JPS6039974B2 - optical inspection - Google Patents

optical inspection

Info

Publication number
JPS6039974B2
JPS6039974B2 JP4000677A JP4000677A JPS6039974B2 JP S6039974 B2 JPS6039974 B2 JP S6039974B2 JP 4000677 A JP4000677 A JP 4000677A JP 4000677 A JP4000677 A JP 4000677A JP S6039974 B2 JPS6039974 B2 JP S6039974B2
Authority
JP
Japan
Prior art keywords
voltage
light
output
light beam
level
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4000677A
Other languages
Japanese (ja)
Other versions
JPS53125086A (en
Inventor
一男 三笠
信右 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP4000677A priority Critical patent/JPS6039974B2/en
Publication of JPS53125086A publication Critical patent/JPS53125086A/en
Publication of JPS6039974B2 publication Critical patent/JPS6039974B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters

Description

【発明の詳細な説明】 《発明の分野》 この発明は、被検査物の同一部分に色の異なる2種の光
を照射し、その反射光あるいは透過光を測定して被検査
物の色判別などを行なう2色光による光学的検査装置に
関する。
[Detailed Description of the Invention] <<Field of the Invention>> This invention is a method for discriminating the color of an object to be inspected by irradiating the same part of an object with two types of light of different colors and measuring the reflected light or transmitted light. This invention relates to an optical inspection device using two-color light that performs such operations.

《発明の背景》 例えば、ミカンなどの果物の表皮に緑色光と赤色光を照
射し、両光線の反射量の比から表皮の色素を判別し、こ
れによって果物の成熟度を検査したり、あるいは異常変
色した傷病果を検出するような光学的検査装置が提案さ
れている。
《Background of the Invention》 For example, the epidermis of a fruit such as a mandarin orange is irradiated with green light and red light, and the pigment of the epidermis is determined from the ratio of the amount of reflection of both rays, and the ripeness of the fruit can be examined based on this. Optical inspection devices have been proposed to detect abnormally discolored and damaged fruit.

このような検査は原理的にはそれほど難しい点はないが
、例えばミカンがコンベアで搬送される選果ラインなど
において、上記の検査を具体化するには多くの問題点が
発生する。
Although such an inspection is not so difficult in principle, many problems arise when implementing the above inspection in, for example, a fruit sorting line where oranges are conveyed on a conveyor.

特に、被検査物の各部分についての色相検査を短時間で
行なうには、光源部、受光部、信号処理部がそれぞれ複
数系統必要となるので、各部をいかにシンプルなものに
するかが極めて重要な課題となる。
In particular, in order to perform hue inspection on each part of the object to be inspected in a short time, multiple systems of light source sections, light receiving sections, and signal processing sections are required, so it is extremely important to keep each section simple. This poses a major challenge.

このため本発明では、まず、2種の光源から色の異なる
光を被検査物に照射してその反射光(または透過光)を
共通の受光素子で受光する方法をとることによって、被
検査物からの2種の反射光(または透過光)をダィクロ
ィックミラーなどで分離してそれぞれを別個の受光素子
で受光する方法に比較して、受光部の光学的構成及び信
号処理部を簡素化するようにした。
For this reason, in the present invention, first, the object to be inspected is irradiated with light of different colors from two types of light sources, and the reflected light (or transmitted light) is received by a common light receiving element. Compared to the method of separating two types of reflected light (or transmitted light) using a dichroic mirror or the like and receiving each light with a separate light receiving element, the optical configuration of the light receiving section and the signal processing section are simpler. I tried to make it look like this.

