JPS6158927B2 - - Google Patents

Info

Publication number
JPS6158927B2
JPS6158927B2 JP4556177A JP4556177A JPS6158927B2 JP S6158927 B2 JPS6158927 B2 JP S6158927B2 JP 4556177 A JP4556177 A JP 4556177A JP 4556177 A JP4556177 A JP 4556177A JP S6158927 B2 JPS6158927 B2 JP S6158927B2
Authority
JP
Japan
Prior art keywords
weight
insulated wire
parts
aqueous dispersion
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4556177A
Other languages
Japanese (ja)
Other versions
JPS53129879A (en
Inventor
Akira Kitamura
Isao Shirahata
Bunichi Sano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4556177A priority Critical patent/JPS53129879A/en
Publication of JPS53129879A publication Critical patent/JPS53129879A/en
Publication of JPS6158927B2 publication Critical patent/JPS6158927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Organic Insulating Materials (AREA)
  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は電気機器に使用する絶縁電線におい
て、特に耐加工性を高めるために特殊な樹脂層を
設けた絶縁電線である。 近時電気機器メーカーにおいては巻線作業の迅
速化を図るために高速自動巻線機の導入が一般化
されているが、機械巻きの場合、手作業による巻
線に比してより苛酷な加工工程が加わるため、電
気特性が著しく低下するものである。これを改善
するために従来エナメルワニスの中にシリコーン
オイルを添加するとか、或は上層にナイロン樹脂
被覆層を設けた2重被膜層からなる所謂自己潤滑
線のように絶縁皮膜表面の摩擦抵抗を低下せしめ
るとか或はナイロン樹脂の機械特性の良さを利用
するなどの方法である程度の効果を収めていた。
しかし前者の場合にはシリコーンオイルの増量に
伴ない皮膜の外観等が悪化し少量しか添加できず
不十分であり、又後者の場合には得られる絶縁電
線の耐熱性並に往復摩擦抵抗を著しく低下せしめ
るものであつた。 又、一方天然ワツクスの乳化物と水溶性フエノ
ール樹脂或はシエラツク樹脂との水分散物を絶縁
電線の表面に塗布することが提案されている。こ
の場合往復摩擦特性並に摩擦係数が著しく改良さ
れしかも加工による特性低下率も著しく改良され
るものであり、かつ塗布厚みが1〜2μ程度の如
く極めて薄くて上述の如き効果を発揮し、絶縁電
線の耐熱性を低下せしめない等優れた効果を発揮
するが、機械的特性の向上は期待できないもので
あつた。この場合水分散物におけるワツクスの混
合比率を60〜80%の如く高配合することにより機
械的特性を改善することが出来るものであるが、
反面焼付皮膜の軟化温度が比較的低くなり、高速
度での巻線作業を行う場合、その張力をかけるた
めに使用するフエルトに軟化した塗装物が密着し
該張力に異常現象をおこし返つて耐加工性が悪化
するものであつた。又この水分散物は結合剤とな
る樹脂分が少いために通常の焼付温度(約400
℃)において塗布焼付を行つた場合、均一に焼付
を行うことが出来ず所望の電気特性のものが得ら
れず且つ塗料の泡立ちが激しく実用性に乏しいも
のであつた。 本発明はかかる現状に鑑み耐加工性に優れた絶
縁電線を得べく鋭意研究を行つた結果導体上の絶
縁焼付皮膜層の上にアクリル共重合体100重量部
に対し熱硬化性樹脂或は反応性モノマー0〜100
重量部及び前記2者の合量100重量部に対し天然
又は合成ワツクス20〜160重量部の配合割合から
なる水分散物を塗布焼付けることにより摩耗係数
が著しく低く、往復摩耗特性に優れ、高速自動巻
線機による巻線作業を行つても何等電気特性が低
下しない絶縁電線となることを見出したものであ
る。 本発明において用いるアクリル系共重合体水分
散物とは、アクリル酸、メタクリル酸、イタコン
酸、マレイン酸、フマール酸等の不飽和結合を有
するカルボン酸の内1種或は2種以上のカルボン
酸及びアクリルニトリル、スチレンとの共重合体
を主成分としたものである。 又熱硬化性樹脂及び反応性モノマーとは水に溶
解或は分散するものであればよく、例えばエポキ
シ系単量体としてチソノツクス206(窒素株式会
社商品名)、水溶性フエノール樹脂としてプライ
オーフエンJ−303(大日本インキ化学社製商品
名)、水溶性メラミン樹脂としてウオーターゾル
J−675(大日本インキ化学社製商品名)、水溶性
尿素樹脂としてプライアミンTD−2712W(大日
本化学社製商品名)がある。又シランカツプリン
グ剤のγ―グリシドキシプロピルトリメトキシシ
ラン、n―(トリメトキシシリルピロピル)エチ
レンジアミン或は水溶性の金属錯化合物などもが
挙られる。 而して前記アクリル共重合体は通常水系乳化物
となし床下艶出しワツクスとして使用されている
ものであり、これを絶縁被膜上に塗布焼付けるこ
とにより、その機械的特性を格段に向上せしめる
ことができ、更にこの樹脂に熱硬化性樹脂或は反
応性単量体を配合することにより、アクリル系共
重合樹脂単独のものを塗布焼付けたものより更に
機械的特性を改良せしめることが出来るものであ
る。然しながらこれら両者からなる組成物のみで
は絶縁電線における加工性としての要因即ち表面
滑り性において十分なものを得ることができな
い。従つて本発明絶縁電線では、上記組成物に天
然又は合成のワツクスを添加した水系分散物を塗
布焼付けることにより表面滑り性を改善したもの
である。この天然ワツクス、合成ワツクスとして
は融点の低い軟質ワツクスでは得られる皮膜の軟
化温度が低下するため機械的特性が劣り望ましく
ない。従つて天然ワツクスではモンタン蝋、カル
ナウバ蝋等、合成ワツクスではステアリルアミド
或はビスステアロアミド等の如く融点の高い硬質
のワツクスを使用することが望ましい。 又本発明で使用する水系分散物の調製にあたつ
ては樹脂成分及びワツクスを夫々乳化せしめて混
合する方が、樹脂成分にワツクスを混合せしめた
後乳化せしめるよりも乳化液の調整が容易なため
望ましいものである。又この際使用する乳化剤と
しては脂肪族アミン系のもの或は高級脂肪酸及び
そのエステル等があるが、焼付後の塗膜に比較的
影響を与えない非イオン系のポリオキシエチレン
高級アルコールエステルが望ましい。 而して本発明における水系分散物としてアクリ
ル共重合体100重量部に対し熱硬化性樹脂或は反
応モノマーの配合割合を100重量部以下と限定し
た理由は熱硬化性樹脂或は反応モノマーのアクリ
ル共重合体に対する配合割合が100重量部を越え
た場合には、得られる皮膜の機械的特性を反つて
低下せしめるものである。又これら両者の合量
100重量部に対し天然又は合成ワツクス配合量を
20〜160重量部と限定した理由は、該ワツクス類
は出来うる限り少量にすることが望ましいが樹脂
分100重量部に対して20重量部未満では得られる
皮膜の耐加工性向上の効果が薄く又160重量部を
越えた場合は得られる皮膜が軟質化するおそれが
あるためである。通常好ましい範囲は100重量部
以下である。なおカルナウバ蝋を使用する場合に
