JPS6358089A - Method of operating fluidized bed furnace - Google Patents

Method of operating fluidized bed furnace

Info

Publication number
JPS6358089A
JPS6358089A JP20128586A JP20128586A JPS6358089A JP S6358089 A JPS6358089 A JP S6358089A JP 20128586 A JP20128586 A JP 20128586A JP 20128586 A JP20128586 A JP 20128586A JP S6358089 A JPS6358089 A JP S6358089A
Authority
JP
Japan
Prior art keywords
furnace
temperature
heating medium
heater
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20128586A
Other languages
Japanese (ja)
Other versions
JPH07111309B2 (en
Inventor
逵本 信也
古瀬 昭平
稲森 忠一
石橋 幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trinity Industrial Corp
Toyota Motor Corp
Original Assignee
Trinity Industrial Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trinity Industrial Corp, Toyota Motor Corp filed Critical Trinity Industrial Corp
Priority to JP61201285A priority Critical patent/JPH07111309B2/en
Publication of JPS6358089A publication Critical patent/JPS6358089A/en
Publication of JPH07111309B2 publication Critical patent/JPH07111309B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炉内に充填されてヒータで加熱されるアルミ
ナ粉末、ジルコンサンド等の砂状の熱媒を、炉底から供
給される圧縮気体により流動させてプラスチック成形用
金型等を加熱するように成された流動床炉の運転方法に
係り、特に流動床炉の運転を開始して炉内を常温から所
定の温度にまで加熱する昇温時における運転方法に関す
る。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to compressing a sand-like heating medium such as alumina powder, zircon sand, etc., which is filled in a furnace and heated by a heater, and which is supplied from the bottom of the furnace. It relates to a method of operating a fluidized bed furnace that heats plastic molding molds, etc. by fluidizing gas, and in particular, starts the operation of the fluidized bed furnace and heats the inside of the furnace from room temperature to a predetermined temperature. This article relates to an operating method when the temperature rises.

〔従来技術とその問題点〕[Prior art and its problems]

流動床炉は、炉内に充填された砂状の熱媒を炉底から供
給する圧縮気体で流動的に攪拌しなからヒータで通常約
300〜350℃程度に加熱し、この流動する熱媒の上
にプラスチック成形用金型を載置して一定時間加熱する
ように成され、当該流動床炉で加熱されたプラスチック
成形用金型は別工程に移されてプラスチック成形材料供
給装置から当該金型内に充填供給されたプラスチック成
形材料を加熱溶融させるように成されている。
In a fluidized bed furnace, a sand-like heating medium filled in the furnace is fluidly stirred with compressed gas supplied from the bottom of the furnace, and then heated to approximately 300 to 350°C with a heater. A plastic molding mold is placed on top of the furnace and heated for a certain period of time, and the plastic molding mold heated in the fluidized bed furnace is transferred to another process and the mold is removed from the plastic molding material supply device. It is designed to heat and melt the plastic molding material filled and supplied into the mold.

ところで、流動床炉の昇温開始に際しては、炉内に充填
された熱媒の各粒子が常温で比重が重くなっており、し
かも非常に微細な各粒子が互いに緻密に固まって流動性
のない状態となっている。
By the way, when the temperature of a fluidized bed furnace starts to rise, each particle of the heating medium filled in the furnace has a heavy specific gravity at room temperature, and the very fine particles are densely packed together and have no fluidity. It is in a state.

したがって、熱媒の各粒子間の通気性が悪く、・炉底か
ら供給する圧縮気体の流通性が悪いから、熱媒を加熱す
るヒータの熱が分子lkされ難く、当該ヒータの放熱量
が大きい場合にはその周囲が異常な高温となってヒータ
の焼損事故を生ずるおそれがある。
Therefore, the air permeability between each particle of the heating medium is poor, and the flowability of the compressed gas supplied from the bottom of the furnace is poor, so the heat of the heater that heats the heating medium is difficult to be released into molecules, and the amount of heat dissipated by the heater is large. In such a case, the surrounding area may reach an abnormally high temperature, which may cause the heater to burn out.

また、ヒータによって十分に熱せられた熱媒の各粒子は
、流動性を増して比重も非常に軽4なるから、その運動
が活発になってあたかも液体が沸騰しているような状態
となり、炉底から供給する圧縮気体の出力が高過ぎると
炉外に吹き溢れてしまうおそれがある。
In addition, each particle of the heating medium that has been sufficiently heated by the heater increases its fluidity and its specific gravity becomes extremely light, so its movement becomes active and it becomes like a boiling liquid, causing the furnace to melt. If the output of the compressed gas supplied from the bottom is too high, there is a risk that it will overflow outside the furnace.

また、このように熱媒が炉外に吹き溢れる程に圧縮気体
の出力が高過ぎると、炉内の熱が圧縮気体と共に炉外に
大量に逃散して熱損失が大きくなり、加熱効率が非常に
悪くなってしまう。
Additionally, if the output of the compressed gas is so high that the heating medium overflows outside the furnace, a large amount of the heat inside the furnace will escape to the outside of the furnace together with the compressed gas, resulting in large heat loss and extremely low heating efficiency. It gets worse.

このため、従来においては、炉底から供給する圧縮気体
の出力を、比重が軽くなった熱媒の粒子が炉内から吹き
溢れることなく、しかも熱損失なく効率良く加熱され得
る程度に当初から低く設定すると同時に、ヒータの放熱
量も熱媒が固まった状態にある昇温開始時にヒータの焼
損を生じない程度に低く設定している。
For this reason, in the past, the output of the compressed gas supplied from the bottom of the furnace was kept low from the beginning to the extent that particles of the heating medium with a reduced specific gravity would not blow out of the furnace and could be heated efficiently without heat loss. At the same time, the heat dissipation amount of the heater is also set to be low enough to prevent burnout of the heater at the start of temperature increase when the heating medium is solidified.

