JPS6358768B2 - - Google Patents

Info

Publication number
JPS6358768B2
JPS6358768B2 JP57137919A JP13791982A JPS6358768B2 JP S6358768 B2 JPS6358768 B2 JP S6358768B2 JP 57137919 A JP57137919 A JP 57137919A JP 13791982 A JP13791982 A JP 13791982A JP S6358768 B2 JPS6358768 B2 JP S6358768B2
Authority
JP
Japan
Prior art keywords
carbon
magnesium
mixture
boron
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57137919A
Other languages
Japanese (ja)
Other versions
JPS5930710A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57137919A priority Critical patent/JPS5930710A/en
Publication of JPS5930710A publication Critical patent/JPS5930710A/en
Publication of JPS6358768B2 publication Critical patent/JPS6358768B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、ホウ酸、酸化ホウ素、またはそれら
の混合物をマグネシウムまたはカルシウムと炭素
で還元炭化してホウ素炭化物を製造する方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a method for producing boron carbide by reducing and carbonizing boric acid, boron oxide, or a mixture thereof with magnesium or calcium and carbon.

本発明者等は先にホウ酸、酸化ホウ素、または
それらの混合物を、マグネシウム、カルシウムま
たはそれらの混合物および炭素もしくは炭素源物
質を用いて還元炭化し、ホウ素炭化物を得る方法
において、出発原料混合物を予熱処理し、予熱処
理ずみ原料混合物の粉末、あるいはその圧粉体を
700〜1200℃で反応させた後、その段階で生成し
た酸化マグネシウムまたは酸化カルシウムを除去
し、その酸化マグネシウムまたは酸化カルシウム
を除去した中間反応混合物を1300〜2000℃に加熱
して炭化反応を完結させることを特徴とする高純
度ホウ素炭化物粉末の製造方法を提供した(特願
昭56−034613号、特開昭57−175717号)。
The present inventors previously developed a method in which boric acid, boron oxide, or a mixture thereof is reduced and carbonized using magnesium, calcium, or a mixture thereof, and carbon or a carbon source substance to obtain a boron carbide. Preheat the powder of the preheated raw material mixture or its green compact.
After reacting at 700-1200℃, remove the magnesium oxide or calcium oxide produced at that stage, and heat the intermediate reaction mixture from which magnesium oxide or calcium oxide has been removed to 1300-2000℃ to complete the carbonization reaction. A method for producing high-purity boron carbide powder is provided (Japanese Patent Application No. 56-034613, JP-A-57-175717).

当該発明では炭素源物質として、黒鉛粉末、コ
ークス粉末、カーボンブラツク、糖類、またはそ
れらの混合物が使用され、この方法では最高84.5
%のホウ素収率で高純度ホウ素炭化物が得られ
る。
In the invention, graphite powder, coke powder, carbon black, sugars or mixtures thereof are used as carbon source materials, and in this method up to 84.5
High-purity boron carbide can be obtained with a boron yield of 1.5%.

ここにいうホウ素収率は、 Y:ホウ素収率(%) B1:生成したホウ素炭化物粉末の重量×該粉
末のホウ素含有率 B2:原料として使用したホウ酸または酸化ホ
ウ素の重量×該化合物のホウ素含有率 として、 Y=B1/B2×100 で定義されたものである。
The boron yield referred to here is: Y: Boron yield (%) B 1 : Weight of the boron carbide powder produced x boron content of the powder B 2 : Weight of boric acid or boron oxide used as a raw material x the compound The boron content is defined as follows: Y=B 1 /B 2 ×100.

本発明者等はこの方法を追試したが、ホウ素収
率は80〜85%に止まり、場合によつて生成物中に
遊離炭素が認められる等の幾つかの不満な点があ
り、種々の観点から再検討したが、炭素源物質に
ついては次のような知見を得た。
The present inventors tried this method again, but the boron yield remained at 80-85%, and there were some unsatisfactory points such as free carbon being observed in the product in some cases. The following findings were obtained regarding carbon source materials.

(1) 人造黒鉛、石油コークス粉末、ピツチコーク
ス粉末、カーボンブラツク粉末については粒径
1μm未満のものは浮遊しやすいため、還元反応
時に反応系外に逃散し、結果的にホウ素収率の
低下と生成物組成の化学量論比からのずれを来
たす。
(1) Particle size for artificial graphite, petroleum coke powder, pitch coke powder, and carbon black powder
Since particles smaller than 1 μm tend to float, they escape out of the reaction system during the reduction reaction, resulting in a decrease in boron yield and deviation of the product composition from the stoichiometric ratio.