しかし、単に2種の光源を交互にパルス点灯して、この
点灯タイミングに同期して受光素子の出力を振分ける方
法は、2つの色の光の反射量(または透過量)の比を求
めるために、サンプルホ−ルド回路や割算回路等を用い
る比較的複雑な回路方式が必要となるとともに、被検査
物が振動する場合などにおいて、2色の光の照射タイミ
ングの差が測定精度を低下させる大きな原因となる欠点
がある。
However, the method of simply lighting two types of light sources in pulses alternately and distributing the output of the light receiving element in synchronization with the lighting timing is to calculate the ratio of the amount of reflection (or amount of transmission) of the two colors of light. This requires a relatively complex circuit system using sample-hold circuits, division circuits, etc., and the difference in the timing of irradiation of the two colors of light reduces measurement accuracy when the object to be inspected vibrates. There is a drawback that is a major cause of this.

《発明の目的》 この発明の目的は、サンプルホールド回路や割算回路な
どが不要で、かつ両反射または透過光線の比に相当する
デジタルデータを直接に得ることができる光学的検査装
置を提供することにある。
<Objective of the Invention> The object of the invention is to provide an optical inspection device that does not require a sample-hold circuit or a division circuit, and can directly obtain digital data corresponding to the ratio of both reflected or transmitted light beams. There is a particular thing.

《発明の構成》この発明は所定の色を有する第1の光線
を被検査物に照射するとともに、該第1の光線より遅ら
せて、第1の光線の色とは異なる色を有する第2の光線
を一定時間だけ、かつ両光軸を一致させて同一部分に重
ねて照射し、次いで両光線を同時に照射停止させる照光
器と;前記被検査物から反射または透過して得られる検
出光の光量に対応した電気信号を出力する単一の光電変
換器と三前記光電変換器の出力端子に接続され、前記第
1の光線が照射されているときに第1レベルの電圧を出
力し、かつ前記第1、第2の光線が重ねて照射されてい
るときに第2レベルの電圧を出力する増幅器と;前記増
幅器からの第1レベルの電圧が零しベルの電圧となるよ
うに、前記増幅器の出力電圧を校正する校正器と:前記
校正器で校正後の前記増幅回路の出力を積分する積分器
と;前記積分器の出力電圧に基づいて、前記第1、第2
レベル電圧間の差電圧と、前記第1レベル電圧との比に
応じた時間情報を出力する時間情報出力器と:を具備す
ることを特徴とするものである。
<<Structure of the Invention>> This invention irradiates an object to be inspected with a first light beam having a predetermined color, and a second light beam having a color different from the first light beam, which is delayed from the first light beam. An illuminator that irradiates the same area with a light beam for a certain period of time with both optical axes aligned, and then stops irradiating both light beams at the same time; the amount of detection light obtained by reflection or transmission from the object to be inspected; a single photoelectric converter that outputs an electrical signal corresponding to the three photoelectric converters, and outputs a voltage at a first level when the first light beam is irradiated; an amplifier that outputs a second level voltage when the first and second light beams are superimposed; a calibrator for calibrating the output voltage; an integrator for integrating the output of the amplifier circuit after being calibrated by the calibrator;
A time information output device that outputs time information according to a ratio between a voltage difference between level voltages and the first level voltage.

《実施例の説明》 以下、この発明の一実施例を添付図面に基づいて詳細に
説明する。
<Description of Embodiments> Hereinafter, an embodiment of the present invention will be described in detail based on the accompanying drawings.

第1図において、IGは緑色光を発生する発光素子、I
Rは赤色光を発生する発光素子であつて、これらの発光
素子IG及びIRからの光はハーフミラー2を介して互
いの光藤を一致させて、被検査物3の同一部分を同一条
件で照射するように配置されており、また被検査物3か
らの反射光は単一の受光素子4で受光されて光電変換さ
れ、受光素子4の出力は増幅器5で増幅される。
In FIG. 1, IG is a light emitting element that generates green light, I
R is a light emitting element that generates red light, and the light from these light emitting elements IG and IR is made to coincide with each other through a half mirror 2, and irradiates the same part of the object to be inspected 3 under the same conditions. The reflected light from the object to be inspected 3 is received by a single light receiving element 4 and photoelectrically converted, and the output of the light receiving element 4 is amplified by an amplifier 5.

