JPS6359044A - System for reducing inteference wave noise - Google Patents

System for reducing inteference wave noise

Info

Publication number
JPS6359044A
JPS6359044A JP19993886A JP19993886A JPS6359044A JP S6359044 A JPS6359044 A JP S6359044A JP 19993886 A JP19993886 A JP 19993886A JP 19993886 A JP19993886 A JP 19993886A JP S6359044 A JPS6359044 A JP S6359044A
Authority
JP
Japan
Prior art keywords
signal
phase
signals
interference wave
wave noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19993886A
Other languages
Japanese (ja)
Inventor
Hideo Kobayashi
英雄 小林
Tatsuo Watanabe
渡辺 龍雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP19993886A priority Critical patent/JPS6359044A/en
Publication of JPS6359044A publication Critical patent/JPS6359044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

PURPOSE:To reduce the effect of interference wave noise by using two carriers in phase and orthogonal to a biphase PSK wave so as to detect them individually and using a detection output of an opposite phase component so as to apply signal processing to the detection output of the in phase component. CONSTITUTION:A thermal noise and an interference wave noise subjected to band limit by a band pass filter 1 has equal power spectrum in the in phase and orthogonal components with respective signal. In utilizing the property above, a signal 11 enters a carrier recovery circuit 4 and a carrier omegaC is recovered. A cosomegaCt is outputted on a line 41 and a sinomegaCt is outputted to a line 31 via a pi/2 phase shifter 3. The two carriers in the orthogonal relation are multiplied with a signal 11 by two multipliers 2, 2'. Base band signals 51, 52 are given to A/D converters 6, 6', where the signals are digitized and given to FET circuits 7, 7', and they are converted from frequency axis signals into time base signals in real time. Output signals 71, 72 of the FET circuits 7, 7' enter a signal processing circuit 8, where they are processed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、無線回線を用いた通信方式において、同一周
波数帯の干渉波雑音を軽減する方式に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for reducing interference wave noise in the same frequency band in a communication method using a wireless line.

(従来の技術) 近年、無線通信の発展により、無線通信に割り当てられ
ている周波数帯域は非常に混雑している。
(Prior Art) In recent years, with the development of wireless communications, the frequency bands allocated to wireless communications have become extremely congested.

特に、固定衛星通信で利用されている6/4GHz。In particular, 6/4 GHz is used in fixed satellite communications.

14/11GHz帯では、地上マイクロ通信と同じ周波
数帯を共用していることから混雑が激しい。このような
周波数帯では、同一周波数帯干渉雑音の対策が大きな問
題となっている。とれまでに検討されている干渉波雑音
軽減方式としては、大別すると以下のようなものがある
The 14/11GHz band is heavily congested because it shares the same frequency band as terrestrial microcommunications. In such frequency bands, countermeasures against co-frequency band interference noise have become a major problem. The interference wave noise reduction methods that have been considered so far can be broadly classified as follows.

(1)  アンテナの低サイドローブ化(2)シールド
法 (3)干渉波補償回路法 ここで(11f21については、アンテナに入力する干
渉波を極力少なくする方法である。これに対し、(3)
の手法は、入力した干渉波を受信機内で信号処理により
打ち消すものである。
(1) Low side lobe of the antenna (2) Shielding method (3) Interference wave compensation circuit method Here (11f21 is a method to reduce the interference waves input to the antenna as much as possible.In contrast, (3)
In this method, input interference waves are canceled by signal processing within the receiver.

(発明が解決しようとする問題点) これら従来技術では、+11 +21に対しては、受信
装置が大型となる点、及び干渉波の到来方向が既知であ
ること等の制約を受ける。(3)の方式では、信号波に
相加されている干渉波だけを独立に分離する必要がある
。ここで、従来の干渉波だけを独立に分離する手法とし
ては、受信すべき信号波を受けるアンテナの他に、干渉
波だけを受信する補助アンテナを設ける手法等が考えら
れている。しか到来方向が既知であること等の制約を受
ける。従って干渉波が複数存在する場合には、干渉波の
数だけ補助アンテナを設ける必要がある。
(Problems to be Solved by the Invention) These conventional techniques are subject to limitations such as the large size of the receiving device and the fact that the direction of arrival of the interference wave is known for +11 and +21. In the method (3), it is necessary to independently separate only the interference wave added to the signal wave. Here, as a conventional method of independently separating only the interference waves, a method of providing an auxiliary antenna that receives only the interference waves in addition to the antenna that receives the signal waves to be received has been considered. However, there are restrictions such as the fact that the direction of arrival is known. Therefore, if there are multiple interference waves, it is necessary to provide as many auxiliary antennas as there are interference waves.