(2) 同じく、粒径が50μm以上であると、炭化処
理中、炭化反応の完結以前に、中間生成物であ
るホウ化マグネシウムが揮発逃散し、やはり、
ホウ素収率の低下と未反応炭素の残留を来た
す。
(2) Similarly, if the particle size is 50 μm or more, the intermediate product magnesium boride will volatilize and escape during the carbonization process, before the carbonization reaction is completed.
This results in a decrease in boron yield and residual unreacted carbon.

(3) サツカロース等の糖類粉末では還元反応開始
温度(700℃弱)では糖類自身が完全に炭化し
切らないため、%オーダーの水素と酸素が残留
している。これらは還元反応に伴う急激な温度
上昇によつて急速に気化し反応物の多大の機械
的な飛散を来たし、高いホウ素収率を得にく
い。
(3) In saccharide powders such as satucarose, the saccharides themselves are not completely carbonized at the reduction reaction initiation temperature (a little less than 700°C), so hydrogen and oxygen on the order of % remain. These rapidly vaporize due to the rapid temperature rise associated with the reduction reaction, causing a large amount of mechanical scattering of reactants, making it difficult to obtain a high boron yield.

(4) 1〜50μmの粒径の人造黒鉛、石油コークス、
ピツチコークスについて比較した結果、機械的
な飛散の程度は、人造黒鉛<ピツチコークス<
石油コークスであるか、飛散物を可能な限り回
収して、ホウ素収率の比較を行つたところ、人
造黒鉛<ピツチコークス・石油コークスであつ
た。
(4) Artificial graphite with a particle size of 1 to 50 μm, petroleum coke,
As a result of comparing pitch coke, the degree of mechanical scattering was found to be higher than that of artificial graphite < pitch coke <
When we collected as much of the scattered matter as possible and compared the boron yields, we found that it was petroleum coke, or artificial graphite was less than pitch coke or petroleum coke.

一般的に化学反応性は黒鉛よりもコークス等の
無定形炭素の方が大きく、ホウ素収率に関する傾
向は常識的に肯定できるものである。一方、飛散
の原因は、種々のコークス粉末を用いて比較した
結果、炭素の構造に由来する化学的な活性による
のではなく、コークスに含有されている揮発性不
純物によるものであることが明らかとなつた。す
なわち、揮発性不純物は還元反応に伴う発熱によ
つて急激に気化し、機械的飛散を助長する。さら
に、還元反応開始時の挙動を観察した結果、揮発
性成分が存在する場合は、発熱に伴う反応物の温
度上昇が急激であり、反応速度を加速する触媒作
用の存在も推定される。この過大な温度の上昇は
機械的分散による反応物質の接触不良と未反応の
酸化ホウ素、マグネシウムの蒸発を加速する。
Generally, the chemical reactivity of amorphous carbon such as coke is greater than that of graphite, and the tendency regarding boron yield can be confirmed with common sense. On the other hand, as a result of comparing various coke powders, it has become clear that the cause of scattering is not due to chemical activity derived from the carbon structure, but rather due to volatile impurities contained in the coke. Summer. That is, volatile impurities are rapidly vaporized by the heat generated by the reduction reaction, promoting mechanical scattering. Furthermore, as a result of observing the behavior at the start of the reduction reaction, when a volatile component is present, the temperature of the reactant increases rapidly due to heat generation, and it is assumed that there is a catalytic action that accelerates the reaction rate. This excessive temperature increase causes poor contact between reactants due to mechanical dispersion and accelerates evaporation of unreacted boron oxide and magnesium.

以上の得られた知見に基づき、50μm未満の無
定形炭素粉末について種々の条件で揮発性不純物
の除去を行い良い結果を得ることができた。
Based on the knowledge obtained above, we were able to remove volatile impurities from amorphous carbon powder of less than 50 μm under various conditions and obtained good results.