は40〜80重量部にて十分その効果を発揮すること
が出来る。 このようにして得た水系分散物を予め導体上に
電気絶縁被膜が設けられた絶縁電線の外側に塗布
し、これを炉温250〜500℃の乾燥炉中を通過させ
て焼付を行つて本発明絶縁電線を得るものであ
る。なおこの際焼付によつて発生する水蒸気が下
層の絶縁被膜層に悪影響を与えない限り下層絶縁
被膜層と同一炉で焼付を行つてもよい。 又本発明絶縁電線において水系分散物による上
層の絶縁被膜は、その厚みが1〜2μで十分に機
械的特性並に滑り性を有し耐加工特性が優れてい
るものである。 次に本発明の実施例について説明する。 比較例 (1) アクリル酸48重量部、スチレン88重量部、アク
リルニトリル44重量部を720重量部の水中におい
て、0.18重量部の過硫酸カリウム及び9重量部の
ポリオキシエチレンノニルフエノールエーテルと
共に乳化重合せしめて水系分散物(A)を得た。 この水系分散物(A)を導体径1mmφのO種のポリ
エステル系絶縁電線上に塗布し、400℃にて焼付
を行つて、1〜2μの塗膜層を形成した絶縁電線
を得た。この絶縁電線の耐摩耗特性並に摩耗係数
を測定した結果は第1表に示す通りである。 比較例 (2) シエラツク樹脂の乳化液に市販のモンタン鑞分
散物を固形分の割合で3:7になるように添加し
て得た水系分散物(B)を上記同様導体径1mmφのO
種のポリエステル系絶縁電線上に塗布し、400℃
において焼付けて1〜2μの塗膜層を形成した絶
縁電線を得た。この絶縁電線の耐摩耗特性及び摩
耗係数を測定した結果は第1表に示す通りであ
る。 比較例 (3) 比較例(1)において使用した水系分散物(A)の固形
分に対してプライオーフエンJ−303(水溶性フ
エノール樹脂)を20重量%添加して調製した水分
散物(C)を、導体径1mmφのポリエステル系絶縁電
線上に塗布し、400℃において焼付を行つて1〜
2μの塗膜層を形成した絶縁電線を得た。この絶
縁電線の耐摩耗特性及び摩耗係数を測定した。そ
の結果は第1表に示す通りである。 実施例 (1) 比較例(3)において使用した水系分散物(C)の固形
分に対し市販のカルナウバ蝋分散物を40重量%添
加して水系分散物(D)を得た。この分散物を上記同
様導体径1mmφのO種のポリエステリ系絶縁電線
上に塗布し、400℃において焼付けを1〜2μの
塗膜層を形成して、本発明絶縁電線を得た。この
絶縁電線の耐摩耗特性並に摩耗係数を測定した結
果は第1表に示す通りである。 又比較例(2)より得た絶縁電線と実施例(1)により
得た本発明絶縁電線とを夫々高速巻線機にて線速
200m/分の条件で20分間巻取つたところ、テン
シヨン調整に使用したフエルトに比較例(2)の絶縁
電線の場合アズキ色を有する樹脂状物が附着し且
つテンシヨンは当初の2Kg/mm2から約3倍になつ
ていた。これに対し本発明絶縁電線のものは何等
異状が認められなかつた。 実施例 (2) 比較例(1)に使用した水系分散物(A)に対し水溶性
チタン化合物MC−5000(松本交商製)を該分散
物中の樹脂分に対し5重量%添加し、更に市販の
ビスステアローアミドの分散物約35重量%添加し
て得た水系分散物(E)を、上記同様導体径1mmφの
O種のポリエステル系絶縁電線上に塗布し、350
℃において焼付けて、1〜2μ塗膜層を形成した
本発明絶縁電線を得た。この絶縁電線の耐摩耗特
性並に摩耗係数を測定した結果は第1表に示す通
りである。又実施例(1)と同様に高速巻線機にて巻
取つたところ、何等異状は認められなかつた。 実施例 (3) 比較例(1)に使用した水系分散物(A)に対しチソノ
ツクス206を該水系分散物中の樹脂分に対し約20
重量%添加し、更に市販のモンタン蝋を約40重量
%添加した水系分散物(E)を、上記同様導体径1mm
φのO種のポリエステル系絶縁電線上に塗布し、
350℃において焼付して、1〜2μ塗膜層を形成
した本発明絶縁電線を得た。この絶縁電線の耐摩
耗特性並に摩耗係数を測定した結果は第1表に示
す通りである。
The present invention is an insulated wire for use in electrical equipment, in particular an insulated wire provided with a special resin layer to improve processing resistance. Recently, it has become common for electrical equipment manufacturers to introduce high-speed automatic winding machines to speed up the winding process, but mechanical winding requires more severe processing than manual winding. Because of the additional steps, the electrical characteristics are significantly degraded. To improve this problem, silicone oil has been conventionally added to enamel varnish, or the frictional resistance of the insulating coating surface has been reduced using a so-called self-lubricating wire consisting of a double coating layer with a nylon resin coating layer on top. Some success has been achieved by methods such as reducing the amount of carbon dioxide and making use of the good mechanical properties of nylon resin.
However, in the former case, the appearance of the film deteriorates as the amount of silicone oil increases, making it insufficient as only a small amount can be added, and in the latter case, the heat resistance and reciprocating friction resistance of the resulting insulated wire are significantly reduced. It was something that caused the decline. On the other hand, it has been proposed to apply an aqueous dispersion of a natural wax emulsion and a water-soluble phenolic resin or a Sierra resin to the surface of an insulated wire. In this case, the reciprocating friction characteristics as well as the friction coefficient are significantly improved, and the rate of deterioration of characteristics due to processing is also significantly improved, and the coating thickness is extremely thin, about 1 to 2 μm, and the above-mentioned effects are achieved. Although it exhibited excellent effects such as not reducing the heat resistance of the electric wire, no improvement in mechanical properties could be expected. In this case, the mechanical properties can be improved by mixing the wax in the aqueous dispersion at a high mixing ratio of 60 to 80%.