このように従来の干渉波雑音軽減方式は、受信装置が大
型化になること、及び干渉波源の方向が、あらかじめ分
かつていなければならない等の欠点があった。
As described above, the conventional interference wave noise reduction method has the disadvantages that the receiving device becomes large and the direction of the interference wave source must be known in advance.

(問題点を解決するための手段) 本発明は、上述した従来技術に鑑みなされたもので、補
助アンテナなどの外部装置全必要としない、信号処理に
よる干渉波雑音軽減方式を提供するものである。そして
、その特徴は、2相PSK波(直交位相変調波ではない
)をその信号と同相および直交した2つの搬送波で別個
に検波し、該検波して得られる2つの出力信号に含まれ
る熱雛音ビ干渉波の電力スペクトラムは、それぞれ互い
に等しいという性質を利用して、同相成分の検波出力に
逆相成分の検波出力を用いて信号処理?加えることによ
り干渉波雑音の影響全軽減することにある(直交出力に
は信号がなく同相出力に等しいノイズのみである)。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned prior art, and provides an interference wave noise reduction method using signal processing that does not require any external equipment such as an auxiliary antenna. . The feature is that a two-phase PSK wave (not a quadrature phase modulated wave) is detected separately using two carrier waves that are in phase and orthogonal to that signal, and the thermal rays contained in the two output signals obtained by the detection are Utilizing the property that the power spectra of audio and visual interference waves are equal to each other, signal processing can be performed by using the detected output of the negative phase component as the detected output of the in-phase component? The purpose of this addition is to completely reduce the influence of interference wave noise (there is no signal in the quadrature output, only noise equal to the in-phase output).

(発明の構成と作用) 以下、図面を用いて本発明の詳細な説明する。(Structure and operation of the invention) Hereinafter, the present invention will be explained in detail using the drawings.

図1に、本発明による干渉軽減方式音用いた場合の受信
機の一実施例を示す。図1において、10の入力端子に
は1次式で示される熱雑音、干渉波雑音及び2相PSK
信号波が合成された信号が受信される。
FIG. 1 shows an embodiment of a receiver using the interference reduction method according to the present invention. In Figure 1, 10 input terminals include thermal noise expressed by a linear equation, interference wave noise, and two-phase PSK.
A signal obtained by combining signal waves is received.

rlft)= 5it)十n(t)+ i (t)  
  −tl)但し、s (t)は2相PSK波であり、
n(t)は熱雑音、1(t)は干渉波雑音を示す。
rlft)=5it)tenn(t)+i(t)
-tl) However, s (t) is a two-phase PSK wave,
n(t) indicates thermal noise, and 1(t) indicates interference wave noise.

ここで、i (t)は複数の干渉波雑音の合成波として
も以下の動作において一般性は失われない。式(1)に
示された受信信号r(t)は、1の周波数特性B(ω)
を持つ帯域通過フィルターを通り、11には以下に示す
信号が通過する。B(ω)の中心周波数をω。とする。
Here, even if i (t) is a composite wave of a plurality of interference wave noises, generality is not lost in the following operation. The received signal r(t) shown in equation (1) has a frequency characteristic B(ω) of 1
The signals shown below pass through a band pass filter 11. Let ω be the center frequency of B(ω). shall be.