即ち、本発明によれば、ホウ酸、酸化ホウ素、
またはそれらの混合物を、マグネシウム、カルシ
ウムまたはそれらの混合物および炭素もしくは炭
素源物質を用いて還元炭化し、ホウ素炭化物を得
る方法であつて、出発原料混合物を予熱処理し、
予熱処理ずみ原料混合物の粉末、あるいはその圧
粉体を700〜1200℃で反応させた後、その段階で
生成した酸化マグネシウムまたは酸化カルシウム
を除去し、その酸化マグネシウムまたは酸化カル
シウムを除去した中間反応混合物を1300〜2000℃
に加熱して炭化反応を完結させることからなるホ
ウ素炭化物粉末の製造方法において:炭素源物質
として、揮発性不純物を除去した、粒径50μm以
下の無定形炭素を使用することを特徴とする方法
が提供される。
That is, according to the present invention, boric acid, boron oxide,
or a method of reducing and carbonizing a mixture thereof using magnesium, calcium or a mixture thereof and carbon or a carbon source substance to obtain a boron carbide, the method comprising: preheating a starting material mixture;
An intermediate reaction mixture obtained by reacting a preheated raw material mixture powder or its green compact at 700 to 1200°C, then removing the magnesium oxide or calcium oxide produced at that stage, and removing the magnesium oxide or calcium oxide. 1300~2000℃
A method for producing boron carbide powder comprising heating to complete a carbonization reaction: a method characterized in that amorphous carbon with a particle size of 50 μm or less from which volatile impurities have been removed is used as a carbon source material. provided.

本発明において無定形炭素とは、黒鉛結晶にお
ける六方晶(002)炭素六角環平面の相互間隔が
3.34Å前後であるようなものであれば、何でも良
いと考えられるが、具体的には、天然および合成
樹脂、セルロース、糖類の炭化物;石油コークス
あるいはピツチ・コークスを用いることができ
る。ブラツクの類は結晶学的には無定形炭素であ
るが、一般に粒径が1μmよりはるかに小さいため
好ましくない。好ましくは、コスト、入手性の観
点から石油コークス又はピツチ・コークスであ
る。
In the present invention, amorphous carbon refers to hexagonal (002) carbon in which the distance between the hexagonal ring planes in the graphite crystal is
Any material with a thickness of around 3.34 Å may be used, but specifically, natural or synthetic resins, cellulose, carbides of sugars; petroleum coke or pitch coke can be used. Although black carbon is crystallographically amorphous carbon, it is generally undesirable because its particle size is much smaller than 1 μm. Petroleum coke or pitch coke is preferred from the viewpoint of cost and availability.

本発明において揮発性不純物除去の好ましい方
法は、不活性雰囲気、還元性雰囲気、または真空
中の熱処理であり、その温度は700〜1800℃、左
記温度における保持時間は30分以上である。
In the present invention, a preferred method for removing volatile impurities is heat treatment in an inert atmosphere, a reducing atmosphere, or a vacuum, at a temperature of 700 to 1800°C, and a holding time at the above temperature for 30 minutes or more.

不活性雰囲気はN2,Ar等の雰囲気であり、還
元性雰囲気は通常H2によつて形成される。
The inert atmosphere is an atmosphere such as N2 , Ar, etc., and the reducing atmosphere is usually formed by H2 .

本発明の方法を具体的に記すと、 まず無定形炭素を粒径50μm以下に調整する。
50μmを越えると、炭化反応時に炭化反応よりも
マグネシウムホウ化物(中間生成物)の揮発が速
く、未反応残留コークスが遊離炭素として生成物
中に含有されると同時に、ホウ素収率低下の一固
となる。粒径が1μm未満になると粒子自身の浮遊
性が著しく、還元反応時の昇温に伴うマグネシウ
ムあるいは酸化ホウ素等の揮発の際に揮発ガスに
乗つて炭素源物質自身が反応系外に飛散して、ホ
ウ素収率の低下と生成物組成の変動を来たす。
Specifically describing the method of the present invention, first, amorphous carbon is adjusted to a particle size of 50 μm or less.
If it exceeds 50 μm, magnesium boride (intermediate product) will volatilize faster than the carbonization reaction during the carbonization reaction, and unreacted residual coke will be contained in the product as free carbon, and at the same time, the boron yield will decrease. becomes. When the particle size is less than 1 μm, the particles themselves become extremely buoyant, and when magnesium or boron oxide, etc. volatilize as the temperature rises during the reduction reaction, the carbon source substance itself is scattered out of the reaction system by riding on the volatile gas. , resulting in decreased boron yield and fluctuations in product composition.

