銅線に、エナメル焼付して得た皮膜厚
0.030mm〓のポリエステルイミド線の上に、フエノ
キシ樹脂22重量部,アルコール変性メラミンホル
ムアルデヒド縮合物の50%溶液16重量部をシクロ
ヘキサノン62重量部で溶解した中に、超微粒ポリ
プロピレン樹脂粉末と超微粒四弗化エチレン樹脂
粉末の混合比率が重量比で1:10である混合樹脂
粉末を前記溶液の樹脂分に対して3.0重量%分散
させて成る接着塗料を皮膜厚が0.015mmとなる様
に塗布焼付けた。 実施例 2 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化エ
チレン樹脂粉末の混合比率が重量比で4:6であ
る以外は実施例1と同じである接着塗料を皮膜厚
が0.015mmとなる様に塗布焼付けた。 実施例 3 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化エ
チレン樹脂粉末の混合比率が重量比で6:4であ
る以外は実施例1と同じである接着塗料を皮膜厚
が0.015mmとなる様に塗布焼付けた。 実施例 4 実施例1と同じポリエステルイミド線の上に超
微粒ポリプロピレン樹脂粉末と超微粒四弗化エチ
レン樹脂粉末の混合比率が重量比で10:1である
以外は実施例1と同じである接着塗料を皮膜厚が
0.015mmとなる様に塗布焼付けた。 実施例 5 実施例1と同じポリエステルイミド線の上に、
実施例1と同じ混合微粒樹脂粉末の含有率が樹脂
分に対して1.0重量%である以外は実施例1と同
じである接着塗料を皮膜厚が0.015mmとなる様に
塗布焼付けた。 実施例 6 実施例1と同じポリエステルイミド線の上に、
実施例1と同じ混合微粒樹脂粉末の含有率が樹脂
分に対して6.0重量%である以外は実施例1と同
じである接着塗料を皮膜厚が0.015mmとなる様に
塗布焼付けた。 実施例 7 実施例1と同じポリエステルイミド線の上にフ
エノキシ樹脂30重量部をシクロヘキサノン60重量
部で溶解した中に、超微粒ポリプロピレン樹脂粉
末と超微粒四弗化エチレン樹脂粉末の混合比率が
重量比で6:4である混合微粒樹脂粉末を前記溶
液の樹脂分に対して3.0重量%分散させて成る接
着塗料を皮膜厚が0.015mmとなる様に塗布焼付け
た。 実施例 8 実施例1と同じポリエステルイミド線の上に、
ポリビニルホルマール樹脂71.4重量部,フエノキ
シ樹脂28.6重量部,アルコール変性メラミンホル
ムアルデヒド縮合物の50%溶液21.4重量部,フエ
ノールホルムアルデヒド縮合物71.4重量部をシク
ロヘキサノン556.0重量部,フルフラール71.7重
量部で溶解した中に、超微粒ポリプロピレン樹脂
粉末と超微粒四弗化エチレン樹脂粉末の混合比率
が重量比で6:4である混合微粒樹脂粉末を前記
溶液の樹脂分に対して3.0重量%分散させて成る
接着塗料を皮膜厚が0.015mmとなる様に塗布焼付
けた。 比較例 1 実施例1と同じポリエステルイミド線の上に超
微粒ポリプロピレン樹脂粉末と超微粒四弗化エチ
レン樹脂粉末との混合物を含まない以外は実施例
1と同じ接着塗料を皮膜厚が0.015mmとなる様に
塗布焼付けた。 比較例 2 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化エ
チレン樹脂粉末との混合物を含まない以外は実施
列7と同じ接着塗料を皮膜厚が0.015mmとなる様
に塗布焼付けた。 比較例 3 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化エ
チレン樹脂粉末との混合物を含まない以外は実施
例8と同じ接着塗料を皮膜厚が0.015mmとなる様
に塗布焼付けた。 比較例 4 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化樹
脂粉末の混合物のかわりに、超微粒ポリプロピレ
ン樹脂粉末のみを単独で混合した以外は実施例1
と同じである接着塗料を皮膜厚が0.015mmとなる
様に塗布焼付けた。 比較例 5 実施例1と同じポリエステルイミド線の上に、
超微粒ポリプロピレン樹脂粉末と超微粒四弗化エ
チレン樹脂粉末の混合物のかわりに、超微粒四弗
化エチレン樹脂粉末のみを単独で混合した以外は
実施例1と同じである接着塗料を皮膜厚が0.015
mmとなる様に塗布焼付けた。 比較例 6 1.0mm〓の銅線に、市販のポリエステルイミド塗
料を皮膜厚0.045mmとなる様に塗布,焼付けた。 なお、実施例,比較例で使用したポリエステル
イミド塗料はアイソミツド―RH(Schenectady
Co.商品名)であり、超微粒ポリプロピレン樹脂
粉末はLANCO WAX PP―1362D(Georg N
Langer Co.商品名)、超微粒四弗化エチレン樹脂
粉末はルブロンL―2(ダイキン工業、商品名)
である。 次に、実施例1,2,3,4,5,6,7,8
及び比較例1,2,3,4,5,6で得た自己接
着性絶縁電線の特性を表に示す。
The present invention relates to a self-adhesive insulated wire that is used for a wide range of purposes as a wire for equipment coils such as electrical and communication equipment. Self-adhesive insulated wires are effective in saving labor and simplifying the manufacturing process of electrical and communication equipment, and in terms of health and safety and environmental pollution control in the varnish impregnation process of equipment, and are expected to be put into practical use and expanded in use. There are some notable ones. However, self-adhesive insulated wire has the disadvantage of inferior wear resistance compared to general insulated wire, and as the winding speed has increased in recent years, processing deterioration during winding has occurred. has become a problem, and a drastic improvement in the abrasion resistance of self-adhesive insulated wires is desired. This type of self-adhesive insulated wire has traditionally been produced using linear polymeric compounds such as polyvinyl petitral resin, polyvinyl formal resin, polyamide resin, and phenoxy resin, either alone or in combination of two or more, in an appropriate solvent. Adhesive paint made by melting (however, in the case of polyvinyl formal resin,
Due to its poor adhesive properties, it cannot be used alone. )
Either directly onto the conductor or through another insulating film, it is coated and baked, or for the purpose of improving heat resistance, epoxy is added to the linear polymer compound or a suitable combination of two or more of the above linear polymer compounds. resin,
