JPS6358129A - Turbidity meter - Google Patents

Turbidity meter

Info

Publication number
JPS6358129A
JPS6358129A JP20095286A JP20095286A JPS6358129A JP S6358129 A JPS6358129 A JP S6358129A JP 20095286 A JP20095286 A JP 20095286A JP 20095286 A JP20095286 A JP 20095286A JP S6358129 A JPS6358129 A JP S6358129A
Authority
JP
Japan
Prior art keywords
circuit
light
switching circuit
detection
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20095286A
Other languages
Japanese (ja)
Inventor
Shotaro Urushibara
漆原 正太郎
Kaoru Toyoda
豊田 薫
Takahiro Suzuki
貴博 鈴木
Seiichi Kamata
鎌田 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP20095286A priority Critical patent/JPS6358129A/en
Publication of JPS6358129A publication Critical patent/JPS6358129A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To achieve a higher measuring accuracy eliminating influence of non- uniformity or the like of circuit elements, by providing an input switching circuit to convert received optical signals for detection and reference to a time-series form and a common signal processing system at a rear stage. CONSTITUTION:A light emitting element 3 emits light the quantity of which is proportional to the current from a light emitting current circuit 1. The luminous flux is radiated to sample water 5 and scattered reflection from a suspension 6 is detected with a light receiving element 7. On the other hand, the quantity of light incident on a light receiving element 8 for reference is proportional to the quantity of light emitted. Then, outputs of the elements 7 and 8 are amplified with preamplifiers 9A and 9B and converted to a time-sequential form with an input switching circuit 17. The timing of the conversion is determined by the outputs of a timer circuit 20. Then, the outputs of a detecting section A2 are transmitted to a converter section C2 through a filter circuit 10, a full-wave rectification circuit 11, a voltage-to-current conversion circuit 12 and a transmission cable section B2 and converted into parallel signals with an output switching circuit 18 to be stored into sample holding circuits 19A and 19B. Thereafter, the signal is further inputted into an arithmetic circuit 13 and the results are outputted 14.

Description

【発明の詳細な説明】 A、産業上の利用分針 本発明は、下水処理時等に際し、その濁度な光学的に測
定する濁度針に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Industrial Application Minute Hand The present invention relates to a turbidity needle that optically measures turbidity during sewage treatment.

B1発明の概要 本発明は、散乱光方式の濁度計において、検出用、参照
用の受光信号を時系列の形に変換する入力切換回路を検
出部内に設け、その後段に共用の11!!号系統を構成
することにより、回路素子のバラツキ、温度変化、経時
変化の影響を排除して精度の向上を図るとともに、容易
に製作することができるようにしたものである。
B1 Summary of the Invention The present invention provides a scattered light type turbidity meter in which an input switching circuit for converting light reception signals for detection and reference into a time series form is provided in the detection section, and a shared 11! ! By configuring a number system, it is possible to improve accuracy by eliminating the effects of variations in circuit elements, temperature changes, and changes over time, and to facilitate manufacturing.

C0従来の技術 濁度の測定には、散乱光方式、透過光方式、透過・散乱
光比較方式等の光学的方法が一般に用いられる。
C0 Conventional Technology Optical methods such as a scattered light method, a transmitted light method, and a transmitted/scattered light comparison method are generally used to measure turbidity.

第10図は散乱光方式濁度計の構成を示すブロック図で
ある。発光電流回路1は、発損回wr2の発撮周彼数に
基づいて発光素子3を交流的に発光させるための電流を
出力する。発光素子30発光光束の一部はガラス窓4を
通して検水5に放射され、懸濁物6があれば、それによ
る散乱反射光を生じ、その一部がガラス窓4を通して検
出用受光素子7に達する。また、発光光束の一部は直接
参照用受光素子8に入射する。
FIG. 10 is a block diagram showing the configuration of a scattered light type turbidity meter. The light emitting current circuit 1 outputs a current for causing the light emitting element 3 to emit light in an alternating current manner based on the number of firing cycles of the firing cycle wr2. A part of the luminous flux of the light emitting element 30 is emitted to the test water 5 through the glass window 4, and if there is a suspended object 6, it causes scattered reflection light, and a part of it passes through the glass window 4 to the detection light receiving element 7. reach Further, a part of the emitted light beam directly enters the reference light receiving element 8.