従つて炭素源物質は粒径1μm以上であることが
望ましいが、粉砕に際して生ずる1μm未満の粒子
を徹底的に除去する手間をかけるよりは、簡便な
除去法にかけた後、1μm未満の粒子も適宜混入し
たまま使用するのが実際的である。この場合には
飛散損失を考慮して仕込量を多くしておく。
Therefore, it is desirable that the carbon source material has a particle size of 1 μm or more, but rather than taking the trouble of thoroughly removing particles smaller than 1 μm that are generated during pulverization, particles smaller than 1 μm can be removed as appropriate after a simple removal method. It is practical to use it as it is mixed. In this case, the amount of preparation should be increased in consideration of scattering loss.

原料混合前に、不活性、還元性、または真空雰
囲気中で好ましくは700〜1800℃で30分間以上加
熱処理する。この際炭素は空気中約500℃以上で
酸化されるため酸化性雰囲気は除外される。揮発
性不純物除去の観点からはH2等を用いる還元性
雰囲気または真空中の方が好ましいが、コストか
らみてN2等を用いる不活性雰囲気が有利であり、
かつ充分な効果が得られる。温度が700℃以下で
は揮発性不純物の充分な除去効果が得られず、ま
た1800℃以上では炭素の黒鉛化が始まり、化学反
応性が低下する。コスト的な面も考慮すれば800
〜1000℃が好ましい範囲である。
Before mixing the raw materials, heat treatment is performed in an inert, reducing, or vacuum atmosphere, preferably at 700 to 1800°C for 30 minutes or more. At this time, since carbon is oxidized in air at temperatures above about 500°C, an oxidizing atmosphere is excluded. From the viewpoint of removing volatile impurities, a reducing atmosphere using H 2 etc. or in a vacuum is preferable, but from the viewpoint of cost, an inert atmosphere using N 2 etc. is advantageous.
And a sufficient effect can be obtained. If the temperature is below 700°C, sufficient removal effect of volatile impurities cannot be obtained, and if the temperature is above 1800°C, graphitization of carbon begins and chemical reactivity decreases. 800 considering the cost aspect.
The preferred range is ~1000°C.

加熱時間は蒸発性不純物の含有量、コークス粒
子表面の細孔状態、昇温速度、加熱温度等の条件
によつて当然、最少所要時間は変化するが、通常
入手できるピツチコークス、石油コークスを粉
砕、分級して粒度調整を行つたものについては、 ● N2雰囲気中(流量1/min)min ● 昇温速度150〜300℃/hr ● 保持温度800〜1000℃ の条件で、保持時間30分間で充分である。
Naturally, the minimum heating time will vary depending on conditions such as the content of evaporable impurities, pore conditions on the surface of coke particles, heating rate, heating temperature, etc., but the minimum heating time required will vary depending on conditions such as the content of evaporable impurities, the state of pores on the surface of coke particles, the rate of heating, and the heating temperature. For particles whose particle size has been adjusted by classification: ● In N2 atmosphere (flow rate 1/min) min ● Temperature increase rate 150 to 300℃/hr ● Holding temperature 800 to 1000℃, holding time 30 minutes That's enough.

高いホウ素収率を得るためには、揮発性不純物
を含まない無定形炭素であつて、粒径が50μm以
下のものであれば良い訳であるから、このような
性質を持つ粉末を新たに製造しても同一の結果を
期待することができる。
In order to obtain a high boron yield, it is sufficient to use amorphous carbon that does not contain volatile impurities and has a particle size of 50 μm or less, so it is necessary to newly manufacture powder with these properties. You can expect the same results even if you do it.

実施例 1 Γ 無定形炭素の調製: 市販の粒状ピツチコークスをステンレス鋼製回
転ボールミルで粉砕し、さらに325メツシユふる
いを用いるふるい分級と空気分級によつて、粒径
を1〜44μmに調製した。これを黒鉛るつぼに入
れ電気炉に挿入し、N2ガス置換した後、1/
minのN2ガス気流中で、昇温速度185℃/hrで昇
温し、850℃で60分間の熱処理を施すことにより
揮発性不純物を除去した。
Example 1 Preparation of Γ amorphous carbon: Commercially available granular pitch coke was ground in a stainless steel rotary ball mill, and the particle size was adjusted to 1 to 44 μm by sieve classification using a 325 mesh sieve and air classification. This was placed in a graphite crucible, inserted into an electric furnace, replaced with N2 gas, and then
Volatile impurities were removed by increasing the temperature at a temperature increase rate of 185°C/hr in a N 2 gas stream of min., and performing heat treatment at 850°C for 60 minutes.

