JPS6358764A - Nonaqueous solvent battery - Google Patents

Nonaqueous solvent battery

Info

Publication number
JPS6358764A
JPS6358764A JP20226086A JP20226086A JPS6358764A JP S6358764 A JPS6358764 A JP S6358764A JP 20226086 A JP20226086 A JP 20226086A JP 20226086 A JP20226086 A JP 20226086A JP S6358764 A JPS6358764 A JP S6358764A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
metal
plate
drop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20226086A
Other languages
Japanese (ja)
Other versions
JPH0341943B2 (en
Inventor
Kyoji Uno
宇野 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP20226086A priority Critical patent/JPS6358764A/en
Publication of JPS6358764A publication Critical patent/JPS6358764A/en
Publication of JPH0341943B2 publication Critical patent/JPH0341943B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE:To prevent internal short-circuit in assembly process and to minimize IR drop in high rate discharge by using a porous plate such as expanded metal in which the whole periphery is or the upper and lower ends are formed in a plate as a positive current collector. CONSTITUTION:In a porous plate such as expanded metal, metal mesh, and etched metal, burrs in the periphery 2b are eliminated and the generation of internal short-circuit caused by vibration or shock in the assembly or after assembly is prevented. The electric resistance between A' and C' is actually similar to that between D and C' because of the plate-like periphery. Therefore, IR drop in the whole positive electrode 3 is decreased and sharp voltage drop in high rate discharge is decreased and the good working voltage of a battery can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非水溶媒電池にIII するものである。[Detailed description of the invention] Industrial applications The present invention is directed to non-aqueous solvent batteries.

従来の技術とそのrf!Ii題点 非水溶媒電池、具体的には塩化スルフリル・リチウム電
池、あるいは塩化チオニル・リチウム電池等は高出力、
高エネルギー苦瓜、良好な貯蔵性能等の優れた特性を有
している。
Conventional technology and its rf! Problem Ii: Non-aqueous solvent batteries, specifically sulfuryl chloride lithium batteries or thionyl chloride lithium batteries, have high output,
It has excellent properties such as high energy bitter melon and good storage performance.

一般に、これら電池の正極集電体にはエキスパンドメタ
ル、金属メツシュ等が使用されている。
Generally, expanded metal, metal mesh, or the like is used for the positive electrode current collector of these batteries.

しかしながら、工Vスパントメタル、金属メツシュは、
その外周部にパリ、カエリ等が存在しているために、こ
れらがセパレータを貴通し、電池組立時に内部短絡を招
く。たとえ、この時点で内部短絡が発生しなくても、こ
れ1う!を電体外周部のパリ、カエリ等は電池が受ける
振動、!li撃などの外的作用によって内部χ0絡を引
き起こす可能↑1tよ椿めて大きい。
However, the mechanical V-spant metal and metal mesh are
Since there are burrs, burrs, etc. on the outer periphery, these can penetrate the separator, causing an internal short circuit when assembling the battery. Even if no internal short circuit occurs at this point, this is 1! The vibrations that the battery receives are caused by cracks, burrs, etc. on the outer periphery of the electric body! The possibility of causing an internal χ0 circuit due to an external action such as a li strike is much larger than 1t.

また、集電体には外部へ電流を取出すためにリードタブ
1が設けられている(第2図参照)。特に各極板が帯状
であるスパイラル構造を持つ電池の正極は、その長さの
ためリードタブの取付は位置、1lIJfiが、より高
い作*)J m圧を取出づための1[・要なポイントと
なる。
Further, a lead tab 1 is provided on the current collector to take out a current to the outside (see FIG. 2). In particular, the positive electrode of a battery that has a spiral structure in which each electrode plate is strip-shaped is so long that the installation of the lead tab is difficult due to its length. becomes.