On the other hand, the softening temperature of the baked film is relatively low, and when winding work is performed at high speeds, the softened coating adheres to the felt used to apply the tension, causing an abnormal phenomenon in the tension and making it difficult to withstand. This resulted in poor workability. In addition, this aqueous dispersion has a small amount of resin as a binder, so it can be baked at the normal baking temperature (approximately 400℃).
When coating and baking was carried out at a temperature of 100.degree. In view of the current situation, the present invention was developed as a result of intensive research to obtain insulated wires with excellent processing resistance. Polymer monomer 0-100
By applying and baking an aqueous dispersion consisting of 20 to 160 parts by weight of natural or synthetic wax per 100 parts by weight of the above-mentioned two parts, the wear coefficient is extremely low, the reciprocating wear characteristics are excellent, and high speed is achieved. It has been discovered that an insulated wire can be obtained whose electrical properties do not deteriorate in any way even when winding is performed using an automatic winding machine. The acrylic copolymer aqueous dispersion used in the present invention refers to one or more carboxylic acids having unsaturated bonds such as acrylic acid, methacrylic acid, itaconic acid, maleic acid, and fumaric acid. The main component is a copolymer of acrylonitrile and styrene. The thermosetting resin and reactive monomer may be those that can be dissolved or dispersed in water; for example, an epoxy monomer such as Tisonox 206 (trade name of Nitrogen Co., Ltd.), and a water-soluble phenol resin such as Plyophen J -303 (trade name manufactured by Dainippon Ink Chemical Co., Ltd.), Watersol J-675 (trade name manufactured by Dainippon Ink Chemical Co., Ltd.) as a water-soluble melamine resin, and Priamine TD-2712W (product name manufactured by Dainippon Ink Chemical Co., Ltd.) as a water-soluble urea resin. There is a first name). Also included are silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, n-(trimethoxysilylpropyl)ethylenediamine, and water-soluble metal complex compounds. The acrylic copolymer is usually used as a water-based emulsion and as an underfloor polishing wax, and by coating and baking it on an insulating coating, its mechanical properties can be significantly improved. Furthermore, by adding a thermosetting resin or a reactive monomer to this resin, it is possible to improve the mechanical properties even more than when applying and baking an acrylic copolymer resin alone. be. However, with only a composition consisting of both of these, it is not possible to obtain a sufficient workability factor for insulated wires, that is, surface slipperiness. Therefore, in the insulated wire of the present invention, the surface slipperiness is improved by applying and baking an aqueous dispersion in which natural or synthetic wax is added to the above composition. As for natural waxes and synthetic waxes, soft waxes with a low melting point are undesirable because the softening temperature of the