JPS6359019A - Pulse phase adjusting circuit - Google Patents

Pulse phase adjusting circuit

Info

Publication number
JPS6359019A
JPS6359019A JP61201130A JP20113086A JPS6359019A JP S6359019 A JPS6359019 A JP S6359019A JP 61201130 A JP61201130 A JP 61201130A JP 20113086 A JP20113086 A JP 20113086A JP S6359019 A JPS6359019 A JP S6359019A
Authority
JP
Japan
Prior art keywords
resistor
capacitor
fet
variable resistor
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61201130A
Other languages
Japanese (ja)
Inventor
Naoyuki Omatoi
直之 大纒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP61201130A priority Critical patent/JPS6359019A/en
Priority to US07/011,509 priority patent/US4789822A/en
Priority to EP91115089A priority patent/EP0469634A1/en
Priority to EP87301264A priority patent/EP0257724A3/en
Publication of JPS6359019A publication Critical patent/JPS6359019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pulse Circuits (AREA)

Abstract

PURPOSE:To control a phase difference through the remote control by applying a variable DC voltage to a gate of a FET to delay the leading edge of a pulse. CONSTITUTION:The gate of a FET is connected to a connecting point between a capacitor C1 and a resistor R1 connected in series with a pulse generator 40. Then a variable resistor 20 whose DC voltage is made adjustable is connected to a ground capacitor C3 connected to other terminal of a variable resistor 20 whose one terminal is connected to the connecting point. A phase difference is made to a desired value by the variable resistor 20 before the start of measurement and the measured accuracy and the threshold value are set. Since a dotted line block including the variable resistor 20 is provided at a position parted from a case of a sensor shown in one-dashed chanin lines, the phase difference is controlled easily from a remote location without touching the case of the sensor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、コンデンサと抵抗の直列回路を充放電回路と
パルス発生器に接続し、上記コンデンサと上記抵抗の接
続点をFETのゲートに接続した構成のパルス伝送回路
に関するものであり、特にそのような回路におけるパル
ス信号の位相を調整する回路に関するものであり、静電
容量型センサを用いた水位計及びロボットの手の先端や
ベルトコンベア上の物体の検出に広く応用できるもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention connects a series circuit of a capacitor and a resistor to a charging/discharging circuit and a pulse generator, and connects a connection point between the capacitor and the resistor to the gate of an FET. The present invention relates to pulse transmission circuits with such configurations, and in particular to circuits that adjust the phase of pulse signals in such circuits, and is applicable to water level gauges using capacitance sensors, the tip of robot hands, or on belt conveyors. It can be widely applied to the detection of objects.

[従来の技術1 静電容量型センサを用いた水位計等の測定装置において
は、従来から静電容量の変化により共振周波数を変化せ
しめ、その変化を検出するものがあった。しかしながら
、かかる従来の測定装置は検出精度、温度補償の点で欠
点を有していた。これに対して最近位相比較型の測定回
路が開発されるに至った。これは2つの静電容量素子の
静電容量の差を位相差として検出するものである。即ち
第4図に示すように、検出素子C7と直列に接続された
抵抗R7にパルス信号を供給し、一方比較用の素子C2
と直列に接続された抵抗R2にも同一パルス信号を供給
しておき、C,の静電容量の変化による位相の変化をF
ET入力型CMOS ICによりなる2つのインバータ
回路50.52及びこれに接続された7リツプ70ツブ
60により検出するものである。
[Prior Art 1] Conventionally, there have been measuring devices such as water level meters using capacitance sensors that change the resonance frequency by changing the capacitance and detect the change. However, such conventional measuring devices have drawbacks in detection accuracy and temperature compensation. In response to this, a phase comparison type measurement circuit has recently been developed. This detects the difference in capacitance between two capacitive elements as a phase difference. That is, as shown in FIG. 4, a pulse signal is supplied to the resistor R7 connected in series with the detection element C7, while the comparison element C2 is supplied with a pulse signal.
The same pulse signal is also supplied to the resistor R2 connected in series with C, and the phase change due to the change in capacitance of C is expressed as F.
Detection is performed using two inverter circuits 50 and 52 made of ET input type CMOS ICs and a 7-lip 70-tube 60 connected thereto.