従来のJ4°スパントメタル、金属メツシュでは、その
U*構成が金属系であるため、第2図に見られるAC間
の電気抵抗饋がΔB間のそれにり人0(なり、正極全体
をとらえると、その分のIRドロツブ(抵抗過電Jf)
がより人となる。この]Jl! 象は?3率放電の際、
電池作動電圧に著しい影5!を与え、tll電電流に比
例して作動電圧が低くなる。また、場所により多孔性炭
素体の利用率にバラ付きを生じさせる。この現蒙を解消
するためには、リード・タブ数を増加させてタブ間の距
離をλ0くすることによってIRドロップをより小さく
することが可能であるが、電池組立時の正極端子との接
合数がその分多くなり、組立の複雑化、不良電池の発生
、f″4極端子との接触による内部短絡の発生等を引起
こすことになる。
In the conventional J4° spand metal and metal mesh, the U* configuration is metallic, so the electrical resistance between AC and ΔB shown in Figure 2 becomes zero (0), which captures the entire positive electrode. and the corresponding IR drop (resistance overcurrent Jf)
becomes more human. This] Jl! What about elephants? During 3-rate discharge,
Significant impact on battery operating voltage 5! , and the operating voltage decreases in proportion to the tll current. Further, the utilization rate of the porous carbon body varies depending on the location. In order to solve this problem, it is possible to reduce the IR drop by increasing the number of lead tabs and making the distance between the tabs λ0, but it is possible to reduce the IR drop by increasing the number of lead tabs and making the distance between the tabs λ0. The number increases accordingly, resulting in complicated assembly, generation of defective batteries, and occurrence of internal short circuits due to contact with the f'' quadrupole terminal.

問題点を解決するための手段 以上のような従来技術の欠点に鑑み、本発明4よ正極集
電体の改良によって、電池組立時および組立1股の撮動
、衝撃等の外的作用による電池内部短絡の防止と高率放
電時のIRドロップを最小化し、より高い電池作8電几
を4りると共に、均一な多孔質炭素体の利用による容量
向上を81つたもので、アルカリ軽金属からなる負極と
多孔!1炭素体を主成分とする正極とがセパレータを介
して配置され、かつ正極活物質を兼すた液状Atシバ[
1ゲン化物を主成分とする電解液が11人された非水溶
媒電池において、正極ICm体として外周部全体もしく
は上下端部が板状であるニー1スパントメタル、全屈メ
ツシュ、エツチングメタル等の多孔板を使用したことを
特徴としている。
Means for Solving the Problems In view of the above-mentioned shortcomings of the prior art, the present invention 4 improves the positive electrode current collector so that the battery is not affected by external effects such as photography or impact during battery assembly or during assembly. It prevents internal short circuits and minimizes IR drop during high-rate discharge, provides higher battery life, and increases capacity by using a uniform porous carbon material, and is made of alkali light metal. Negative electrode and porous! A positive electrode whose main component is carbon 1 is disposed with a separator interposed therebetween, and a liquid At carbon material which also serves as a positive electrode active material is used.
In a non-aqueous battery containing an electrolyte mainly composed of 1-genide, the positive electrode ICm body is made of knee-spanned metal, fully bent mesh, etched metal, etc. whose entire outer periphery or upper and lower ends are plate-shaped. It is characterized by the use of a perforated plate.

この4?4〕もによるLキスバンドメタル簿の多孔(に
でtよ、その外周部においてパリ、力エリ等がなく、組
立時J3よび組立後の)辰動・衝撃等の外的作用による
内部短絡が発生することはない。また、第1図中、第2
図と同じ距離を持つA’ C″間の電気的ll(抗値は
、外周部が板状であるため、△′D間のIRド[二1ツ
ブがかなり小さいので、実質的にはDO゛間の電気抵抗
値に近い1直となる。このため正極全体のIRドロップ
が小さくなり、高率故tfr 115にも−8しい電圧
降下が見られず、良好な電池作8電1[を15すること
ができると共に、リード・タブから離れた地点での多孔
質炭素体の反応利用率の有効化を計ることができる。
This 4? 4] is also due to the porousness of the L kiss band metal board (there is no crack, force edge, etc. on its outer periphery, and it is due to external effects such as dynamic movement and impact during assembly and after assembly) No internal short circuits occur. Also, in Figure 1, the second
The electrical resistance value between A'C'', which has the same distance as shown in the figure, is practically DO Therefore, the IR drop of the entire positive electrode is small, and no significant voltage drop is observed even in the high rate TFR 115, resulting in good battery operation. 15, and the effectiveness of the reaction utilization rate of the porous carbon body at a point away from the lead tab can be measured.