ここでω。は搬送波周波数である。Here ω. is the carrier frequency.

r2(t)=m(t) cosωct + n((t)
 cqsωct + n8(t)sinω。t + i
 (B(t) cosωct + 18(t) sin
ωct□(2) 但し、m(t)は情報であり±it取る。また、nc(
t) 、 n8(t)は1の帯域フィルターで帯域制限
された熱雑音の狭帯域通過確率過程であり、それぞれ次
式に示す関係がある。
r2(t)=m(t) cosωct + n((t)
cqsωct + n8(t) sinω. t+i
(B(t) cosωct + 18(t) sin
ωct□(2) However, m(t) is information and takes ±it. Also, nc(
t) and n8(t) are narrowband pass stochastic processes of thermal noise band-limited by a bandpass filter of 1, and have the relationships shown in the following equations.

nc’ (t) = n、z (t)        
    (3)pnctω)−pns(ω)= Pn(
ω)(4)但し−nc”(t) 、 n3”(t)は2
乗平均値を示し、Pne(ωl、Pns(ω)はnc(
tlおよびn5(t)のそれぞれの電力スペクトラムを
示す。同様に干渉雑音i (t)に対しても、次式の関
係が成立する。
nc' (t) = n,z (t)
(3) pnctω)-pns(ω)=Pn(
ω) (4) However, -nc”(t), n3”(t) is 2
The root mean value is shown, and Pne(ωl, Pns(ω) is nc(
The respective power spectra of tl and n5(t) are shown. Similarly, the following relationship holds true for interference noise i (t).

l(:”(t)−Is”(t)           
 (51Pio(ω)−Pi8(ω)=Pifω)  
  −□+61このように、帯域フィルターlで帯域制
限を受けた熱雑音と干渉波雑音は、それぞれの信号と同
相成分および直交成分の電力スペクトラムが互いに等し
く々るという性質を利用する。
l(:”(t)-Is”(t)
(51Pio(ω)-Pi8(ω)=Pifω)
-□+61 In this way, the thermal noise and the interference wave noise, which have been band-limited by the bandpass filter l, utilize the property that the power spectra of the respective signals, the in-phase component, and the orthogonal component are equal to each other.

そして、次のように同相成分および直交成分全抽出する
Then, all in-phase components and orthogonal components are extracted as follows.

式(2)で示される信号11は、搬送波再生回路4に入
り、搬送波ω。が再生される。そして41にはeO8ω
ctが出力され、また、31にはπ/2移相器3を介し
てsinωctが出力される。これら直交関係にある2
つの搬送波は、2の掛算器2,2′により、信号11ヒ
掛算される。この結果、掛算器2゜2′の出力には、次
に示される信号21 、22が得られる0 21の信号: re(tl=r2(t) eO8ωct22の信号: r3(tl−r2(t) sinω。を次に21 、2
2の信号は、それぞれ5.5′の低域通過フィルターケ
通ることにより、高調波成分(2ω。成分)が除去され
51 、52には、それぞれ次式で示される信号が通過
する。
The signal 11 expressed by equation (2) enters the carrier wave regeneration circuit 4 and is converted into a carrier wave ω. is played. And in 41, eO8ω
ct is output, and sinωct is output to 31 via the π/2 phase shifter 3. These two orthogonal relationships
The two carrier waves are multiplied by the signal 11 by two multipliers 2, 2'. As a result, the following signals 21 and 22 are obtained at the output of the multiplier 2゜2'. Signal of 021: re(tl=r2(t) Signal of eO8ωct22: r3(tl-r2(t) sinω. Then 21, 2
The signals 2 pass through a 5.5' low-pass filter to remove harmonic components (2ω. components), and signals expressed by the following equations pass through 51 and 52, respectively.

51の信号: 52の信号; 式+9+ 、 (10)で示されるベースバンド信号5
1 、52は、6.6′のA/D変換器を通り、ディジ
タル化され、7.7′のFFT回路によJ IJアルタ
イムで時間軸の信号から周波数軸の信号に変換される。
51 signal: 52 signal; Baseband signal 5 shown by formula +9+, (10)
1 and 52 pass through a 6.6' A/D converter, are digitized, and are converted from time-domain signals to frequency-domain signals in real time by a 7.7' FFT circuit.

FFT回路7.7′の出力信号71および72は、8の
信号処理回路に入り、以下に示す信号処理が行なわれる
The output signals 71 and 72 of the FFT circuits 7 and 7' enter a signal processing circuit 8, where the following signal processing is performed.

8の信号処理回路では、式(9)で示されるベースバン
ド信号51と、信号波m(t)との2乗誤差が最小とな
るための周波数特性を実現している。信号処理回路8の
役割を次に詳説する。
The signal processing circuit No. 8 realizes frequency characteristics such that the square error between the baseband signal 51 shown by equation (9) and the signal wave m(t) is minimized. The role of the signal processing circuit 8 will be explained in detail below.