発光素子IG及びIRの点灯はタイミング制御回路6に
よって制御され、その点灯タイミングは第2図のG及び
Rに示すように、まず発光素子IRを点灯して被検査物
3に赤色光を照射し(t,→ら)、次に発光素子IRを
点灯したままで、それに加えて発光素子IGも点灯して
赤色光及び緑色光を同時に照射し(ら→t3)、そして
両発光素子IG,IRを消灯して両光線の照射を停止す
る(ら)、という点灯モードを一定の周期で繰り返すよ
うにしている。従って「上記増幅器(すなわ受光素子4
)の出力は、第2図のaに示すように、期間t,→t2
では赤色光の反射量に対応した電圧Vrであり、期間t
2→らでは上記電圧Vrに緑色光の反射量に対応した電
圧V数ミプラスされて電圧Vr十Vgとなり、時点ら以
後は再び零になる。
The lighting of the light emitting elements IG and IR is controlled by the timing control circuit 6, and the lighting timing is as shown in G and R in FIG. (t, → ra), then, while the light emitting element IR remains lit, the light emitting element IG is also turned on, emitting red light and green light at the same time (ra → t3), and both the light emitting elements IG, IR The lighting mode of turning off the light and stopping the irradiation of both light beams (ra) is repeated at regular intervals. Therefore, "the above amplifier (that is, the light receiving element 4
), as shown in a of FIG.
Here, the voltage Vr corresponds to the amount of reflection of red light, and the period t
At 2 → et al., the voltage Vr corresponding to the amount of reflection of the green light is added to the voltage Vr by a number of volts, resulting in a voltage Vr + Vg, and after the time point et al., it becomes zero again.

また、7は積分器を示し、演算増幅器8と、積分定数を
決定するコンデンサC及び抵抗Rを、積分動作を制御す
るアナログスイッチからなる積分ゲート9とにより構成
されており、この積分器7の入力端には上記増幅器5の
出力が直流ゲート用の結合コンデンサ10を介して供給
されるようになっている。
Further, 7 indicates an integrator, which is composed of an operational amplifier 8, a capacitor C and a resistor R that determine an integration constant, and an integration gate 9 consisting of an analog switch that controls the integration operation. The output of the amplifier 5 is supplied to the input terminal via a coupling capacitor 10 for a DC gate.

また積分器7の入力端とアース間には、積分器7の入力
を零にクランプするためのアナログスイッチ11が接続
されていて、このアナログスイッチ11と上記積分ゲー
ト9がタイミング制御回路6によって次のように制御さ
れる。
Further, an analog switch 11 for clamping the input of the integrator 7 to zero is connected between the input terminal of the integrator 7 and the ground, and this analog switch 11 and the integration gate 9 are controlled by the timing control circuit 6 to controlled as follows.

アナログスイッチ11は第2図のbに示すように、赤色
光発光素子IRのみが点灯している期間ち→t2にON
となり、この期間は増幅器5の出力に関係なく積分器7
の入力を強制的に零にクランプし、時点らでアナログス
イッチ11がOFFになると、結合コンデンサ10を介
して増幅器5の出力の変化分が積分器7に入力される。
As shown in FIG. 2b, the analog switch 11 is turned ON at t2 during the period when only the red light emitting element IR is lit.
Therefore, during this period, regardless of the output of the amplifier 5, the integrator 7
When the input of the amplifier 5 is forcibly clamped to zero and the analog switch 11 is turned off at a certain point, the change in the output of the amplifier 5 is input to the integrator 7 via the coupling capacitor 10.