前記受光素子7(8)にはその入射光量に比例した電流
が得られ、これがプリアンプ9 A (9B)の入力と
なり【増幅される。その出力はフィルタ回路10人(1
0B)に入力される。フィルタ回路10A(IOB)は
発光1を流の周波数に一致した成分のみが通過するバン
ドパスフィルタであり、外光、例えば太陽光([流)、
螢光灯(交流)の発光の入射による成分は除外される。
A current proportional to the amount of incident light is obtained in the light receiving element 7 (8), and this becomes an input to the preamplifier 9A (9B) and is amplified. The output is 10 filter circuits (1
0B). The filter circuit 10A (IOB) is a bandpass filter that allows only the component that matches the frequency of the flow of the light emission 1 to pass through, and is used to filter external light such as sunlight ([flow]),
The component due to the incidence of fluorescent light (alternating current) emission is excluded.

フィルタ回路10A(IOB)の出力信号は全121E
整流回路11A(IIB)で1[流化され、更に電圧−
電流変換回路12A(12B)で電圧信号から電流信号
に変換される。
The output signal of filter circuit 10A (IOB) is all 121E
The rectifier circuit 11A (IIB) converts the voltage to -
The voltage signal is converted into a current signal by the current conversion circuit 12A (12B).

両変換回路12 A、 、 12 Bの出力、即ち検出
部A、の出力は伝送ケーブル部B、を介して変換器部C
Iに送られ、演算回路130入力となる。ここで、VI
JIE、が行われ、その出力が出力回路14を経て濁度
出力となる6割算は、発光素子、受光素子の変換効率の
温度特性、経時変化、各回路素子の温度変化、経時変化
を補償し、安定した測定とするために行うものである。
The outputs of both conversion circuits 12A, 12B, that is, the output of the detection section A, are sent to the converter section C via the transmission cable section B.
It is sent to I and becomes an input to the arithmetic circuit 130. Here, VI
JIE is performed, and the output becomes the turbidity output via the output circuit 14. The 60% calculation compensates for the temperature characteristics of the conversion efficiency of the light-emitting element and the light-receiving element, changes over time, changes in temperature of each circuit element, and changes over time. This is done to ensure stable measurements.

なお、変換器部C□には電源回路12S、検出部A1に
は電源安定化回路16を設けている。
Note that the converter section C□ is provided with a power supply circuit 12S, and the detection section A1 is provided with a power supply stabilization circuit 16.

このような構成とした場合、fal検出、参照信号が共
に電流出力となり、しかも検出部A1内に電源安定化回
路16が配設されているので、伝送ケーブル部B、の長
距離化に伴う電圧降下の影響がない、(bl検出、参照
信号を直流化してから伝送しているので、伝送ケーブル
部Bi内で発光電流の誘導あるいは外部からの誘導があ
っても、変換器部C1側にフィルタを設ければその影響
を除去することができる、といった利点がある。
In such a configuration, both the fal detection and the reference signal are current outputs, and since the power supply stabilization circuit 16 is provided in the detection section A1, the voltage is reduced as the transmission cable section B becomes longer distance. No influence of drop (BL detection, reference signal is converted to DC before being transmitted, so even if light emitting current is induced in the transmission cable section Bi or induced from outside, there is no filter on the converter section C1 side. There is an advantage that the effect can be removed by providing a.

D0発明が解決しようとする問題点 ところで、この方式で正確な測定を行うKは、横出用信
号系統と8照用信号系統の各素子の温度変化、経時変化
が全く同じであることが前褐であるが、素子の一部、例
えば受光素子を選別して夏用するとしても、全てを選別
することは費用、時間がかかるため不可能である。たと
え全く同じ特性の素子を使ったとしても、検出部内で同
じ温度になるとは限らない、また、検出部AIと変換器
部C1の間が長距離となる場合には、その布設の費用、
手間等を考慮すると、伝送ケーブルは芯数の少ないこと
がglまれる。
D0 Problems to be solved by the invention By the way, in order to accurately measure K using this method, it is necessary that the temperature changes and changes over time of each element of the side-out signal system and the eight-output signal system are exactly the same. Although it is brown in color, even if some of the elements, such as the light-receiving element, are to be selected for summer use, it would be impossible to select all of them because it would be costly and time consuming. Even if elements with exactly the same characteristics are used, the temperature within the detection part will not necessarily be the same. Also, if there is a long distance between the detection part AI and the converter part C1, the cost of installation,
Considering the time and effort involved, it is important that the transmission cable has a small number of cores.