A paint made by appropriately combining and blending some of stabilized isocyanate resins, phenol formaldehyde condensates, melamine formaldehyde condensates, etc., is applied to the conductor directly or through another insulating film as described above and baked. This is what was done. However, self-adhesive insulated wires made by coating and baking a paint made only of the linear polymer compound directly onto the conductor or via another insulator have a higher wear resistance than ordinary enamelled wires. The degree of deterioration in performance is relatively small, and it is used in practical use. However, as the speed of winding in the winding process has increased in recent years, there has been an increase in the number of scratches caused by the nozzles, pulleys, etc. of the winding machine, and countermeasures against layer shorts, etc. caused by this have become a problem. ing. In addition, in order to improve the heat resistance of this self-adhesive insulated wire, epoxy resin, stabilized isocyanate resin, phenol formaldehyde condensate may be added to the above-mentioned linear polymer compounds alone or in an appropriate combination of two or more. , melamine-formaldehyde condensates, etc., or a mixture of some of them, applied directly or via another insulating film and baked. In order to maintain the conductor in a B-stage (semi-cured) state, its wear resistance is determined by applying and baking a paint consisting only of the linear polymer compound directly to the conductor or through another insulating film. It is even lower than that of electric wires,
Similar to the above, countermeasures against layer shorts and the like have become a problem. Most of the causes of processing deterioration during winding of self-adhesive insulated wires are layer shorts caused by scratches caused by rubbing against nozzles, pulleys, etc., and as a way to prevent this, self-adhesive insulated wires are used. It is possible to improve the wear resistance of the material and reduce the friction coefficient. For these reasons, conventional methods have been taken such as applying lubricating oil to the self-adhesive insulated wire to an extent that does not adversely affect the adhesion. However, these methods cannot withstand the harsh winding conditions of recent years and are subject to processing deterioration. In view of these circumstances, the inventors have already proposed that ultrafine tetrafluoroethylene resin powder and ultrafine polypropylene resin powder be individually dispersed in the adhesive film of the self-adhesive insulated wire, thereby improving wear resistance. We succeeded in improving the properties and reducing the coefficient of friction. However, the above-mentioned proposal is not completely free from problems caused by the mixing of solid powder with poor compatibility in the adhesive resin, and is still far from perfect. That is, in the case of ultrafine tetrafluoroethylene resin powder, the degree of improvement in abrasion resistance is large and it has the advantage of not impairing heat resistance at all. Moreover, since it is a powder with a high specific gravity in the form of an adhesive paint, it tends to settle on the bottom of the varnish, making it difficult to work with the paint. In particular, the problems of the powder content and appearance are related to wear resistance, which is an important characteristic of the electric wire, and appearance, which is important in terms of commercial value, and it was necessary to perfect the product. According to the inventors' previous studies regarding this problem, the average particle size of the powder is 10 μm.
If the content exceeds 100%, the appearance is poor and the abrasion resistance is hardly improved at any content. The appearance was good only when the average particle size was 10μ or less, but the larger the particle size within this range, the worse the appearance will be if the content is not kept low, so the wear resistance will improve. There was a limit to how much it could be done. By the way, if the average particle diameter is more than 5μ and less than 10μ, the content should be 2% by weight or less (preferably 1% by weight).
(below), and no significant improvement in abrasion resistance can be expected.In order to improve the abrasion resistance and improve the appearance using this invention, the average particle size must be
It was preferred to use a powder of less than 5μ. In this case, the content could be increased to 6% by weight. On the other hand, in the case of ultra-fine polypropylene resin powder, if one with an average particle diameter of 10μ or less, preferably 5μ or less, is used, it has a good appearance, is uniformly dispersed in the paint even in the form of an adhesive paint, and can be used on the bottom surface. There was no sedimentation, and workability was good. However, this powder is currently inferior to ultrafine tetrafluoroethylene resin powder in terms of the degree of improvement in wear resistance and heat resistance. In view of these points, the inventors made earnest efforts and as a result, came up with an invention that has good workability, good appearance, and can greatly improve wear resistance. That is, in the present invention, the mixing ratio of ultrafine polypropylene resin powder with an average particle size of 10μ or less and ultrafine tetrafluoroethylene resin powder with an average particle size of 10μ or less is 1:10 to 10: 1, the mixed resin powder is 6% by weight or less based on the resin content,