従って、積分器7の入力電圧は第2図のcに示すように
、時点t2までは零であり、期間ら→t3では時点ら以
後の変化分すなち上記電圧+Vgとなり、時点りまVg
−(Vr+Vg)=−Vrとなる。すなわち、期間L→
らの増幅器5の出力電圧Vrが積分器7に対して零入力
となるように、増幅器5の出力がレベルシフトされて積
分器7に入力されるのである。なお、図ではアナログス
イッチ11のONとなる立上がり点が時点t,より多少
遅れているが、これは琴クランプの作用を明確に示すた
めであって、これに限定されるものではなく、要は時点
tまでに零クランプが完了していればよい。
Therefore, as shown in c in FIG. 2, the input voltage of the integrator 7 is zero until time t2, and in the period t3, the change after time t, that is, the voltage +Vg, becomes Vg.
-(Vr+Vg)=-Vr. That is, period L→
The output of the amplifier 5 is level-shifted and input to the integrator 7 so that the output voltage Vr of the amplifier 5 becomes a zero input to the integrator 7. In addition, in the figure, the rising point at which the analog switch 11 is turned on is slightly delayed from time t, but this is to clearly show the action of the koto clamp, and is not limited to this. It is sufficient that zero clamping is completed by time t.

上記積分ゲート9は第2図dに示すように、時点t2か
ら時点t3以降の時点t4まで充分長い一定の時間だけ
OFFとなり、その期間t2→t4にのみ積分器7が動
作して入力信号の積分が行なわれ、それ以外では積分ゲ
ート9がONとなり積分器7が非動作状態であって、そ
の出力電圧は零に保たれる。
As shown in FIG. 2d, the integration gate 9 is turned off for a sufficiently long period of time from time t2 to time t4 after time t3, and the integrator 7 operates only during that period from t2 to t4, and the input signal is Integration is performed, otherwise the integration gate 9 is ON and the integrator 7 is inactive and its output voltage is kept at zero.

従って、積分器7の出力電圧は第2図のeに示すように
、時点t2までは零に保たれ、時点t2かららまでは入
力電圧Vgの積分が行なわれるので、出力電圧Vgに比
例した変化率で負方向に下降し、続いて時点らからLま
では入力電圧−Vrの積分が行なわれるので、出力電圧
はVrに比例した変化量で正方向に上昇する。
Therefore, as shown in e in Figure 2, the output voltage of the integrator 7 is kept at zero until time t2, and since the input voltage Vg is integrated from time t2 to t2, the output voltage is proportional to the output voltage Vg. Since the output voltage decreases in the negative direction at a rate of change, and then the input voltage -Vr is integrated from time point 0 to L, the output voltage increases in the positive direction with a change amount proportional to Vr.

ここで、時点tジメ降の積分過程において、積分器7の
出力電圧は零になる(零しベルに交差する)時点はとす
ると、′迄 Vgdt=′溝 Vrdtであって、ら−
t2=To(一定)、tx−上3=Txとすると、TX
=砦・T。
Here, in the integration process at time t, the output voltage of the integrator 7 becomes zero (crosses the zero bell) until 'Vgdt='Vrdt, and from -
If t2=To (constant) and tx-upper3=Tx, then TX
=Fortress T.

となり、時間Txは電圧Vrと電圧Vgの比に比例する
のである。
Therefore, the time Tx is proportional to the ratio of the voltage Vr and the voltage Vg.

そこで、上記時情訂xを側定すべく、まず積分器7の出
力を比較器12に導入し、第2図のfに示すように、積
分器7の出力が負になっている。
Therefore, in order to determine the above-mentioned time information correction x, the output of the integrator 7 is first introduced into the comparator 12, and as shown at f in FIG. 2, the output of the integrator 7 is negative.