実  施  例 実施例1 第1図に示し1=如く、多孔部2aの外周部に板状部2
bを備え、板状部の幅が2mm 、全長4GOmm。
Embodiment Example 1 As shown in FIG.
b, the width of the plate part is 2mm, and the total length is 4GOmm.

幅45mnの刈払のニッケル製エツチングメタルの中央
部にリードタブ1をスポット溶接したものを正+4東電
体とし、これにボリテ!・ラフルAロエチレンを結着剤
としたカーボンブラックを充填して正極3を製作した。
Lead tab 1 was spot welded to the center of a nickel etched metal cutter with a width of 45 mm to form a positive +4 TEPCO body, and Volite!・Positive electrode 3 was manufactured by filling carbon black with Rahul A roethylene as a binder.

0極4は集電体として帯状ニッケル箔を使用し、それに
り1ウムを圧4させて製作した。前記正VFI3と負極
4をセパレータ5を介して渦巻状に巻回し、01罎端了
を兼ねる円筒形有底m6内に収容してスパイラル構)己
の電池とした。
The zero pole 4 was manufactured by using a band-shaped nickel foil as a current collector and applying 1 um to the foil. The positive VFI 3 and the negative electrode 4 were spirally wound with a separator 5 in between and housed in a cylindrical bottomed m6 which also served as a spiral structure to form a battery.

電池品7を溶接一体化させた後、)↑液口兼正極端子8
より正極活物質を兼ねた電W?液9である1、;)七ル
[1△IC14を溶解した塩化1− Aニルを注入し、
次いで注液口兼正極端子8を溶接密封し、第3図に示す
電池とした。
After welding and integrating the battery component 7,)↑Liquid port and positive terminal 8
An electric W that doubles as a positive electrode active material? Solution 9 is 1, ;) 7yl [1△IC14 dissolved in 1-A-nyl chloride is injected,
Next, the liquid injection port/positive electrode terminal 8 was welded and sealed to form a battery as shown in FIG. 3.

実施例2 第4図に示す如く、上下端が板状であるニラクル製エキ
スパンドメタルを正極東電体として使用し、第3図に示
す構造と同じ電池を製作した。この場合、第1図に示し
た外周部全体が板状である正極集電体と相〕aして左右
側面部にはパリ、力エリ等が発![する。
Example 2 As shown in FIG. 4, a battery having the same structure as shown in FIG. 3 was manufactured using Niracle's expanded metal whose upper and lower ends were plate-shaped as the positive electrode Toden body. In this case, in contrast to the positive electrode current collector whose entire outer periphery is plate-shaped as shown in FIG. [do.

しかしながら、スパイラル構造をとる電池にとって、上
■:端部は左右側面部に比べ、その長さが非常に長く、
従って左右側面部で発生ずるパリ。
However, for a battery that has a spiral structure, the top part is much longer than the left and right side parts.
Therefore, cracks occur on the left and right sides.

力エリ等が相対的に極めて少ないので、従来の正極東電
体に比べ、パリ、力エリ等が内部短絡を引起こす可能性
は極めて少ない。上下端部が板状である−1−1ニスバ
ンドメタルの製作は、外周部仝休が板状である正極集電
体に比べ容易であり、電池製作工程上かなり右利である
。また、その東電竹に差がない。
Since there are relatively very few force errors, there is an extremely low possibility that electrical shocks, force lines, etc. will cause internal short circuits compared to conventional positive electrode TODEN. The production of -1-1 varnish band metal whose upper and lower ends are plate-shaped is easier than that of a positive electrode current collector whose outer periphery is plate-shaped, and is considerably advantageous in the battery manufacturing process. Also, there is no difference between Tokyo Electric Power Company and Take.