Γ 炭化ホウ素の合成: 原料としてホウ酸(粒径50〜300μm),上記に
より調製した無定形炭素、マグネシウム(粒径
100〜200μm)を用い、モル混合比H3BO3:C:
Mg=4:1:6.5の割合で混合したもの1040g
を、500Kgw/cm2の圧力で圧粉体(40φ×40Hmm
に成形)とし、これを真空中500℃で60分間加熱
して脱水した。次にこの混合物をアルゴン雰囲気
中で1040℃で90分間加熱し、冷却後、生成物を
10vol%塩酸を用いて80℃にて3時間浸出し、
過、水洗、乾燥した。
Synthesis of Γ boron carbide: Boric acid (particle size 50 to 300 μm) as raw materials, amorphous carbon prepared as above, magnesium (particle size
100 to 200 μm), and the molar mixing ratio H 3 BO 3 :C:
1040g of Mg mixed at a ratio of 4:1:6.5
The powder compact (40φ×40Hmm
This was heated in vacuum at 500°C for 60 minutes to dehydrate it. This mixture was then heated at 1040 °C for 90 min in an argon atmosphere, and after cooling, the product was
Leaching with 10vol% hydrochloric acid at 80℃ for 3 hours,
filtered, washed with water, and dried.

さらにこれを1000Kgw/cm2の圧力で圧粉体(35
×12×10mm)とし、アルゴン雰囲気中1800℃にて
60分間保持した。得られた生成物はホウ素77.8重
量%、炭素21.9重量%を含有し、X線回折の結
果、遊離炭素は全く認められず純粋な炭化ホウ素
であることが明らかにされた。不純物はFe:0.1
重量%、Mg0.09重量%が主なのものであり、平
均粒径は5μmであつた。生成炭化ホウ素粉末の重
量は126.0gであり、これはホウ素収率90.9%に
相当する。
Furthermore, this is applied to a compacted powder (35
× 12 × 10 mm) at 1800℃ in an argon atmosphere.
Hold for 60 minutes. The resulting product contained 77.8% by weight of boron and 21.9% by weight of carbon, and X-ray diffraction revealed that no free carbon was observed and it was pure boron carbide. Impurity is Fe: 0.1
The main content was 0.09% by weight, and the average particle size was 5 μm. The weight of the boron carbide powder produced was 126.0 g, corresponding to a boron yield of 90.9%.

実施例 2 市販の石油コークスを実施例1と同様の前処理
に付した。但し、保持温度は1200℃、保持時間は
30分とした。これを原料とし、実施例1と全く同
一条件で炭化ホウ素粉末を試作した。処理した原
料圧粉体量は1080gであり、得られた炭化ホウ素
粉末重量は128.3gであつた。分析結果によれば、
ホウ素77.6重量%、炭素22.0重量%を含有し、こ
れは、ホウ素収率89.0%に相当する。またX線回
折によれば遊離炭素は全く認められなかつた。
Example 2 Commercially available petroleum coke was subjected to the same pretreatment as in Example 1. However, the holding temperature is 1200℃ and the holding time is
It was set as 30 minutes. Using this as a raw material, a boron carbide powder was experimentally produced under exactly the same conditions as in Example 1. The amount of processed raw material compact was 1080 g, and the weight of the obtained boron carbide powder was 128.3 g. According to the analysis results,
It contains 77.6% by weight of boron and 22.0% by weight of carbon, which corresponds to a boron yield of 89.0%. Furthermore, no free carbon was observed by X-ray diffraction.

比較例 1 実施例1において熱処理のみを省略して同一の
条件で試験を実施したところ、生成粉末量は
119.5gに低下し、ホウ素含有率76.7重量%、炭
素含有率23.2重量%であつた。これはホウ素収率
85.1%に相当するものである。
Comparative Example 1 When a test was conducted under the same conditions as in Example 1 except that only the heat treatment was omitted, the amount of powder produced was
The amount decreased to 119.5 g, with a boron content of 76.7% by weight and a carbon content of 23.2% by weight. This is the boron yield
This corresponds to 85.1%.