E1間1点を解決するための手段 本発明は、散乱光方式の濁度計の検出部内に検出用、参
照用の受光信号を時系列の形に変換するだめの入力切換
回路を設け、その後段に共用の信号系統を構成する一部
、変換器部に直並列変換のための出力切換回路と切換タ
イ叱ング信号を発生するタイマ回路とを設け、前記入力
切換回路及び出力切換回路に切換タイミング信号を付与
して信号の並直列変換、直並列変換を行うようにしたこ
とを特徴とするものである。
Means for solving the problem of one point between E1 The present invention provides an input switching circuit for converting the received light signal for detection and reference into a time series form in the detection section of a scattered light type turbidity meter, and then A part of the common signal system is provided in the converter section, and an output switching circuit for serial-to-parallel conversion and a timer circuit for generating a switching tie signal are provided in the converter section, and the input switching circuit and the output switching circuit are provided. It is characterized in that a timing signal is applied to perform parallel-to-serial conversion and serial-to-parallel conversion of signals.

70作用 両受光信号は入力切換回路に加わり、タイヤング信号に
応じて検出信号と参照信号が交互に選択されて時系列の
形に変換される。この後、共用のフィルタ回路、全波!
I流回路を通り、伝送ケーブル部を介して変換器部に伝
送される。
70 action. Both light reception signals are applied to an input switching circuit, and a detection signal and a reference signal are alternately selected according to the tireing signal and converted into a time series form. After this, the shared filter circuit, full wave!
It passes through the I current circuit and is transmitted to the converter section via the transmission cable section.

G、実施例 第1図は本発明の一実施例を示すもので、1は発光電流
回路、2は発振回路、3は発光素子である。この発光素
子30発光光束の一部がガラス窓4を通して検水5に放
射され、懸濁物6があれば散乱反射光が生じる。7は検
出用受光素子、8は参照用受光素子、9Aは前記検出用
受光素子7に接続されたプリアンプ、9Bは前記参照用
受光素子8に接続されたプリアンプである。
G. Embodiment FIG. 1 shows an embodiment of the present invention, in which 1 is a light emitting current circuit, 2 is an oscillation circuit, and 3 is a light emitting element. A part of the light emitted from the light emitting element 30 is emitted to the test water 5 through the glass window 4, and if there is suspended matter 6, scattered reflected light is generated. 7 is a detection light receiving element, 8 is a reference light receiving element, 9A is a preamplifier connected to the detection light receiving element 7, and 9B is a preamplifier connected to the reference light receiving element 8.

1γは両プリアンプ9A、9Bの出力信号を並列から時
系列(直列)の形に変換する入力切換回路(並列変換回
路)で、この後段にはフィルタ回路10、盆v!1流回
路11、電圧−電流変換回路12を順次接続している。
1γ is an input switching circuit (parallel conversion circuit) that converts the output signals of both preamplifiers 9A and 9B from parallel to time-series (serial) format, and at the subsequent stage is a filter circuit 10 and a tray v! A first current circuit 11 and a voltage-current conversion circuit 12 are connected in sequence.

この信号系統は、従来(第10図)の検出用または参照
用の信号系統と同じ構成である。
This signal system has the same configuration as the conventional detection or reference signal system (FIG. 10).

1sは変換器部CIに設けた出力切換回路([並列変換
回路)であり、伝送ケーブル部B、を介して送られてく
る検出部人、の電圧−電流変換回路12の出力を時系列
から並列の形に変換する。
1s is an output switching circuit (parallel conversion circuit) provided in the converter section CI, which chronologically converts the output of the voltage-current conversion circuit 12 of the detection section sent via the transmission cable section B. Convert to parallel form.