obtained film is lowered, resulting in poor mechanical properties. Therefore, it is desirable to use a hard wax with a high melting point, such as montan wax or carnauba wax for natural waxes, and stearylamide or bisstearamide for synthetic waxes. In addition, when preparing the aqueous dispersion used in the present invention, it is easier to prepare the emulsion by emulsifying and mixing the resin component and wax separately, rather than mixing the wax with the resin component and then emulsifying it. Therefore, it is desirable. In addition, the emulsifiers used at this time include aliphatic amine type emulsifiers, higher fatty acids and their esters, etc., but nonionic polyoxyethylene higher alcohol esters are preferable since they have relatively little effect on the coating film after baking. . The reason for limiting the blending ratio of the thermosetting resin or reactive monomer to 100 parts by weight or less to 100 parts by weight of the acrylic copolymer in the aqueous dispersion of the present invention is that the acrylic content of the thermosetting resin or reactive monomer is limited to 100 parts by weight. If the blending ratio to the copolymer exceeds 100 parts by weight, the mechanical properties of the resulting film will be adversely reduced. Also, the total amount of both of these
Natural or synthetic wax content per 100 parts by weight
The reason for limiting the amount to 20 to 160 parts by weight is that it is desirable to use as little wax as possible, but if it is less than 20 parts by weight based on 100 parts by weight of the resin content, the effect of improving the processing resistance of the resulting film will be weak. If the amount exceeds 160 parts by weight, the resulting film may become soft. The usually preferred range is 100 parts by weight or less. In addition, when using carnauba wax, the effect can be sufficiently exhibited at 40 to 80 parts by weight. The aqueous dispersion thus obtained is applied to the outside of an insulated wire, in which an electrically insulating film has been previously provided on the conductor, and it is passed through a drying oven with an oven temperature of 250 to 500°C to perform baking. The invention provides an insulated wire. At this time, the baking may be performed in the same furnace as the lower insulating coating layer, as long as the water vapor generated by baking does not have an adverse effect on the lower insulating coating layer. Further, in the insulated wire of the present invention, the upper insulating coating made of the aqueous dispersion has a thickness of 1 to 2 μm, has sufficient mechanical properties and slipperiness, and has excellent processing resistance. Next, examples of the present invention will be described. Comparative Example (1) Emulsion polymerization of 48 parts by weight of acrylic acid, 88 parts by weight of styrene, and 44 parts by weight of acrylonitrile together with 0.18 parts by weight of potassium persulfate and 9 parts by weight of polyoxyethylene nonylphenol ether in 720 parts by weight of water. Finally, an aqueous dispersion (A) was obtained. This aqueous dispersion (A) was applied onto an O type polyester insulated wire with a conductor diameter of 1 mm, and baked at 400°C to obtain an insulated wire with a coating layer of 1 to 2 μm thick. The results of measuring the wear resistance characteristics and wear coefficient of this insulated wire are shown in Table 1. Comparative Example (2) An aqueous dispersion (B) obtained by adding a commercially available Montan braze dispersion to an emulsion of Sierrak resin at a solid content ratio of 3:7 was mixed into an O with a conductor diameter of 1 mmφ in the same manner as above.