かかる位相差の検出による方法にあっては、検出精度を
上昇せしめるためには、測定開始前にC。
In such a method based on phase difference detection, in order to increase the detection accuracy, C before starting the measurement.

側と02側の位相をできるだけ精密に一致させるか又は
所定間隔だけ離しておく必要がある。又被検a物の相違
により又は測定の態様やスレッショールドの設定により
上記位相差を予め精密に制御できることが望ましい。
It is necessary to match the phases of the side and the 02 side as precisely as possible, or to separate them by a predetermined interval. It is also desirable to be able to precisely control the phase difference in advance, depending on the difference in the object to be tested, the mode of measurement, or the setting of a threshold.

上記C8、C2を通るパルス信号の位相は、C】、Ro
の直列回路の時定数(C,xR,)とC2、R2の直列
回路の時定数(C2XR2)とによりそれぞれ定められ
る。
The phase of the pulse signal passing through C8 and C2 is C], Ro
are determined by the time constants (C, xR,) of the series circuit of C2 and R2 and the time constants (C2XR2) of the series circuit of C2 and R2, respectively.

従ってC1、R1,C2、R2を調整すれば上記位相差
を任意に設定できる。一般にコンデンサの静電容量の連
続的かつ大幅な調整は困難であり、段階的に変化させた
り、トリマコンデンサによる微少な変化しか得ることが
できない。第5図は第4図の回路の片側を模式的に示し
たものであり第6図及び第7図は第5図の装置に位相調
整手段としての可変抵抗器10またはトリマコンデンサ
12を付加した構成を示すものである。第4図の場合は
、第6図同様可変抵抗器10を手動調整することにより
、位相差を適宜設定することとなる。
Therefore, by adjusting C1, R1, C2, and R2, the above phase difference can be set arbitrarily. Generally, it is difficult to continuously and significantly adjust the capacitance of a capacitor, and it is only possible to change it in steps or to obtain minute changes using a trimmer capacitor. Fig. 5 schematically shows one side of the circuit shown in Fig. 4, and Figs. 6 and 7 show the device shown in Fig. 5 with a variable resistor 10 or trimmer capacitor 12 added as a phase adjustment means. This shows the configuration. In the case of FIG. 4, the phase difference is appropriately set by manually adjusting the variable resistor 10 as in FIG. 6.

[発明が解決しようとする問題点コ 上記第4図の従来装置にあっては、図中太線で示す部分
はできるだけ短く配線する必要がある。
[Problems to be Solved by the Invention] In the conventional device shown in FIG. 4 above, the portions indicated by thick lines in the figure must be wired as short as possible.

又トレー容量、分布容量により誤差や誤動作の原因とな
るからである。第6図、第7図の場合も同様である。従
って第4図、第6図、第7図の可変抵抗10、トリマコ
ンデンサ12はコンデンサCIを含むセンサ本体から遠
くへ離すことができなかった。
Furthermore, the tray capacity and distributed capacity may cause errors and malfunctions. The same applies to the cases of FIGS. 6 and 7. Therefore, the variable resistor 10 and trimmer capacitor 12 shown in FIGS. 4, 6, and 7 cannot be separated far from the sensor body including the capacitor CI.

このためセンサの位置が、極めて低所や高所であったり
、複雑な装置類の内部であったりすると、位相調整が極
めて困難であり、場合によっては、事実上不可能な場合
もあった。このように従来の装置にあっては位相調整を
容易に行うことができないという問題があった。
For this reason, if the sensor is located at an extremely low or high location, or inside a complex device, phase adjustment is extremely difficult and, in some cases, virtually impossible. As described above, the conventional device has a problem in that phase adjustment cannot be easily performed.