19A及び19Bはこの出力切換回路16に接続したサ
ンプルホールド回路で、その出力側には演算CIII算
)回路13、出力回路14を順次接続している。20は
前記入力切換回路17、出力切換回路18、サンプルホ
ールド回路19A、19Bにタイヤング信号を与えるタ
イマ回路である。なお、第1図において、15は電源回
路、16は電源安定化回路である。
19A and 19B are sample and hold circuits connected to this output switching circuit 16, and the arithmetic CIII calculation) circuit 13 and output circuit 14 are connected in sequence to the output side thereof. A timer circuit 20 provides a timing signal to the input switching circuit 17, output switching circuit 18, and sample and hold circuits 19A and 19B. In FIG. 1, 15 is a power supply circuit, and 16 is a power supply stabilization circuit.

前記プリアンプ9人(9B)は、例えば第2図に示すよ
うにオペアンプ31のマイナス入力端と出力端の間に抵
抗32.33の直列回路を接続し、これに抵抗34とコ
ンデンサ321をそれぞれ並夕1」接続し、前記1列回
路の中間接続点をコンデンサ36を介して接地した構成
とする。そして、H入力端には受光素子(例えばホトダ
イオード)7@)を接続する。なお、プラス入力端は接
地される。
For example, in the nine preamplifiers (9B), as shown in FIG. 2, a series circuit of resistors 32 and 33 is connected between the negative input terminal and the output terminal of an operational amplifier 31, and a resistor 34 and a capacitor 321 are connected in parallel to this. 1" connection, and the intermediate connection point of the first column circuit is grounded via a capacitor 36. A light receiving element (for example, a photodiode) 7@) is connected to the H input terminal. Note that the positive input terminal is grounded.

上記構成のプリアンプは第3図のような周波数特性を有
する。
The preamplifier with the above configuration has frequency characteristics as shown in FIG.

次に、動作を第4図ial〜(g+を参照しながら説明
する1発光電流回路1からは第4図falのような発光
電流が出力され、発光素子3はこの電流に比例した光量
で発光する。光束が検水5に放射され、Mm物6による
散乱反射光が検出用受光素子7により検出される。この
入射光は濁度に比例した交流成分と、太陽光などによる
直流分、螢光灯等による低周波交流成分を含んでおり、
第4図tb+に示すように変化する。−万、参照用受元
素子80人射光量は、tK4図fclに示すように発光
光量に比例する。
Next, the operation will be explained with reference to FIG. The light flux is emitted to the sample water 5, and the light scattered and reflected by the Mm object 6 is detected by the detection light receiving element 7.This incident light contains an AC component proportional to the turbidity, a DC component due to sunlight, etc., and a firefly. Contains low-frequency alternating current components from lights, etc.
It changes as shown in FIG. 4 tb+. - 10,000, reference receiving element 80 The amount of incident light is proportional to the amount of emitted light as shown in tK4 diagram fcl.

両受光素子7.8の出力はプリアンプ9人、9Bで増幅
される。その場合、アンプにフィルタ機能を持たせであ
るため、検出信号の直流分、低周波成分が除去されて第
9図1dl lelのようになる。この後、入力切換回
路17で時系列の形に変換される。
The outputs of both light receiving elements 7 and 8 are amplified by nine preamplifiers and 9B. In this case, since the amplifier has a filter function, the DC component and low frequency component of the detection signal are removed, resulting in a signal as shown in FIG. 9, 1dl lel. Thereafter, the input switching circuit 17 converts the data into a time series format.

この変換はタイマ回路20の出力(第4図(f))によ
りそのタイミングが決定される1例えば、タイミング信
号が@ l @ (a レベル)の時に参照信号、IQ
I(I、レベル)の時に検出信号となる。
The timing of this conversion is determined by the output of the timer circuit 20 (FIG. 4(f)). For example, when the timing signal is @ l @ (a level), the reference signal, IQ
It becomes a detection signal when it is I (I, level).

入力切換回路17の後段においては、フィルタ回路10
%全波整流回路11、電圧−電流変換回路12を通る。
At the subsequent stage of the input switching circuit 17, a filter circuit 10
% full wave rectifier circuit 11 and voltage-current converter circuit 12.