Coated on seed polyester insulated wire and heated to 400℃
An insulated wire with a coating layer of 1 to 2 .mu.m thick was obtained by baking. The results of measuring the wear resistance and wear coefficient of this insulated wire are shown in Table 1. Comparative Example (3) Aqueous dispersion ( C) was applied onto a polyester insulated wire with a conductor diameter of 1 mmφ and baked at 400°C.
An insulated wire with a coating layer of 2 μm was obtained. The wear resistance properties and wear coefficient of this insulated wire were measured. The results are shown in Table 1. Example (1) A commercially available carnauba wax dispersion was added in an amount of 40% by weight based on the solid content of the aqueous dispersion (C) used in Comparative Example (3) to obtain an aqueous dispersion (D). This dispersion was applied onto an O type polyester insulated wire having a conductor diameter of 1 mm in the same manner as described above, and baked at 400 DEG C. to form a coating layer with a thickness of 1 to 2 microns to obtain an insulated wire of the present invention. The results of measuring the wear resistance characteristics and wear coefficient of this insulated wire are shown in Table 1. In addition, the insulated wire obtained from Comparative Example (2) and the insulated wire of the present invention obtained from Example (1) were each heated at a wire speed using a high-speed winding machine.
After winding at 200 m/min for 20 minutes, in the case of the insulated wire of Comparative Example (2), a resinous material with a maroon color was attached to the felt used for tension adjustment, and the tension changed from the original 2 kg/mm 2 . It had become about three times as large. In contrast, no abnormality was observed in the insulated wire of the present invention. Example (2) A water-soluble titanium compound MC-5000 (manufactured by Matsumoto Kosho) was added to the aqueous dispersion (A) used in Comparative Example (1) in an amount of 5% by weight based on the resin content in the dispersion, Furthermore, an aqueous dispersion (E) obtained by adding approximately 35% by weight of a commercially available dispersion of bisstearamide was applied onto an O type polyester insulated wire with a conductor diameter of 1 mmφ in the same manner as above.
An insulated wire of the present invention having a coating layer of 1 to 2 .mu.m was obtained by baking at .degree. The results of measuring the wear resistance characteristics and wear coefficient of this insulated wire are shown in Table 1. Further, when the wire was wound using a high-speed winding machine in the same manner as in Example (1), no abnormalities were observed. Example (3) For the aqueous dispersion (A) used in Comparative Example (1), Tisonox 206 was added to the aqueous dispersion (A) in an amount of about 20
Aqueous dispersion (E) containing approximately 40% by weight of commercially available montan wax was added to a conductor with a diameter of 1 mm in the same manner as above.
Coated on φ O type polyester insulated wire,
The insulated wire of the present invention was baked at 350° C. to form a coating layer of 1 to 2 μm. The results of measuring the wear resistance characteristics and wear coefficient of this insulated wire are shown in Table 1.