実施例 3 炭素源物質として、塩化ビニルを炭化し、粉
砕、分級したものを用いた。塩化ビニル500gを
黒鉛るつぼに入れ、アルゴン気流中で1400℃に加
熱し、3時間保持した。昇温速度は20℃/hrとし
た。加熱終了後、室温まで放冷し、るつぼから取
出し、回転式ボールミルを用いて粉砕し、ふるい
分級と空気分級によつて粒径を1〜44μmに調整
した。このようにして得られた無定形炭素粉末
120gを実施例1と同様の熱処理に付した。
Example 3 As a carbon source material, vinyl chloride was carbonized, pulverized, and classified. 500 g of vinyl chloride was placed in a graphite crucible, heated to 1400°C in an argon stream, and held for 3 hours. The temperature increase rate was 20°C/hr. After heating, the mixture was allowed to cool to room temperature, taken out from the crucible, pulverized using a rotary ball mill, and the particle size was adjusted to 1 to 44 μm by sieve classification and air classification. Amorphous carbon powder obtained in this way
120 g was subjected to the same heat treatment as in Example 1.

そののち、実施例1と同一条件で、ホウ酸、マ
グネシウムとの混合から炭化までを行つた。但
し、処理した原料圧粉体の総重量は1210gであつ
た。
Thereafter, under the same conditions as in Example 1, everything from mixing with boric acid and magnesium to carbonization was carried out. However, the total weight of the treated raw powder compact was 1210 g.

得られた生成物は、ホウ素78.1重量%、炭素
21.5重量%を含有し、X線回折結果によれば遊離
炭素を含まない純粋な炭化ホウ素であつた。生成
物の重量は、144.9gであり、これはホウ素収率
90.3%に相当する。
The resulting product contains 78.1% by weight of boron, carbon
According to the X-ray diffraction results, it was pure boron carbide containing no free carbon. The weight of the product is 144.9g, which is the boron yield.
This corresponds to 90.3%.

比較例 2 炭素源物質として、粒径0.02〜0.2μmの無定形
炭素であるアセチレンブラツクを用い、実施例1
と同一の条件で炭化ホウ素粉末を試作した。但
し、仕込み圧粉体重量は875g、生成粉末量は
78.4gであり、組成は、ホウ素79.1重量%、炭素
20.7重量%であつた。これはホウ素収率68.4%に
相当する。また、還元処理後、還元炉炉心管、排
ガス系配管内にかなりのススが付着しているのが
観察された。
Comparative Example 2 Using acetylene black, which is amorphous carbon with a particle size of 0.02 to 0.2 μm, as the carbon source material, Example 1
A sample of boron carbide powder was produced under the same conditions as above. However, the weight of the charged powder is 875g, and the amount of powder produced is
The weight is 78.4g, and the composition is 79.1% by weight of boron and carbon.
It was 20.7% by weight. This corresponds to a boron yield of 68.4%. In addition, after the reduction treatment, a considerable amount of soot was observed adhering to the reduction furnace core tube and exhaust gas system piping.

比較例 3 炭素源物質として、実施例1においてふるい分
級時にふるい上に残つた粉末を熱処理したものを
用いた。熱処理条件は昇温速度300℃/hr、保持
温度1500℃、保持時間30分間、Ar雰囲気(Ar流
量1/min)とした。この粉末の粒径分布は、
44〜105μmであつた。これを用い、実施例1と同
一条件で1120gの圧粉体を処理したところ、
133.1gの粉末を得た。しかし、組成は、ホウ素
含有率76.0重量%、炭素含有率23.6重量%であ
り、X線回折の結果、パーセントオーダーと推定
される遊離炭素の回折ピーク(d値351Å)が認
められた。
Comparative Example 3 As a carbon source material, the powder remaining on the sieve during the sieve classification in Example 1 was heat-treated. The heat treatment conditions were a temperature increase rate of 300°C/hr, a holding temperature of 1500°C, a holding time of 30 minutes, and an Ar atmosphere (Ar flow rate of 1/min). The particle size distribution of this powder is
It was 44 to 105 μm. Using this, 1120 g of green compact was treated under the same conditions as in Example 1, and the results were as follows:
133.1g of powder was obtained. However, the composition was 76.0% by weight of boron and 23.6% by weight of carbon, and as a result of X-ray diffraction, a diffraction peak of free carbon (d value of 351 Å) estimated to be on the order of percent was observed.