この時、全波整流回路11の出力は第4図1g)のよう
に検出信号と参照信号が交互に現われる。
At this time, the detection signal and the reference signal appear alternately in the output of the full-wave rectifier circuit 11 as shown in FIG. 4 (1g).

検出部Aヨの出力は伝送ケーブル部B!を介して変換器
部C1に伝送され、出力切換回路18で並列信号に変換
されて各々サンプルホールド回路19人、19Bに記憶
される。この後、演算回路13に入力され、割算が行わ
れる。その結果が出力回路14を介して出力される。
The output of the detection part A is the transmission cable part B! The signals are transmitted to the converter section C1 via the output switching circuit 18, converted into parallel signals, and stored in the sample and hold circuits 19 and 19B, respectively. Thereafter, it is input to the arithmetic circuit 13 and division is performed. The result is output via the output circuit 14.

第5図は本発明の他の実施例を示すもので、タイマ回路
20のタイミング信号と見損回路2の出力とを発光電流
回路1′で合成して発光電流とする一部、検出部側にロ
ーパスフィルタなどからなるタイミング信号分離回路2
1を設け【、この発光電流からタイミング信号を分離し
て入力切換回路17に与えるようにしている。その具体
的回路を第6図、第7因に示す。即ち、上記発光電流は
、第6図に示すように発振回路2の出力とタイマ回路2
0のタイミング信号をオペアンプ41のマイナス入力端
に加えて、そのアンプ出力をトランジスタ420ベース
信号とし、エイツタからマイナス入力端にフィードバッ
クすることにより発生させている。
FIG. 5 shows another embodiment of the present invention, in which a portion of the timing signal of the timer circuit 20 and the output of the oversight circuit 2 are combined into a light emitting current by a light emitting current circuit 1', and a part of the light emitting current is generated on the detection section side. A timing signal separation circuit 2 consisting of a low-pass filter, etc.
1 is provided, and a timing signal is separated from this light emitting current and applied to the input switching circuit 17. The specific circuit is shown in FIG. 6 and the seventh factor. That is, the above-mentioned light emitting current is generated by the output of the oscillation circuit 2 and the timer circuit 2 as shown in FIG.
It is generated by applying a timing signal of 0 to the minus input terminal of the operational amplifier 41, using the amplifier output as a base signal of the transistor 420, and feeding it back from the input terminal to the minus input terminal.

また、検出部側には電圧ホロワ回路43を設けてその出
力側にローパスフィルタ(あるいは全波整流回路)44
を接続している。ローパスフィルタ44は第8図に示す
ような減*W性を有する。
In addition, a voltage follower circuit 43 is provided on the detection section side, and a low-pass filter (or full-wave rectifier circuit) 44 is provided on the output side.
are connected. The low-pass filter 44 has a reduction*W characteristic as shown in FIG.

このような構成としたJa合の各部の波形を第9図(a
)〜tg+に示す、第9図(a)は発光素子30発光電
流(発光光束)であり、この菓子30発光が検水に放射
された場合には、各受光素子7.8の入射光量は第9図
(bl lclのように変化する。受光信号がプリアン
プ9A、9Bで増幅されると、第9図1dl(θ)のよ
うな波形となる。この波形は前記実施例の波形と同じで
ある。そして、入力切換回路17には#I9図iflの
ようなタイばング信号が加わり、その結果、全波整流回
路11の出力は第9図1dlのようになる。
Figure 9 (a
) to tg+, FIG. 9(a) shows the light emission current (luminous flux) of the light emitting element 30, and when the light emission from the confectionery 30 is emitted to the test water, the amount of incident light on each light receiving element 7.8 is When the received light signal is amplified by the preamplifiers 9A and 9B, it becomes a waveform as shown in FIG. 9 1dl (θ). This waveform is the same as the waveform in the previous embodiment Then, a tying signal as shown in FIG. #I9 ifl is applied to the input switching circuit 17, and as a result, the output of the full-wave rectifier circuit 11 becomes as shown in FIG. 9 1dl.