[問題点を解決する手段及び作用] 本発明においては、CR充放電回路の時定数自体は変化
させず、その代わり、コンデンサと抵抗の接続点、即ち
FETのゲートに直流電圧を印加せしめてパルスの立上
りを遅延せしめ、この直流電圧を可変抵抗で調整するこ
とにより、パルスの遅延時間を制御し、よって位相差を
精密に制御するものである。
[Means and effects for solving the problem] In the present invention, the time constant itself of the CR charging/discharging circuit is not changed, but instead, a DC voltage is applied to the connection point between the capacitor and the resistor, that is, the gate of the FET, and a pulse is generated. By delaying the rise of the DC voltage and adjusting this DC voltage with a variable resistor, the pulse delay time is controlled, and thus the phase difference is precisely controlled.

このように本発明においては、可変直流電圧をFETの
ゲートに印加する構成としたため、上記可変抵抗はセン
サ本体の近くに配置する必要はなく、従ってリモートコ
ントロールが可能となる。
In this way, in the present invention, since the variable DC voltage is applied to the gate of the FET, the variable resistor does not need to be placed near the sensor body, and therefore remote control is possible.

本発明においてはパルス発生器に直列に接続された第1
の抵抗と第1のコンデンサの直列回路と、該第1の抵抗
と該第1のコンデンサの接続点にゲートが接続されたF
ETを有するパルス伝送回路において、該接続点に一端
が接続された第2の抵抗と、該第2の抵抗の他端に接続
された接地コンデンサと、直流電源に接続されて該第2
の抵抗の他端に与える直流電圧を調整可能とした可変抵
抗とからなるパルス位相調整回路が提供される。
In the present invention, the first pulse generator is connected in series to the pulse generator.
A series circuit of a resistor and a first capacitor, and an F having a gate connected to a connection point of the first resistor and the first capacitor.
In a pulse transmission circuit having an ET, a second resistor having one end connected to the connection point, a grounding capacitor connected to the other end of the second resistor, and a second resistor connected to a DC power supply and having one end connected to the second resistor.
A pulse phase adjustment circuit is provided which includes a variable resistor that can adjust the DC voltage applied to the other end of the resistor.

[実施例] 第1図〜第4図は本発明の実施例を示す回路図である。[Example] 1 to 4 are circuit diagrams showing embodiments of the present invention.

第1図はFET素子を用いた場合、第2図はFET入力
型CMOS ICを用いた場合の例を示す。第1図、第
2図は簡略のため検出用の静電容量素子C1側のみ示し
比較用素子の側は省略しである。第3図においては検出
用素子CIと比較用素子C2の双方の回路を組み合わせ
たものとなっている。図中R,、R2、R3は抵抗、4
0はパルス発生装置、C3はフンデンサ、20は可変抵
抗、Ecは直流電源である。
FIG. 1 shows an example in which an FET element is used, and FIG. 2 shows an example in which an FET input type CMOS IC is used. For the sake of simplicity, FIGS. 1 and 2 only show the detection capacitance element C1 side and omit the comparison element side. In FIG. 3, the circuits of both the detection element CI and comparison element C2 are combined. In the figure, R,, R2, and R3 are resistances, 4
0 is a pulse generator, C3 is a fundensor, 20 is a variable resistor, and Ec is a DC power supply.

図中−点鎖線はセンサのケースに収められるべき部分を
示す。
In the figure, the dashed-dotted line indicates the part to be housed in the sensor case.

抵抗R3は高い抵抗値のもの、例えばIMΩ程度、を用
い、好ましくは酸化金属被膜抵抗等の温度特性の安定し
たものを用いる。コンデンサc3は抵抗R3と可変抵抗
20の接続点に一方が接続され、他端が接地されたバス
コンデンサであり、不要雑音を接地せしめるものである
The resistor R3 has a high resistance value, for example, about IMΩ, and preferably has stable temperature characteristics such as a metal oxide film resistor. The capacitor c3 is a bus capacitor with one end connected to the connection point between the resistor R3 and the variable resistor 20 and the other end grounded, and serves to ground unnecessary noise.