以」−のような理由からスパイラル構)告をとる電池に
とって、実質的には上下端部が板状であるエキスパンド
メタルtよ外周部全体が板状であるしの以上の効果が発
揮できる。
For the following reasons, a battery with a spiral structure can exhibit a greater effect than an expanded metal t whose upper and lower ends are substantially plate-shaped and a battery whose entire outer periphery is plate-shaped.

実施例3 第5図は円盤形H,H池に使用づる円周部が板状である
正極東電板を使用したものである。これは多孔部2aと
して65φの寸法に裁断したニッケル製エキスパンドメ
タルを用い、これに外周tar 2 bとして厚み0.
1mm、外径66φ、内径64φの寸法に裁断したニッ
ケル板をスポット溶接したものである。
Embodiment 3 FIG. 5 shows a positive electrode plate whose circumferential portion is plate-shaped, which is used for disk-shaped H and H ponds. This uses expanded nickel metal cut to a size of 65φ as the porous portion 2a, and a thickness of 0.0mm as the outer periphery tar 2b.
It is made by spot welding a nickel plate cut to a size of 1 mm, an outer diameter of 66φ, and an inner diameter of 64φ.

この場合、負極と正極はセパレータを介して積層構造を
とる電池となる。
In this case, a battery is formed in which the negative electrode and the positive electrode have a stacked structure with a separator interposed in between.

比較例 リードタブを中央部にスポット溶接した全長460mm
 、幅45mmの1法の外周部が板状でない従来のニッ
ケル製エキスパンドメタルを正極集電体として第3図と
同様のスパイラル構造の?Ili池を製作した。
Comparative example Lead tab spot welded in the center, total length 460mm
, with a spiral structure similar to that shown in Figure 3, using a conventional nickel expanded metal whose outer periphery is not plate-shaped and having a width of 45 mm as the positive electrode current collector. Ili Pond was created.

発明の効果 表は実施例1,2及び比較例の電池組立時での内部短絡
不良数を、第6図は放電電流と電池作動電圧の関係を示
したTi流−↑G電圧特性図、第7図は放電電流と放電
容量の関係を示した電流−容量特性図を示す。
The effect table of the invention shows the number of internal short-circuit failures during battery assembly in Examples 1 and 2 and the comparative example, and Figure 6 shows the Ti flow-↑G voltage characteristic diagram showing the relationship between discharge current and battery operating voltage. FIG. 7 shows a current-capacity characteristic diagram showing the relationship between discharge current and discharge capacity.

比較例では内部短絡による不良R1が25/ 500で
あるのに対して、実施例2では21500 、実施例1
では0/ 500となり、不良数を大幅に改善づること
ができた。
In the comparative example, the defect R1 due to internal short circuit was 25/500, whereas in Example 2 it was 21500, and in Example 1
The result was 0/500, and we were able to significantly improve the number of defects.

第6図の電流−電圧特性図では大電流放電時での電圧降
下が比較例よりも実流例1及び実施例2が小さく、また
、第7図の電流−容量特性図では、これも大電流放電時
での容量に差が二Σめられ、本発明により電池fl能向
上が1!1られた。
In the current-voltage characteristic diagram in Figure 6, the voltage drop during large current discharge is smaller in Actual Current Example 1 and Example 2 than in the comparative example, and in the current-capacity characteristic diagram in Figure 7, this is also large. The difference in capacity during current discharge was reduced by 2Σ, and the present invention improved battery fl capacity by 1:1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明電池に使用するスパイラル構造用の正極
集電体、第2図は従来構造の正極集電体、第3図はスパ
イラル構造を何する電池の断面図、第4図は本発明によ
る上下端部が板状であるエキスパンドメタルを使用した
スパイラル構造用の正極東電体、第5図は積層構造を有
する円盤型電池に使用する本発明電池用正極来電体、第
6図は本発明により製作された電池と従来電池との電流
−電圧特性図、第7図は同電池のTi流−容量の関係を
示した比較図である。
Figure 1 shows a positive electrode current collector with a spiral structure used in the battery of the present invention, Figure 2 shows a positive electrode current collector with a conventional structure, Figure 3 is a cross-sectional view of a battery with a spiral structure, and Figure 4 shows the current collector used in the present invention. Figure 5 shows a positive electrode current body for a spiral structure using an expanded metal whose upper and lower ends are plate-shaped according to the invention, and Figure 6 shows a positive electrode current body for a battery according to the present invention used in a disk-shaped battery having a laminated structure. FIG. 7 is a current-voltage characteristic diagram of a battery manufactured according to the present invention and a conventional battery, and is a comparison diagram showing the relationship between Ti current and capacity of the same battery.