期間ら→txで高レベルになる信号を得る。そして、こ
の比較器12の出力と、上記赤色光発光素子IRの点灯
信号Rをインバーター3で反転した信号と、積分ゲート
9への制御信号dと、比較的高い周波数のクロックパル
スを発生する発振器14の出力とをアンドゲート15に
導入し、これによって第2図のgに示すように、時点t
3からはの期間中にのみアンドゲート15から発振器1
4のクロツクパルスが出力されるようにする。更に、上
記点灯信号Rをリセット信号として、第2図のhに示す
ように動作するカウンタ16によって、アンドゲート1
5から出力されるクロツクパルスをカウントすれば上記
時間Txを測定することができ、このカウンター6の出
力が電圧Vてと電圧Vgとの比、すなわち被検査物3の
赤色光の反射量と緑色光の反射量との比に対応するので
ある。《発明の効果》 以上詳細に説明したように、本発明に係る検査装置によ
れば、被検査物に異なる2色の光を照射してそれぞれの
反射量(または透過量)の比を求める検査、測定を、極
めて簡単な光学的構成で、かつ簡単な回路方式の信号処
理によって実施することができるとともに、高速度の測
定が可能であり、被検査物の振動などによる影響の少な
い高精度の測定を行なうことができるなど、様々な効果
を奏するものである。
A signal that becomes high level during the period tx is obtained. Then, the output of the comparator 12, a signal obtained by inverting the lighting signal R of the red light emitting element IR by the inverter 3, a control signal d to the integrating gate 9, and an oscillator that generates a relatively high frequency clock pulse. 14 into the AND gate 15, thereby causing the time t
3 to oscillator 1 from AND gate 15 only during the period of
4 clock pulses are output. Furthermore, using the lighting signal R as a reset signal, the AND gate 1 is activated by the counter 16 operating as shown in h in FIG.
The above time Tx can be measured by counting the clock pulses output from the counter 6, and the output of the counter 6 is the ratio of the voltage Vte to the voltage Vg, that is, the amount of red light reflected by the inspected object 3 and the green light It corresponds to the ratio of the amount of reflection. <<Effects of the Invention>> As explained in detail above, the inspection apparatus according to the present invention can perform an inspection in which an object to be inspected is irradiated with light of two different colors and the ratio of the amount of reflection (or amount of transmission) of each is determined. , measurement can be carried out with an extremely simple optical configuration and signal processing using a simple circuit method, and it is also possible to perform high-speed measurement and to achieve high precision with little influence from vibrations of the test object. It has various effects such as being able to perform measurements.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図は
第1図における各要部のタイミングチャートである。 IG,IR……発光素子、3……被検査物、4・・…・
受光素子、5・…・・増感器、6・・・…タイミング制
御回路、7・・・・・・積分器、IQ…・・・結合コン
デンサ、il…・・・アナログスイッチ、12・・・・
・・比較器、14…・・・発振器、16・・・・・・カ
ウンタ。 第1図第2図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 is a timing chart of each main part in FIG. IG, IR...Light emitting element, 3...Object to be inspected, 4...
Light receiving element, 5... Sensitizer, 6... Timing control circuit, 7... Integrator, IQ... Coupling capacitor, il... Analog switch, 12...・・・
... Comparator, 14 ... Oscillator, 16 ... Counter. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1 所定の色を有する第1の光線を被検査物に照射する
とともに、該第1の光線より遅らせて、第1の光線の色
とは異なる色を有する第2の光線を一定時間だけ、かつ
両光軸を一致させて同一部分に重ねて照射し、次いで両
光線を同時に照射停止させる照光器と; 前記被検査物
から反射または透過して得られる検出光の光量に対応し
た電気信号を出力する単一の光電変換器と; 前記光電
変換器の出力端子に接続され、前記第1の光線が照射さ
れているときに第1レベルの電圧を出力し、かつ前記第
1、第2の光線が重ねて照射されているときに第2レベ
ルの電圧を出力する増幅器と; 前記増幅器からの第1
レベルの電圧が零レベルの電圧となるように、前記増幅
器の出力電圧を校正する校正器と; 前記校正器で校正
後の前記増幅回路の出力を積分する積分器と; 前記積
分器の出力電圧に基づいて、前記第1、第2レベル電圧
間の差電圧と、前記第1レベル電圧との比に応じた時間
情報を出力する時間情報出力器と;を具備することを特
徴とする光学的検査装置。
1 A first light beam having a predetermined color is irradiated onto the object to be inspected, and a second light beam having a color different from the first light beam is irradiated for a certain period of time, delayed from the first light beam, and An illuminator that aligns both optical axes, irradiates the same area overlappingly, and then stops irradiating both beams at the same time; Outputs an electrical signal corresponding to the amount of detection light obtained by reflection or transmission from the object to be inspected; a single photoelectric converter; connected to an output terminal of the photoelectric converter, outputting a voltage at a first level when the first light beam is irradiated; an amplifier for outputting a second level of voltage when the first voltage from the amplifier is superimposed;
a calibrator that calibrates the output voltage of the amplifier so that the level voltage becomes a zero level voltage; an integrator that integrates the output of the amplifier circuit after being calibrated with the calibrator; and an output voltage of the integrator. and a time information output device that outputs time information according to the ratio of the voltage difference between the first and second level voltages and the first level voltage based on the above. Inspection equipment.
JP4000677A 1977-04-08 1977-04-08 optical inspection Expired JPS6039974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4000677A JPS6039974B2 (en) 1977-04-08 1977-04-08 optical inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4000677A JPS6039974B2 (en) 1977-04-08 1977-04-08 optical inspection