By applying and baking an adhesive paint containing 0.1% or more by weight directly or through another insulating film, it has self-adhesive properties that have adhesive performance, excellent abrasion resistance, and good appearance and workability. They succeeded in obtaining an insulated wire and completed the present invention. To explain this in more detail below, if the average particle size of both the ultrafine polypropylene resin powder and the ultrafine tetrafluoroethylene resin powder used in the present invention exceeds 10μ, the appearance of the electric wire will deteriorate and the insulation will deteriorate. It cannot be used as an electric wire. Furthermore, if the amount of the mixture of the two types of resin powder added exceeds 6% by weight based on the resin component of the film, the appearance becomes poor and the wire cannot be used as a self-adhesive insulated wire. Further, if the amount of the mixed powder added is less than 0.1% by weight, no improvement in wear resistance is observed. Preferably, each of the two types of resin powders has an average particle size of
The amount added is 1.0% by weight or more based on the resin component of the film as a mixture of the two types of resin powders,
In this case, the appearance of the self-adhesive insulated wire is good, there is no decrease in adhesive strength retention characteristics at high temperatures, and the wear resistance is improved without compromising heat resistance at all. In addition to this, workability is also improved. Furthermore, when adding the resin powder to an adhesive paint, it is very difficult to disperse if added directly, but a high amount (50% by weight) of the adhesive paint is well dispersed using a ball mill, etc. If the powder is mixed with a paint or dispersed in a solvent such as xylene, naphtha, cyclohexanone, etc. and mixed with an adhesive paint, it will be sufficiently dispersed and good results will be obtained. In addition, as adhesive paints to which the resin powder can be added, linear polymeric compounds such as phenoxy resin, polyvinyl acetal resin such as polyvinyl butyral resin and polyvinyl formal resin, and polyamide resin may be used singly or in combination of two or more. (However, in the case of polyvinyl formal resin, it cannot be used alone due to its poor adhesive properties.) Or it can be used as a thermally stable adhesive film that causes chemical bonds with each other when heated during adhesion. In order to achieve , condensates of phenols such as phenol, cresol, xylenol, and formaldehyde, acetaldehyde, furfural, etc., phenolic resins such as p-vinylphenol, etc. alone or in combination.
There are compounds obtained by appropriately combining more than one type of linear polymer compound, blending the linear polymer compound alone or a combination of two or more types (film-constituting resin component), and dissolving it in a soluble solvent. The present invention will be explained below with reference to examples.
The invention is not limited to this example. Example 1 Film thickness obtained by baking enamel on 1.0 mm copper wire
On top of a 0.030 mm polyesterimide wire, 22 parts by weight of phenoxy resin, 16 parts by weight of a 50% solution of alcohol-modified melamine formaldehyde condensate were dissolved in 62 parts by weight of cyclohexanone, and ultrafine polypropylene resin powder and ultrafine four An adhesive paint made by dispersing mixed resin powder with a mixing ratio of fluorinated ethylene resin powder of 1:10 in a weight ratio of 3.0% based on the resin content of the solution is applied and baked to a film thickness of 0.015 mm. Ta. Example 2 On the same polyester imide wire as in Example 1,
An adhesive paint that was the same as in Example 1 except that the mixing ratio of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was 4:6 by weight was applied and baked to a film thickness of 0.015 mm. . Example 3 On the same polyester imide wire as in Example 1,