本発明の効果を列挙すると、 (1) 従来法、すなわち、特願昭56−34613(特願昭
57− )の方法の実施において、ホ
ウ素収率を高め、かつ遊離炭素を全く含有ない
ホウ素炭化物を得るための条件を、炭素源物質
の性状について研究した結果、その具備すべき
条件を明確にした。
To enumerate the effects of the present invention, (1) Conventional method, that is, Japanese Patent Application No. 56-34613 (Japanese Patent Application No. 34613)
As a result of research on the properties of carbon source materials, we clarified the conditions that should be met in order to increase the boron yield and obtain boron carbide containing no free carbon in implementing the method of 57-). .

(2) ホウ素収率はこれまで上記法で得られていた
最高84.5%から、89〜91%に安定的に向上し
た。
(2) The boron yield has stably improved from the maximum of 84.5% obtained by the above method to 89-91%.

(3) 還元反応もよりおだやかなものとなるため、
還元炉室内圧の上昇より小さくなり、また飛散
物に対する緩衝空間もより小さいもので済せる
ことが可能となつた。
(3) Since the reduction reaction is also more gentle,
This is smaller than the increase in the internal pressure of the reduction furnace, and it is now possible to use a smaller buffer space for flying debris.

Claims (1)

【特許請求の範囲】 1 ホウ酸、酸化ホウ素、またはそれらの混合物
を、マグネシウム、カルシウムまたはそれらの混
合物および炭素もしくは炭素源物質を用いて還元
炭化し、ホウ素炭化物を得る方法であつて、出発
原料混合物を予熱処理し、予熱処理ずみ原料混合
物の粉末、あるいはその圧粉体を700〜1200℃で
反応させた後、その段階で生成した酸化マグネシ
ウムまたは酸化カルシウムを除去し、その酸化マ
グネシウムまたは酸化カルシウムを除去した中間
反応混合物を1300〜2000℃に加熱して炭化反応を
完結させることからなるホウ素炭化物粉末の製造
方法において:炭素源物質として、揮発性不純物
を除去した、粒径50μm以下の無定形炭素を使用
することを特徴とする方法。 2 特許請求の範囲第1項記載の方法であつて、
酸化マグネシウムまたは酸化カルシウムを酸溶解
によつて除去することを特徴とする方法。 3 特許請求の範囲第1ないし2項のいずれかの
項に記載の方法であつて、原料混合粉末、あるい
はその圧粉体を1000〜1200℃にて15〜90分間保持
した後、生成した酸化マグネシウムまたは酸化カ
ルシウムを除去することを特徴とする方法。 4 特許請求の範囲第1ないし3項記載の何れか
の方法であつて、中間反応混合物を1700〜1900℃
で10―60分間加熱して炭化反応を完結させること
を特徴とする方法。 5 特許請求の範囲第1ないし4項記載のいずれ
かの方法であつて炭素源の添加量を反応当量の85
〜100%、マグネシウムまたはカルシウムの添加
量を反応当量の100〜140%とすることを特徴とす
る方法。 6 特許請求の範囲第5項記載の方法であつて炭
素源の添加量を反応当量の95〜100%とし、マグ
ネシウムまたはカルシウムの添加量を反応当量の
105〜110%とすることを特徴とする方法。 7 特許請求の範囲第1ないし6項のいずれかの
項に記載の方法であつて、還元性雰囲気、不活性
雰囲気、また真空中で、700〜1800℃で30分間以
上の熱処理を施すことにより、揮発性不純物を除
去することを特徴とする方法。 8 特許請求の範囲第1ないし7項のいずれかの
項に記載の方法であつて粒径1μm以上の無定形炭
素を使用することを特徴とする方法。
[Claims] 1. A method for obtaining boron carbide by reducing and carbonizing boric acid, boron oxide, or a mixture thereof using magnesium, calcium, or a mixture thereof, and carbon or a carbon source substance, the method comprising: starting material; After preheating the mixture and reacting the preheated raw material mixture powder or green compact at 700 to 1200°C, the magnesium oxide or calcium oxide produced at that stage is removed, and the magnesium oxide or calcium oxide is In the method for producing boron carbide powder, which comprises heating an intermediate reaction mixture from which the A method characterized in that carbon is used. 2. The method according to claim 1, comprising:
A method characterized in that magnesium oxide or calcium oxide is removed by acid dissolution. 3. The method according to any one of claims 1 to 2, wherein the raw material mixed powder or its green compact is held at 1000 to 1200°C for 15 to 90 minutes, and then the generated oxidation A method characterized by removing magnesium or calcium oxide. 4. Any method according to claims 1 to 3, wherein the intermediate reaction mixture is heated at 1700 to 1900°C.
A method characterized by heating for 10 to 60 minutes to complete the carbonization reaction. 5. A method according to any one of claims 1 to 4, in which the amount of carbon source added is 85% of the reaction equivalent.
100%, and the amount of magnesium or calcium added is 100 to 140% of the reaction equivalent. 6. The method according to claim 5, in which the amount of carbon source added is 95 to 100% of the reaction equivalent, and the amount of magnesium or calcium added is 95 to 100% of the reaction equivalent.
105-110%. 7. The method according to any one of claims 1 to 6, which includes heat treatment at 700 to 1800°C for 30 minutes or more in a reducing atmosphere, inert atmosphere, or vacuum. , a method characterized in that volatile impurities are removed. 8. The method according to any one of claims 1 to 7, characterized in that amorphous carbon having a particle size of 1 μm or more is used.
JP57137919A 1982-08-10 1982-08-10 Manufacture of high purity boron carbide powder Granted JPS5930710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57137919A JPS5930710A (en) 1982-08-10 1982-08-10 Manufacture of high purity boron carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57137919A JPS5930710A (en) 1982-08-10 1982-08-10 Manufacture of high purity boron carbide powder