【表】【table】

【表】 以上詳述した如く本発明絶縁電線は、本来の電
気特性等は何等低下せず耐摩耗特性及び摩耗係数
が著しく優れているため高速巻線機にて巻取る場
合該電線に何等異状を認めない等顕著な効果を有
する。
[Table] As detailed above, the insulated wire of the present invention does not deteriorate its original electrical properties and has extremely excellent abrasion resistance and wear coefficient. It has remarkable effects such as not recognizing

Claims (1)

【特許請求の範囲】[Claims] 1 導体上の絶縁焼付皮膜層上にアクリル共重合
体100重量部に対し熱硬化性樹脂或は反応性モノ
マー0〜100重量部及び前記2者の合量100重量部
に対し天然又は合成ワツクスを20〜160重量部の
配合割合からなる水系分散物を塗布焼付けたこと
を特徴とする耐加工性絶縁電線。
1. 0 to 100 parts by weight of a thermosetting resin or reactive monomer per 100 parts by weight of the acrylic copolymer and natural or synthetic wax per 100 parts by weight of the above two on the insulating baked film layer on the conductor. A process-resistant insulated wire characterized by being coated and baked with an aqueous dispersion having a blending ratio of 20 to 160 parts by weight.
JP4556177A 1977-04-20 1977-04-20 Process-durable insuladted wire Granted JPS53129879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4556177A JPS53129879A (en) 1977-04-20 1977-04-20 Process-durable insuladted wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4556177A JPS53129879A (en) 1977-04-20 1977-04-20 Process-durable insuladted wire

Publications (2)

Publication Number Publication Date
JPS53129879A JPS53129879A (en) 1978-11-13
JPS6158927B2 true JPS6158927B2 (en) 1986-12-13

Family

ID=12722756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4556177A Granted JPS53129879A (en) 1977-04-20 1977-04-20 Process-durable insuladted wire

Country Status (1)

Country Link
JP (1) JPS53129879A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294705A (en) * 1985-06-24 1986-12-25 東芝ケミカル株式会社 Self-lubricating insulated wire
JPS62200605A (en) * 1986-02-27 1987-09-04 古河電気工業株式会社 Processing resistant insulated wire
US5681621A (en) * 1995-05-31 1997-10-28 Dallas Enviro-Tek International, Inc. Aqueous median treating composition

Also Published As

Publication number Publication date
JPS53129879A (en) 1978-11-13

Similar Documents

Publication Publication Date Title
JPH0572684B2 (en)
JPS6158927B2 (en)
JPS6329412A (en) Insulated wire
JPS60158507A (en) Self-lubricating insulated wire
JP3064725B2 (en) Self-lubricating enameled wire
JPS58192207A (en) Self-lubricating insulated wire
JPH0753219Y2 (en) Insulated wire
JPS63187502A (en) Self-lubricating insulated wire
JPS62296307A (en) Surface lubricating insulated wire
JPS6380415A (en) Insulated wire
JPS61294705A (en) Self-lubricating insulated wire
JPH04242022A (en) Manufacture of insulated wire
JPH04264308A (en) Self-lubrication enamel wire
JPS60158508A (en) Self-adhesive insulated wire
JPH07134912A (en) Self-lubricating insulated electric wire
JPH01260714A (en) Insulated electric wire
JPH06899B2 (en) Varnish for enameled wire
JPS58186107A (en) Lubricating insulated wire
JPH08138448A (en) Self-lubricating enameled wire
JPH038215A (en) Lubricating enameled wire and manufacture thereof
JPS6357887B2 (en)
JPH05298933A (en) Self-lubricating insulated wire
JPS5935317A (en) Self-lubricating insulated wire
JPH07262832A (en) Antiabrasive self-lubricating enameled wire
US2886465A (en) Tinning oil composition and method of using same