An adhesive paint that was the same as in Example 1 except that the mixing ratio of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was 6:4 by weight was applied and baked to a film thickness of 0.015 mm. . Example 4 Adhesion was carried out in the same manner as in Example 1, except that the mixing ratio of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was 10:1 by weight on the same polyesterimide wire as in Example 1. The coating thickness of the paint is
It was coated and baked to a thickness of 0.015mm. Example 5 On the same polyester imide wire as in Example 1,
The same adhesive paint as in Example 1 was applied and baked to a film thickness of 0.015 mm, except that the content of the mixed fine resin powder was 1.0% by weight based on the resin content. Example 6 On the same polyester imide wire as in Example 1,
The same adhesive paint as in Example 1 was applied and baked to a film thickness of 0.015 mm, except that the content of the mixed fine resin powder was 6.0% by weight based on the resin content. Example 7 On the same polyesterimide wire as in Example 1, 30 parts by weight of phenoxy resin was dissolved in 60 parts by weight of cyclohexanone, and the mixing ratio of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was adjusted by weight. An adhesive paint consisting of a 6:4 mixed fine resin powder dispersed in an amount of 3.0% by weight based on the resin content of the solution was applied and baked to a film thickness of 0.015 mm. Example 8 On the same polyester imide wire as in Example 1,
71.4 parts by weight of polyvinyl formal resin, 28.6 parts by weight of phenoxy resin, 21.4 parts by weight of a 50% solution of alcohol-modified melamine formaldehyde condensate, and 71.4 parts by weight of phenol formaldehyde condensate were dissolved in 556.0 parts by weight of cyclohexanone and 71.7 parts by weight of furfural. A film is coated with an adhesive paint made by dispersing 3.0% by weight of mixed fine-grained resin powder in which the mixing ratio of ultra-fine polypropylene resin powder and ultra-fine tetrafluoroethylene resin powder is 6:4 based on the resin content of the solution. It was coated and baked to a thickness of 0.015mm. Comparative Example 1 The same adhesive paint as in Example 1 was applied on the same polyesterimide wire as in Example 1, except that the mixture of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was not included, and the film thickness was 0.015 mm. I coated it and baked it. Comparative Example 2 On the same polyesterimide wire as in Example 1,
The same adhesive paint as in Example 7 was applied and baked to a film thickness of 0.015 mm, except that it did not contain a mixture of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder. Comparative Example 3 On the same polyester imide wire as in Example 1,
The same adhesive paint as in Example 8 was applied and baked to a film thickness of 0.015 mm, except that the mixture of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder was not included. Comparative Example 4 On the same polyesterimide wire as in Example 1,
Example 1 except that instead of the mixture of ultrafine polypropylene resin powder and ultrafine tetrafluoride resin powder, only ultrafine polypropylene resin powder was mixed alone.
The same adhesive paint was applied and baked to a film thickness of 0.015 mm. Comparative Example 5 On the same polyester imide wire as in Example 1,
An adhesive paint having a film thickness of 0.015 was used, which was the same as in Example 1 except that instead of the mixture of ultrafine polypropylene resin powder and ultrafine tetrafluoroethylene resin powder, only ultrafine tetrafluoroethylene resin powder was mixed alone.
It was coated and baked to a thickness of mm. Comparative Example 6 A commercially available polyesterimide paint was applied to a 1.0 mm copper wire to a film thickness of 0.045 mm and baked. The polyesterimide paint used in the Examples and Comparative Examples is Isomydo-RH (Schenectady).
Co. brand name), and the ultrafine polypropylene resin powder is LANCO WAX PP-1362D (Georg N.
Langer Co. (trade name), ultrafine tetrafluoroethylene resin powder is Leburon L-2 (Daikin Industries, trade name)
It is. Next, Examples 1, 2, 3, 4, 5, 6, 7, 8
The characteristics of the self-adhesive insulated wires obtained in Comparative Examples 1, 2, 3, 4, 5, and 6 are shown in the table.