71のFFT回路7の出力の振幅スペクトラムは次式に
よって表わされる。
The amplitude spectrum of the output of the FFT circuit 71 is expressed by the following equation.

Ro(ω)−M(ω)十Nc(ω) + IC(ω) 
        (11)但し、M(ωl 、 No(
ω)、Ic(ω)は、それぞれm(t)。
Ro(ω) − M(ω) ten Nc(ω) + IC(ω)
(11) However, M(ωl, No(
ω) and Ic(ω) are respectively m(t).

no(t)、 1o(t)の周波数ペクトラムを示す。The frequency spectrum of no(t) and 1o(t) is shown.

信号処理回路8で実現される周波数特性全次式で示す。The frequency characteristics realized by the signal processing circuit 8 are expressed by a full-order equation.

W(ω)−A(ω)eJβ((′)         
 (12)但し、A(ω)は振幅特性、β(ω)は位相
特性を示す。
W(ω)−A(ω)eJβ((′)
(12) However, A(ω) indicates the amplitude characteristic and β(ω) indicates the phase characteristic.

従って、式01)の信号が弐〇渇の伝達関数を持つ特性
を通過した時の出力信号は次式で表わされる。
Therefore, the output signal when the signal in equation 01) passes through a characteristic having a constant transfer function is expressed by the following equation.

R,(a+1=R0fω)−W(ωi      −□
 13+次に式Q3)の時間軸波形k To(t)とし
、一般に多少の時間遅れを許してr。(11を信号波形
m(を−α)にできるだけ近似させるとする。すなわち
、この操ro(t+とm(t−α)の間の誤差e (t
lは次式で表わされる。
R, (a+1=R0fω)-W(ωi -□
13+Next, let the time axis waveform kTo(t) of equation Q3) and generally allow some time delay and calculate r. (11) is made to approximate the signal waveform m (-α) as much as possible. That is, the error e (t
l is expressed by the following formula.

e(t)=r。(t)−m(を−α)□(矧e (tl
の振幅スペクトラムは次式によって表わされる。
e(t)=r. (t)-m(-α)□(矧e (tl
The amplitude spectrum of is expressed by the following equation.

E(ω)−R6(ω)−M(ω) e−Jo)a(15
)但し、E(ω)はe (t)の振幅スペクトラムを示
す。
E(ω)-R6(ω)-M(ω) e-Jo)a(15
) However, E(ω) indicates the amplitude spectrum of e (t).

従って、誤差の2乗平均値は、 P + l NO(ω)121W(ω)12で表わされる。Therefore, the root mean square value of the error is P + l NO(ω)121W(ω)12.

ここで、熱雑音、干渉波の電力スペクトラムをPn(ω
)、Pi[ω)とすると、Nc(ω)、IC(ω)  
とは、式(4)(6)の関係を使うことによシ以下の関
係が成立する。
Here, the power spectrum of thermal noise and interference waves is expressed as Pn(ω
), Pi[ω), then Nc(ω), IC(ω)
By using the relationships of equations (4) and (6), the following relationship holds true.

同様に信号波m [tlの電力スペクトラム2 p 、
((=)とすると、 が成立する。
Similarly, the power spectrum 2 p of the signal wave m [tl,
(If (=), then holds true.

式αη〜09)ヲ使うことにより、式(161は次式と
なる。
By using the formula αη~09), the formula (161) becomes the following formula.

次に、式qzωより、最小2乗誤差eo(t)2が最小
となる時のA(ω)、β(ω)はそれぞれ次式によって
与えられる。
Next, from the equation qzω, A(ω) and β(ω) when the least square error eo(t)2 is minimum are given by the following equations.

β(ω)−一ωα          □ (22)従
って、 となる。
β(ω)−1ωα □ (22) Therefore, .