Publications (2)

Publication Number Publication Date
JPS5930710A JPS5930710A (en) 1984-02-18
JPS6358768B2 true JPS6358768B2 (en) 1988-11-16

Family

ID=15209746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57137919A Granted JPS5930710A (en) 1982-08-10 1982-08-10 Manufacture of high purity boron carbide powder

Country Status (1)

Country Link
JP (1) JPS5930710A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804525A (en) * 1986-04-14 1989-02-14 The Dow Chemical Company Producing boron carbide
DE3642841A1 (en) * 1986-12-16 1988-06-30 Kernforschungsz Karlsruhe METHOD FOR REPROCESSING BORCARBIDE IRRADIATED WITH NEUTRONS FROM TRIMMING OR SHUT-OFF ELEMENTS FROM NUCLEAR REACTORS

Also Published As

Publication number Publication date
JPS5930710A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
US8048822B2 (en) Method for making silicon-containing products
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JP2610868B2 (en) Powder for producing ceramics of metal carbides and nitrides by thermal carbon reduction and method for producing the same
Van Dijen et al. The chemistry of the carbothermal synthesis of β-SiC: Reaction mechanism, reaction rate and grain growth
WO2014061899A1 (en) Silicon carbide powder, and preparation method therefor
JPS60221365A (en) Manufacture of high strength silicon carbide sintered body
JPS60176910A (en) Production of aluminum nitride powder
JPS6358768B2 (en)
JPS58120599A (en) Production of beta-silicon carbide whisker
KR101549477B1 (en) Manufacturing Method of High Purity SiC Powder
JPS6227316A (en) Production of fine power of high purity silicon carbide
JPH0662286B2 (en) Method for producing silicon carbide
JP2013510796A (en) Method for producing silicon
JP3154773B2 (en) Method for producing particulate silicon carbide
JPH062565B2 (en) Method for producing silicon carbide
US2984577A (en) Process for the production of boron phosphide
JPH07216474A (en) Production of high purity metallic chromium
JPS59190208A (en) Preparation of ultrafine silicon carbide powder
JPS6358767B2 (en)
JPH02263797A (en) Manufacture of silicon carbide plaitlet
CN113548667B (en) Method for rapidly preparing superfine boron carbide powder at low temperature under assistance of current
JP2003206476A (en) Heat-treated diamond fine powder and method for producing the same
US2681851A (en) Production of titanium sesquioxide
JPH06166510A (en) Production of silicon carbide fine powder
KR20030093444A (en) Process for preparing spherical activated carbon