【表】【table】

【表】【table】

【表】 表に示される様に、本発明の自己接着性絶縁電
線は外観が良好であり、高温度での接着力の保持
特性の低下も小さく、かつ耐熱性を全く損う事な
く耐摩耗性が向上する他、作業性も良好である事
が分る。
[Table] As shown in the table, the self-adhesive insulated wire of the present invention has a good appearance, has a small decrease in adhesive strength retention characteristics at high temperatures, and is resistant to wear without any loss in heat resistance. It can be seen that not only the properties are improved, but also the workability is good.

Claims (1)

【特許請求の範囲】[Claims] 1 平均粒子径が10μ以下の超微粒ポリプロピレ
ン樹脂粉末と、同じく平均粒子径が10μ以下の超
微粒四弗化エチレン樹脂粉末とを重量比で1:10
〜10:1の混合樹脂粉末を皮膜構成樹脂分に対し
て6重量%以下、0.1重量%以上添加してなる接
着塗料が導体上に直接もしくは他の絶縁皮膜を介
して塗布焼付けられていることを特徴とする自己
接着性絶縁電線。
1 Ultrafine polypropylene resin powder with an average particle size of 10μ or less and ultrafine tetrafluoroethylene resin powder with an average particle size of 10μ or less in a weight ratio of 1:10.
An adhesive paint made by adding a ~10:1 mixed resin powder of 6% by weight or less and 0.1% by weight or more based on the resin component of the film is applied and baked onto the conductor directly or via another insulating film. A self-adhesive insulated wire featuring:
JP56087827A 1981-06-08 1981-06-08 Self-adhesive insulated wire Granted JPS57202608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56087827A JPS57202608A (en) 1981-06-08 1981-06-08 Self-adhesive insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56087827A JPS57202608A (en) 1981-06-08 1981-06-08 Self-adhesive insulated wire

Publications (2)

Publication Number Publication Date
JPS57202608A JPS57202608A (en) 1982-12-11
JPS6359483B2 true JPS6359483B2 (en) 1988-11-18

Family

ID=13925779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56087827A Granted JPS57202608A (en) 1981-06-08 1981-06-08 Self-adhesive insulated wire

Country Status (1)

Country Link
JP (1) JPS57202608A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6329411A (en) * 1986-07-22 1988-02-08 住友電気工業株式会社 Insulated wire
JPS63178410A (en) * 1987-01-19 1988-07-22 東京特殊電線株式会社 Slick polyurethane insulated wire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835749A (en) * 1971-09-10 1973-05-26
JPS5021678A (en) * 1973-05-23 1975-03-07
JPS5218337U (en) * 1975-07-29 1977-02-09
JPS5320054A (en) * 1976-07-16 1978-02-23 Stant Mfg Co Ooring
JPS541888A (en) * 1977-06-06 1979-01-09 Shinetsu Densen Kk Insulated wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52129821U (en) * 1976-03-29 1977-10-03

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835749A (en) * 1971-09-10 1973-05-26
JPS5021678A (en) * 1973-05-23 1975-03-07
JPS5218337U (en) * 1975-07-29 1977-02-09
JPS5320054A (en) * 1976-07-16 1978-02-23 Stant Mfg Co Ooring
JPS541888A (en) * 1977-06-06 1979-01-09 Shinetsu Densen Kk Insulated wire

Also Published As

Publication number Publication date
JPS57202608A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US4163826A (en) Self-bonding magnet wires and coils made therefrom
JPS6359483B2 (en)
JP2519814B2 (en) Insulated wire manufacturing method
JPS6359482B2 (en)
JPH0160070B2 (en)
JPS61151280A (en) Self-fusible insulated wire
JPS61233067A (en) Self-welding insulated wire
JPH07134913A (en) Self-lubricating insulated wire
JPH01144505A (en) Self-fusion adhesive insulated cable
JPS61151279A (en) Self-fusible insulated wire
JP3064725B2 (en) Self-lubricating enameled wire
JPH04115411A (en) Insulated wire
JP2582672B2 (en) Self-lubricating fusible insulated wire
JP3310419B2 (en) Self-lubricating insulated wire
JPS61200180A (en) Self-fusible insulated electric wire
JPH01260714A (en) Insulated electric wire
JPS5935317A (en) Self-lubricating insulated wire
JPH04264308A (en) Self-lubrication enamel wire
JPH01161608A (en) Self-melting insulated wire
JPH04259708A (en) Self-lubricating enamel wire
JPH02186507A (en) Self-lubricating insulated wire
JPH0680154B2 (en) Insulated wire
JPH0753219Y2 (en) Insulated wire
JPS6158927B2 (en)
JPH03241608A (en) Self-fusing insulated wire