従って、式(23)で示される周波数特性を8の信号処
理回路で実現すれば、図1の71と81を9の掛算器で
掛算し、91の出力には、式Q31で示される振幅スペ
クトラムR8(ω)が得られる。ここで得られたR8(
ω)は、信号波m (tlと、61のr。(1)との間
の2乗誤差が最小、すなわち、熱雑音、干渉波雑音の影
響が最も小さい信号波となっている。
Therefore, if the frequency characteristic shown by equation (23) is realized by 8 signal processing circuits, 71 and 81 in FIG. 1 are multiplied by 9 multipliers, and the output of 91 has the amplitude spectrum shown by equation Q31. R8(ω) is obtained. R8 obtained here (
ω) is a signal wave in which the square error between tl and r of 61 (1) is the smallest, that is, the influence of thermal noise and interference wave noise is the smallest.

ここで、8の信号処理回路では、式(23)の周波数特
性全実現するために以下の操作を行う。
Here, in the signal processing circuit 8, the following operation is performed in order to fully realize the frequency characteristic of equation (23).

図1の信号71 、72の振幅スペクトラムから、以下
に示すように電力スペクトラムを求める。
From the amplitude spectra of the signals 71 and 72 in FIG. 1, the power spectra are determined as shown below.

71の信号=M(ω)+ Nc(ω)+I。(ω)  
   (24)72の信号−NS(ω)+ Is(ω)
        (25)但し、式(25)のNs(ω
) 、I s(ω)は、n 5(tl 、i 5(t)
の振幅スペクトラムを示す。
71 signal=M(ω)+Nc(ω)+I. (ω)
(24) 72 signal −NS(ω)+Is(ω)
(25) However, Ns(ω
), I s(ω) is n 5(tl , i 5(t)
shows the amplitude spectrum of

式(24) 、 (25)の振幅スペクトラムを2乗す
ると、信号、熱雑音、干渉波がそれぞれ無相関であるこ
と、及び式+4)+6+の関係を使い電力スペクトラム
は次式によって表わされる。
When the amplitude spectra of equations (24) and (25) are squared, the power spectrum is expressed by the following equation using the fact that the signal, thermal noise, and interference wave are uncorrelated, and the relationship of equation +4)+6+.

P71(ω)=Ps(ωl+Pnfω)+Pi(ω) 
 −(26)P?2 [ω)=Pn(ω)+ Pi(a
l          (27)従って、式(26) 
(27) ’&使うことにょシ、ps(ω1−P7+(
ω) −Pn (ωl     −(28)となる。
P71(ω)=Ps(ωl+Pnfω)+Pi(ω)
-(26)P? 2 [ω)=Pn(ω)+Pi(a
l (27) Therefore, equation (26)
(27) '& use ps(ω1-P7+(
ω) −Pn (ωl −(28)).

式(26) 、 (28)より、式(23)を実現する
ことができる。ここで、式(23)のαは定数であり、
信号品質が最良となるように設定することができる。
From equations (26) and (28), equation (23) can be realized. Here, α in equation (23) is a constant,
It can be set to give the best signal quality.

以上、8の信号処理回路では、式(26) 、 (27
)及び(28)に相当する操作全行い、式(23)の周
波数特性を出力することになる。ここでの信号処理は、
受信信号に対してリアルタイムで行う必要がある。
As described above, in the signal processing circuit 8, Equations (26) and (27
) and (28), the frequency characteristic of equation (23) will be output. The signal processing here is
This must be done in real time with respect to the received signal.

これらは、ベースバンド信号の信号処理であることから
、2相PSKの伝送速度の最低2倍のサンプリングを行
えばよい。9の掛算器の出力信号91は振幅スペクトラ
ムであるので、10のIFFT回路(発明の効果) 以上のごとく、本発明によると、2相PSK波の性質全
利用して直交位相検波することにより極めて簡単に干渉
を除去することができる。
Since these are signal processings of baseband signals, it is sufficient to perform sampling at least twice the transmission rate of two-phase PSK. Since the output signal 91 of the multiplier 9 is an amplitude spectrum, the IFFT circuit 10 (effect of the invention) As described above, according to the present invention, by performing quadrature phase detection by fully utilizing the properties of the two-phase PSK wave, Interference can be easily removed.