Publications (2)

Publication Number Publication Date
JPS53125086A JPS53125086A (en) 1978-11-01
JPS6039974B2 true JPS6039974B2 (en) 1985-09-09

Family

ID=12568814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4000677A Expired JPS6039974B2 (en) 1977-04-08 1977-04-08 optical inspection

Country Status (1)

Country Link
JP (1) JPS6039974B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177269A (en) * 1984-02-22 1985-09-11 Yamaichi Seikou:Kk Probe contact
JPS6244283U (en) * 1985-09-05 1987-03-17
JPS6293769U (en) * 1985-12-02 1987-06-15

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5994021A (en) * 1982-11-22 1984-05-30 Hitachi Maxell Ltd Color sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177269A (en) * 1984-02-22 1985-09-11 Yamaichi Seikou:Kk Probe contact
JPS6244283U (en) * 1985-09-05 1987-03-17
JPS6293769U (en) * 1985-12-02 1987-06-15

Also Published As

Publication number Publication date
JPS53125086A (en) 1978-11-01

Similar Documents

Publication Publication Date Title
CA1084149A (en) Electro-optical ranging system for distance measurements to moving targets
US4061925A (en) Method and apparatus for measuring radiation from a plurality of light sources
FR2363789A1 (en) PERFECTED TRICHROMATIC COLORIMETER
JPH0213735B2 (en)
JPH0140949B2 (en)
JPS6039974B2 (en) optical inspection
US3981586A (en) Continuously monitoring ratiometer
US4076425A (en) Opacity measuring apparatus
US3845400A (en) Signal analyzing apparatus
JPH0512657B2 (en)
US3597760A (en) Differential digital converter
JPH11132846A (en) Photoelectric sensor and color sensor
US4545681A (en) Method and apparatus for controlling measurement in a spectrophotometer
SU1068731A1 (en) Method and device for nuclear abosrption analysis
JPH11142519A (en) Optical range finder
JPS5915089Y2 (en) Laser output monitoring device
RU2123663C1 (en) Digital optico-electron dimension converter
SU1087780A1 (en) Two-beam differential photometer
SU1739244A1 (en) Device for automatic inspection of geometric dimensions of the object
JP3028001B2 (en) Optical displacement meter
SU1723455A1 (en) Method for determining optical characteristics of sample and device
RU1568683C (en) Radiant energy meter
SU896400A1 (en) Device for checking article flaws
JPS6254174A (en) Pulse jitter measuring circuit
SU827983A1 (en) Photometer