直流電源Eeとしては定電圧電源を用いる。この電流電
圧を可変抵抗20で分圧し、所望の電圧が抵抗R8を介
して抵抗R2とコンデンサc、(センサ素子)との接続
、αに与えられる。
A constant voltage power source is used as the DC power source Ee. This current voltage is divided by the variable resistor 20, and a desired voltage is applied to the connection α between the resistor R2 and the capacitor c (sensor element) via the resistor R8.

測定開始前に可変抵抗20により位相差を所望の値とし
、測定精度、スレッショールドを設定することができる
。可変抵抗20を含む点線部分は一点鎖線部分で示すセ
ンサのケースから離れた位置に配されるので、センサの
ケースに触れることなく遠方より容易に位相差の制御が
行乏る。可変抵抗20をセンサから離すことかで外るの
は、R3に高抵抗を用いているため、時定数に関与する
のがR1、R2、C1、C2、R3及びFETの半導体
部分のフンダクタンスの温度特性のみであり、又コンデ
ンサC3から可変抵抗20に至るケーブル部分22はF
ETの入力インピーダンスに比べると低インピーダンス
であるため数m以上延長しても時定数に影響を与えない
ことによる。
Before starting the measurement, the phase difference can be set to a desired value using the variable resistor 20, and the measurement accuracy and threshold can be set. Since the dotted line portion including the variable resistor 20 is arranged at a position away from the sensor case indicated by the dashed dot line portion, the phase difference can be easily controlled from a distance without touching the sensor case. The reason why the variable resistor 20 is removed from the sensor is because a high resistance is used for R3, so the factors that are involved in the time constant are R1, R2, C1, C2, R3 and the fundance of the semiconductor part of the FET. The cable section 22 from the capacitor C3 to the variable resistor 20 is F.
This is because the impedance is low compared to the input impedance of the ET, so even if it is extended for several meters or more, it will not affect the time constant.

上記パルス発生回路40は方形パルスを発生する通常の
パルス信号のほかに三角波を発生する構成とすることも
できる。
The pulse generating circuit 40 may be configured to generate a triangular wave in addition to a normal pulse signal that generates a square pulse.

第4図は第1図の回路を改良した実施例である。FIG. 4 shows an improved embodiment of the circuit shown in FIG.

この実施例においてはFETのソースに接続されたバ′
ンドパスフィルタ(BPF)62は商用周波数(50〜
60F12)を中心周波数とするものであり、その出力
は極性反転回路64により極性が反転されコンデンサC
4を介して抵抗R3とR1の接続点に供給されている。
In this embodiment, the buffer connected to the source of the FET is
A band pass filter (BPF) 62 is configured to operate at a commercial frequency (50~
60F12) as the center frequency, and its output has its polarity inverted by a polarity inverting circuit 64 and is connected to a capacitor C.
4 to the connection point between resistors R3 and R1.

本実施例においては第1図の高抵抗R3は2個の抵抗R
3゛とR4の直列回路に置き代えられている。R3゛は
R3同様114Ω程度の高抵抗値を有するものであり、
R1は30にΩ〜50にΩ程度のものでよい。
In this embodiment, the high resistance R3 in FIG.
It is replaced by a series circuit of 3' and R4. Like R3, R3 has a high resistance value of about 114Ω,
R1 may be approximately 30Ω to 50Ω.