Claims (1)

【特許請求の範囲】[Claims] アルカリ軽金属からなる負極と多孔質炭素体を主成分と
する正極とがセパレータを介して配置され、かつ正極活
物質を兼ねた液状オキシハロゲン化物を主成分とする電
解液が注入された非水溶媒電池において、正極集電体と
して外周部全体もしくは上下端部が板状であるエキスパ
ンドメタル、金属メッシュ、エッチングメタル等の多孔
板を使用したことを特徴とする非水溶媒電池。
A non-aqueous solvent in which a negative electrode made of an alkali light metal and a positive electrode mainly composed of a porous carbon body are arranged with a separator in between, and an electrolyte mainly composed of a liquid oxyhalide that also serves as the positive electrode active material is injected. A nonaqueous solvent battery characterized in that a porous plate made of expanded metal, metal mesh, etched metal, etc., whose entire outer periphery or upper and lower ends are plate-shaped, is used as a positive electrode current collector.
JP20226086A 1986-08-27 1986-08-27 Nonaqueous solvent battery Granted JPS6358764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20226086A JPS6358764A (en) 1986-08-27 1986-08-27 Nonaqueous solvent battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20226086A JPS6358764A (en) 1986-08-27 1986-08-27 Nonaqueous solvent battery

Publications (2)

Publication Number Publication Date
JPS6358764A true JPS6358764A (en) 1988-03-14
JPH0341943B2 JPH0341943B2 (en) 1991-06-25

Family

ID=16454595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20226086A Granted JPS6358764A (en) 1986-08-27 1986-08-27 Nonaqueous solvent battery

Country Status (1)

Country Link
JP (1) JPS6358764A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007130A1 (en) * 2018-07-06 2020-01-09 珠海冠宇电池有限公司 Negative electrode plate for lithium battery, and lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020007130A1 (en) * 2018-07-06 2020-01-09 珠海冠宇电池有限公司 Negative electrode plate for lithium battery, and lithium battery

Also Published As

Publication number Publication date
JPH0341943B2 (en) 1991-06-25

Similar Documents

Publication Publication Date Title
JP4163368B2 (en) Lithium polymer battery and manufacturing method thereof
JP2005353519A (en) Electrochemical element
JPH08339818A (en) Manufacture of battery containing non-circular spiral electrode body
KR20050028208A (en) Battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
JPH08171930A (en) Battery
JP2006079942A (en) Battery
JP3588264B2 (en) Rechargeable battery
JPH11233149A (en) Nonaqueous electrolyte battery
JPH09161837A (en) Cylindrical battery
JPH11176447A (en) Battery and manufacture thereof
JPS6358764A (en) Nonaqueous solvent battery
JP3352863B2 (en) Non-aqueous electrolyte battery
JP4901017B2 (en) Flat nonaqueous electrolyte secondary battery with lead terminals
KR100529067B1 (en) Lithium Secondary Battery and Manufacturing Method Thereof
JPH08339817A (en) Non-circular spiral electrode body battery
CN211265602U (en) Button cell
JP2697313B2 (en) Cylindrical battery
JP3402628B2 (en) Organic electrolyte battery
JPH1040959A (en) Nonaqueous electrolyte secondary battery
JP2008066207A (en) Battery
JP2000195496A (en) Alkaline storage battery
JP2000243378A (en) Organic electrolyte secondary battery
JPH11345626A (en) Sealed battery
JP2002008727A (en) Flat nonaqueous electrolyte secondary battery