このように発光電流をタイミング信号が重畳されたもの
としたことにより、伝送ケーブル部のケーブル、1!;
数が第1の実施例に比べて少なくなる。
By making the light emitting current superimposed with the timing signal in this way, the cable of the transmission cable section, 1! ;
The number is smaller than that in the first embodiment.

H0発明の効果 以上のように本発明によれば、検出部内に信号の並置列
変換のための入力切換回路を設けて、その後段に検出用
、参照用共用の信号系統を構成したので、回路菓子のバ
ラツキ、温度変化、経時変化の影響をυF除でき、高精
度の測定が期待できる。
H0 Effects of the Invention As described above, according to the present invention, an input switching circuit for parallel column conversion of signals is provided in the detection section, and a signal system for both detection and reference is configured at the subsequent stage. The effects of variations in confectionery, temperature changes, and changes over time can be removed by υF, and highly accurate measurements can be expected.

しかも、回路部品の選択が容易となる。また、検出部内
の温度分布が不均一であっても、その影響は少ない、j
l!に、切換タイミング信号を発光電流に重畳して伝送
することにより、芯数の少ないケーブルの便用が可能と
なる。
Moreover, selection of circuit components becomes easy. In addition, even if the temperature distribution inside the detection part is uneven, the effect is small.
l! Furthermore, by superimposing the switching timing signal on the light emitting current and transmitting it, it becomes possible to use a cable with a small number of cores.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る濁度計の一実施例を示すブロック
図、第2図及び第3図は同実施例におけるプリアンプの
回路図及び周波数特性図、第4図(11)〜+glは動
作説明のための波形図、第5図は本発明の他の実施例を
示すブロック図、第6図及び第7図は同実施例における
発光電流発生部及びタイずング信号分離部の回路図、第
8図はタイ建ング信号分離用のローパスフィルタの減衰
特性園、第9図(al〜fg+は動作説明のための波形
図、第10図は従来例を示すブロック図である。 1及び1′・・・発光電流回路、2・・・発振回路、3
・・・発光素子、5・・・検水、6・・・懸濁物、7・
・・検出用受光素子、8・・・参照用受光素子、9人及
び9B・・・プリアンプ、1o・・・フィルタ回路、1
1・・・全波整流回路、lト・・電圧−電流変換回路、
13・・・演算回路、14・・・出力回路、17・・・
入力切換回路、18・・・出力切換回路、19A及び1
9B・・・サンプルホールド回路、20・・・タイマ回
路、21・・・タイミング信号分離回路。 第2図 ブリアシプの回路図 第3図 周波較特性因 第4図 一基す月のだ00波動図 入力にじ皮収 [Hz] 妬
FIG. 1 is a block diagram showing an embodiment of a turbidity meter according to the present invention, FIGS. 2 and 3 are a circuit diagram and a frequency characteristic diagram of a preamplifier in the same embodiment, and FIG. 4 (11) to +gl are A waveform diagram for explaining the operation, FIG. 5 is a block diagram showing another embodiment of the present invention, and FIGS. 6 and 7 are circuit diagrams of the light emitting current generation section and timing signal separation section in the same embodiment. , FIG. 8 shows the attenuation characteristics of a low-pass filter for separating tied signal, FIG. 9 (al to fg+ are waveform diagrams for explaining the operation, and FIG. 10 is a block diagram showing a conventional example. 1 and 1'... Light emitting current circuit, 2... Oscillation circuit, 3
...Light emitting element, 5...Water test, 6...Suspended matter, 7.
...Detection light receiving element, 8...Reference light receiving element, 9 people and 9B...Preamplifier, 1o...Filter circuit, 1
1...Full wave rectifier circuit, l...Voltage-current conversion circuit,
13... Arithmetic circuit, 14... Output circuit, 17...
Input switching circuit, 18... Output switching circuit, 19A and 1
9B... Sample hold circuit, 20... Timer circuit, 21... Timing signal separation circuit. Figure 2: Circuit diagram of Briaship Figure 3: Frequency comparison characteristics Figure 4: 00 wave diagram of the base moon Input Rainbow Peel Yield [Hz]

Claims (1)