第4図の実施例は静電容量型センサC1を用いて測定し
ているときに、商用周波数の電圧が混入した場合、これ
を負帰還によって低減せしめるものである。かかる商用
周波数の妨害波は特に液体を測定する場合等に混入する
ことが多く、測定回路のパルス信号が位相変調される等
の誤動作や誤差の原因となる。本実施例ではFETの出
力信号に重畳した商用周波数成分をBPF62て・抽出
し、極性反転回路64にて極性を反転して直流電源Ec
からの直流バイアスに重畳することにより、FETのゲ
ート側に負帰還するものである。これにより商用周波数
の外乱を抑制することが可能となる。
In the embodiment shown in FIG. 4, when a commercial frequency voltage is mixed in during measurement using the capacitive sensor C1, this is reduced by negative feedback. Such commercial frequency interference waves are often mixed in, especially when measuring liquids, and cause malfunctions and errors such as phase modulation of the pulse signal of the measuring circuit. In this embodiment, the commercial frequency component superimposed on the output signal of the FET is extracted using the BPF 62, and the polarity is inverted using the polarity inverting circuit 64.
By superimposing it on the DC bias from the FET, negative feedback is provided to the gate side of the FET. This makes it possible to suppress commercial frequency disturbances.

[効果〕 上述の如く構成したため、手動操作される可変抵抗はセ
ンサ部から離れた位置に設けることができ、従ってセン
サを測定箇所に取り付けた後でも容易にリモートコント
ロールにより、位相差を制御することが可能となる。
[Effect] With the configuration as described above, the manually operated variable resistor can be installed at a location away from the sensor section, and therefore the phase difference can be easily controlled by remote control even after the sensor is attached to the measurement location. becomes possible.

又本発明ではわずかな数の部品で位相制御を確実に行え
るので構成が簡単で安価であると共に、FETのゲート
に接続される部品数が少ないことから、全体の温度特性
を損なうことなく安定した装置を提供できるものである
In addition, since the present invention can reliably perform phase control with a small number of parts, the configuration is simple and inexpensive, and since the number of parts connected to the gate of the FET is small, it can be stabilized without impairing the overall temperature characteristics. equipment can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の詳細な説明する回路図、第5
図〜第7図は従来の装置を示す回路図である。 C3・・・検出用コンデンサ C2・・・比較用コンデンサ C3・・・コンデンサ R1、R2、R3・・・抵抗 20・・・可変抵抗 22・・・ケーブル 40・・・パルス発生回路 Ec・・・直流電源。
1 to 4 are circuit diagrams explaining the present invention in detail;
7 are circuit diagrams showing conventional devices. C3...Detection capacitor C2...Comparison capacitor C3...Capacitors R1, R2, R3...Resistor 20...Variable resistor 22...Cable 40...Pulse generating circuit Ec... DC power supply.

Claims (4)