Claims (1)

【特許請求の範囲】 干渉波雑音成分を含む2相PSK波を受信し、該受信信
号に信号処理を加えることにより前記干渉波雑音成分を
除去する干渉波雑音軽減方式において、 前記2相PSK波を該2相PSK波の搬送波と同相およ
び直交関係にある2つの搬送波で検波することにより信
号の同相成分および直交成分を得た後、該2つの成分を
それぞれ電力スペクトル信号に変換し、該2つの電力ス
ペクトラム信号中に出現する干渉波雑音成分の電力スペ
クトルは互いに等しいという性質を利用して該2つの電
力スペクトル信号から該干渉波雑音成分の電力スペクト
ルを抑圧する周波数特性を求め、該周波数特性を前記同
相成分の電力スペクトル信号に乗算することにより干渉
波雑音成分を軽減することを特徴とする干渉波雑音軽減
方式。
[Scope of Claims] An interference wave noise reduction method that receives a two-phase PSK wave including an interference wave noise component and removes the interference wave noise component by applying signal processing to the received signal, comprising: is detected with two carrier waves that are in phase and orthogonal to the carrier wave of the two-phase PSK wave to obtain an in-phase component and a quadrature component of the signal, and then convert these two components into power spectrum signals, respectively, and Using the property that the power spectra of interference wave noise components appearing in two power spectrum signals are equal to each other, a frequency characteristic that suppresses the power spectrum of the interference wave noise component is obtained from the two power spectrum signals, and the frequency characteristic is An interference wave noise reduction method characterized in that the interference wave noise component is reduced by multiplying the power spectrum signal of the in-phase component by the power spectrum signal of the in-phase component.
JP19993886A 1986-08-28 1986-08-28 System for reducing inteference wave noise Pending JPS6359044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19993886A JPS6359044A (en) 1986-08-28 1986-08-28 System for reducing inteference wave noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19993886A JPS6359044A (en) 1986-08-28 1986-08-28 System for reducing inteference wave noise

Publications (1)

Publication Number Publication Date
JPS6359044A true JPS6359044A (en) 1988-03-14

Family

ID=16416089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19993886A Pending JPS6359044A (en) 1986-08-28 1986-08-28 System for reducing inteference wave noise

Country Status (1)

Country Link
JP (1) JPS6359044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237856A (en) * 2001-02-13 2002-08-23 Advantest Corp Signal analyzing device of quadrature modulation signal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002237856A (en) * 2001-02-13 2002-08-23 Advantest Corp Signal analyzing device of quadrature modulation signal
JP4618752B2 (en) * 2001-02-13 2011-01-26 株式会社アドバンテスト Signal analysis device for quadrature modulation signal

Similar Documents

Publication Publication Date Title
US5604503A (en) Multipath and co-channel signal preprocessor
EP0855109B1 (en) Co-channel interference reduction
US11296739B2 (en) Noise suppression device, noise suppression method, and reception device and reception method using same
US20020176522A1 (en) Quadrature envelope-sampling of intermediate frequency signal in receiver
GB2510997A (en) Reduction of intermodulation products
US20060120479A1 (en) System and method for crest factor reduction
US10601455B2 (en) Mitigating passive intermodulation interference in a MIMO wireless network
CN106416088B (en) For handling the method and radio receiver of radio signal
CN106341123B (en) A kind of filtering method and device of single tone jamming
KR20050025230A (en) Spread spectrum communication system receiving device
CN109474356B (en) Broadband multi-channel signal energy detection system and method
JPS6359044A (en) System for reducing inteference wave noise
JP3421541B2 (en) Signal receiving apparatus and signal receiving method
DE60202659T2 (en) Vector combiner for diversity reception in RF transceivers
US9941862B2 (en) Filter that minimizes in-band noise and maximizes detection sensitivity of exponentially-modulated signals
US20190260357A1 (en) Filter that minimizes in-band noise and maximizes detection sensitivity of exponentially-modulated signals
EP1160969B1 (en) Detection of distorsions in AM signals
EP3028428B1 (en) Direct conversion receiver device with first and second stages and related methods
CN114844579B (en) Time domain statistics QEC (quality of control) calibration method and device based on narrow-band filter
US6072845A (en) Simplified interference suppressor
JP2008283296A (en) Reception device and receiving method
JP3874295B2 (en) High frequency signal digital IQ detection method
CN114978181A (en) Signal frequency component detection system based on multi-frequency digital lock-in amplifier and FPGA implementation method
Studanski et al. Laboratory Stands for Wideband Analysis Radiocommunication Signals
Jazdzewski et al. Detection of direct sequence spread spectrum signals in the presence of harmonic and narrowband interferences