【特許請求の範囲】[Claims] (1)交流電流で駆動される発光素子から検水中に光を
放射し、懸濁物による散乱光を検出用の受光素子で受光
する一方、前記発光素子の光を参照用受光素子で受光し
、両受光信号を信号系統に供給して不要成分の除去、直
流化等の処理を行つた後、この検出部から伝送ケーブル
を介して交換器部に伝送し、所要の演算処理を行つて濁
度を求めるようにした、散乱光方式の濁度計において、
検出部内に検出用、参照用の受光信号を時系列の形に変
換するための入力切換回路を設け、その後段に共用の信
号系統を構成する一方、変換器部に直並列変換のための
出力切換回路と切換タイミング信号を発生するタイマ回
路とを設け、前記入力切換回路及び出力切換回路に切換
タイミング信号を付与して信号の並直列変換、直並列変
換を行うようにしたことを特徴とする濁度計。
(1) Light is emitted into the sample water from a light emitting element driven by alternating current, and the light scattered by the suspended matter is received by a detection light receiving element, while the light from the light emitting element is received by a reference light receiving element. After both received light signals are supplied to the signal system and processed such as removing unnecessary components and converting them to direct current, they are transmitted from this detection section to the exchange section via the transmission cable, where the necessary calculation processing is performed and the turbidity is removed. In a scattered light type turbidity meter that measures the degree of
An input switching circuit is provided in the detection section to convert the received light signals for detection and reference into a time series format, and a shared signal system is configured at the subsequent stage, while an output for serial/parallel conversion is provided in the converter section. A switching circuit and a timer circuit that generates a switching timing signal are provided, and the switching timing signal is applied to the input switching circuit and the output switching circuit to perform parallel-to-serial conversion and serial-to-parallel conversion of signals. Turbidity meter.
JP20095286A 1986-08-27 1986-08-27 Turbidity meter Pending JPS6358129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20095286A JPS6358129A (en) 1986-08-27 1986-08-27 Turbidity meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20095286A JPS6358129A (en) 1986-08-27 1986-08-27 Turbidity meter

Publications (1)

Publication Number Publication Date
JPS6358129A true JPS6358129A (en) 1988-03-12

Family

ID=16433036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20095286A Pending JPS6358129A (en) 1986-08-27 1986-08-27 Turbidity meter

Country Status (1)

Country Link
JP (1) JPS6358129A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114302B2 (en) 2002-03-06 2006-10-03 Yamaha Corporation Floor structure and floor base panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7114302B2 (en) 2002-03-06 2006-10-03 Yamaha Corporation Floor structure and floor base panel

Similar Documents

Publication Publication Date Title
US4350441A (en) Photometric apparatus and method
US4948248A (en) Blood constituent measuring device and method
US8547544B2 (en) Multichannel photometric measurement apparatus
CN103169478A (en) Blood oxygen measurement device
US4816687A (en) Method and apparatus for measurement of the fluorescence relaxation period of a fluorescent substance
KR102099230B1 (en) System for in vitro detection and/or quantification by fluorometry
NL9002563A (en) PULSE MODULATION OF THE EXCITATION LIGHT SOURCE OF FLOW CYTOMETERS.
CN108931304A (en) A kind of pulsed light power measuring system and method
US3903422A (en) Digital fluorometer
JPS6061634A (en) Temperature measuring apparatus
JPS6358129A (en) Turbidity meter
US4603256A (en) Scintillation radiation measuring device comprising a photomultiplier tube, and scintillation camera comprising such a device
US5416316A (en) Optical sensor arrangement for presence detection with variable pulse repetition frequency
JP2001159601A (en) Optical measuring apparatus
JPH0581252B2 (en)
JP4202683B2 (en) Light emitting diode light quantity measuring method and light quantity measuring apparatus
JPS59182341A (en) Apparatus for measuring anisotropy of sample luminescence
JPS61122799A (en) Optical type smoke detector
JP2747690B2 (en) Color identification device
JPS587530A (en) Optical temperature measuring device
JPS585622A (en) Optical temperature measuring method
EP0384298B1 (en) Gas analyzer
JPS6039974B2 (en) optical inspection
JPH04332841A (en) Inspecting method of semiconductor light-emitting device
JP2013072720A (en) Spectrophotometer, and signal integrating method used by the same