【特許請求の範囲】[Claims] (1)パルス発生器に直列に接続された第1の抵抗と第
1のコンデンサの直列回路と、該第1の抵抗と該第1の
コンデンサの接続点にゲートが接続されたFETを有す
るパルス伝送回路において、該接続点に一端が接続され
た第2の抵抗と、該第2の抵抗の他端に接続された接地
コンデンサと、直流電源に接続されて該第2の抵抗の他
端に与える直流電圧を調整可能とした可変抵抗とからな
ることを特徴とするパルス位相調整回路。
(1) A pulse generator having a series circuit of a first resistor and a first capacitor connected in series to a pulse generator, and an FET whose gate is connected to a connection point between the first resistor and the first capacitor. In the transmission circuit, a second resistor having one end connected to the connection point, a grounding capacitor connected to the other end of the second resistor, and a grounding capacitor connected to the DC power source and having the other end of the second resistor connected to the second resistor. A pulse phase adjustment circuit comprising a variable resistor that can adjust the applied DC voltage.
(2)該第1のコンデンサが静電容量検出センサであり
、該可変抵抗が該センサから離れた位置に配されたこと
を特徴とする特許請求の範囲第1項記載のパルス位相調
整回路。
(2) The pulse phase adjustment circuit according to claim 1, wherein the first capacitor is a capacitance detection sensor, and the variable resistor is arranged at a position apart from the sensor.
(3)該FETがFET入力型CMOS ICであるこ
とを特徴とする特許請求の範囲第1項記載のパルス位相
調整回路。
(3) The pulse phase adjustment circuit according to claim 1, wherein the FET is a FET input type CMOS IC.
(4)該FETのソースに接続されたバンドパスフィル
タと該バンドパスフィルタの出力に接続された極性反転
回路と、該極性反転回路の出力に接続されたコンデンサ
とからなる負帰還回路を設け、該第2の抵抗を直列に接
続された2個の抵抗で構成し、その接続点に該コンデン
サを接続したことを特徴とする特許請求の範囲第1項記
載のパルス位相調整回路。
(4) providing a negative feedback circuit consisting of a bandpass filter connected to the source of the FET, a polarity inversion circuit connected to the output of the bandpass filter, and a capacitor connected to the output of the polarity inversion circuit; 2. The pulse phase adjustment circuit according to claim 1, wherein the second resistor is composed of two resistors connected in series, and the capacitor is connected to a connection point between the second resistors.
JP61201130A 1984-07-18 1986-08-27 Pulse phase adjusting circuit Pending JPS6359019A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61201130A JPS6359019A (en) 1986-08-27 1986-08-27 Pulse phase adjusting circuit
US07/011,509 US4789822A (en) 1984-07-18 1987-02-06 Three-electrode sensor for phase comparison and pulse phase adjusting circuit for use with the sensor
EP91115089A EP0469634A1 (en) 1986-08-27 1987-02-13 Pulse phase adjusting circuit for use with an electrostatic capacitor type sensor
EP87301264A EP0257724A3 (en) 1986-08-27 1987-02-13 Three-electrode sensor for phase comparison and pulse phase adjusting circuit for use with the sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201130A JPS6359019A (en) 1986-08-27 1986-08-27 Pulse phase adjusting circuit

Publications (1)

Publication Number Publication Date
JPS6359019A true JPS6359019A (en) 1988-03-14

Family

ID=16435905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201130A Pending JPS6359019A (en) 1984-07-18 1986-08-27 Pulse phase adjusting circuit

Country Status (1)

Country Link
JP (1) JPS6359019A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977564A (en) * 1972-11-27 1974-07-26
JPS5748121U (en) * 1980-09-05 1982-03-17

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4977564A (en) * 1972-11-27 1974-07-26
JPS5748121U (en) * 1980-09-05 1982-03-17

Similar Documents

Publication Publication Date Title
US6756790B2 (en) Impedance detection circuit, impedance detection device, and impedance detection method
US4853639A (en) Non-contacting voltage metering apparatus
JP2001358533A (en) Interference cancellation circuit
JP4488400B2 (en) Impedance detection circuit
JPH0797009B2 (en) Inductance type displacement sensor
KR0138902B1 (en) Circuit element measuring apparatus
JPH0549953B2 (en)
EP0706663B1 (en) Electrical test instrument
JPS6359019A (en) Pulse phase adjusting circuit
US4022990A (en) Technique and apparatus for measuring the value of a capacitance in an electrical circuit such as a telephone communication line
JP2001324520A (en) Impedance detection circuit, impedance detection device, and impedance detection method
GB1431221A (en) Apparatus for measuring the characteristic resonance frequency of an electric element
JP2954449B2 (en) Capacitance measuring circuit and LCR meter having the same
WO1998007051A1 (en) Phase shift detection and measurement circuit for capacitive sensor
GB2155223A (en) A circuit
KR890000901Y1 (en) Phase detection circuit of nucleus magnetic resonance desclosation photographing instrument
JPS6156979A (en) Insulation measurement of power cable
SU991331A2 (en) Small capacity increment resonance meter
SU1147930A1 (en) Device for measuring vibration amplitude
JP2001188074A (en) Impedance measuring method and device
SU744368A1 (en) Effective-resistance meter
JP2671343B2 (en) Capacity measuring device
SU1597548A1 (en) Pickup of object angle of slope
SU370512A1 (en) DEVICE FOR MEASURING MOISTURE
KR930008062Y1 (en) Crosstalk testing circuit