しかしながら、このような従来方法によると、例えば比
較的大型の自動車部品を製造する流動床炉の運転開始に
際して、通常約7〜8時間程度の非常に長い昇温時間を
要し、作業能率が非常に悪いと同時に、電力費等のラン
ニングコストが著しく嵩むという重大な欠点があった。
However, according to such conventional methods, for example, when starting the operation of a fluidized bed furnace for manufacturing relatively large automobile parts, it takes a very long time to raise the temperature, usually about 7 to 8 hours, and the work efficiency is extremely low. At the same time, there was a serious drawback in that running costs such as electricity costs increased significantly.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、流動床炉の運転を開始して炉内を所定
の温度に昇温させる際に、炉内に配設されたヒータの焼
損事故を生じたり、熱媒が炉外に吹き溢れたりすること
なく、また熱損失も非常に少なくして炉内を効率良く短
時間で昇温させることができる流動床炉の運転方法を提
供することを目的とする。
Therefore, the present invention prevents the heater installed in the furnace from burning out and the heating medium overflowing outside the furnace when the fluidized bed furnace starts operating and raises the temperature inside the furnace to a predetermined temperature. It is an object of the present invention to provide a method for operating a fluidized bed furnace that can efficiently raise the temperature inside the furnace in a short time without causing heat loss and with very little heat loss.

〔発明の構成〕[Structure of the invention]

この目的を達成するために、本発明は、炉内に充填され
てヒータで加熱される砂状の熱媒を炉底から供給する圧
縮気体により流動させて当該熱媒上に載置された金型を
加熱するように成された流動床炉の運転方法において、
炉内の昇温開始時には常温で固まった状態の熱媒中に前
記ヒータの熱を強制的に分散させ得る所要の高出力で前
記圧縮気体を供給し、固まった熱媒がほぐれた後は当該
圧縮気体の出力を炉内の温度上昇に応じて段階的に低下
させながら炉内を所定の温度にまで昇温させることを特
徴とする。
In order to achieve this object, the present invention has been developed by making a sand-like heating medium filled in a furnace and heated by a heater flowed by compressed gas supplied from the bottom of the furnace, and placing gold on top of the heating medium. In a method of operating a fluidized bed furnace configured to heat a mold,
When the temperature in the furnace starts to rise, the compressed gas is supplied at the required high power to forcibly disperse the heat of the heater into the heating medium that is solidified at room temperature, and after the solidified heating medium is loosened, the compressed gas is It is characterized by raising the temperature inside the furnace to a predetermined temperature while decreasing the output of compressed gas in stages according to the rise in temperature inside the furnace.

〔発明の作用〕[Action of the invention]

本発明方法によれば、昇温開始時に、圧縮気体が、常温
で固まった状態の熱媒中にヒータの熱を強制的に分散さ
せ得る所要の高出力で供給されるから、ヒータの放熱量
を従来より多くしてもその周囲が過熱されて当該ヒータ
の焼損事故を生ずるおそれがなく、したがってヒータの
放熱量と圧縮気体の供給量とを共に多くして、固まった
熱媒を極めて短時間でほぐして流動化させることができ
る。
According to the method of the present invention, at the start of temperature rise, compressed gas is supplied at the required high output that can forcefully disperse the heat of the heater into the heating medium that is solidified at room temperature, so the amount of heat dissipated from the heater is Even if the temperature is increased compared to conventional methods, there is no risk of overheating the surrounding area and causing burnout of the heater. Therefore, by increasing both the amount of heat dissipated by the heater and the amount of compressed gas supplied, the solidified heat medium can be heated in an extremely short time. It can be loosened and fluidized.

また、固まった熱媒がほぐれた後は、圧縮気体の出力を
炉内の温度上昇に応じて段階的に低下させるから、炉内
の温度上昇に伴って比重が軽くなる熱媒が炉外に吹き溢
れることを防止できると共に、炉外への熱の逃散による
熱損失を抑制して炉内を効率良く短時間で昇温すること
ができる。
In addition, after the solidified heating medium is loosened, the output of the compressed gas is gradually reduced according to the temperature rise inside the furnace, so that the heating medium whose specific gravity becomes lighter as the temperature inside the furnace rises is released outside the furnace. It is possible to prevent overflow, suppress heat loss due to heat dissipation to the outside of the furnace, and efficiently raise the temperature inside the furnace in a short time.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて具体的に説明す
る。
Embodiments of the present invention will be specifically described below based on the drawings.

第1図は本発明方法を使用する流動床炉の概略構成を示
すフローシート図、第2図は本発明方法を説明するため
のグラフである。
FIG. 1 is a flow sheet diagram showing a schematic configuration of a fluidized bed furnace using the method of the present invention, and FIG. 2 is a graph for explaining the method of the present invention.

図中、1は流動床炉であって、断熱壁でなる炉本体2内
にはジルコンサンド等の微細な砂状の熱媒3が充填され
ると共に、当該熱媒3を加熱するシーズヒータ等のヒー
タ4が配設されている。
In the figure, reference numeral 1 denotes a fluidized bed furnace, in which a furnace body 2 made of an insulated wall is filled with a fine sand-like heat medium 3 such as zircon sand, and a sheathed heater etc. that heats the heat medium 3. A heater 4 is provided.

また、炉本体2内の底部には、圧縮エア(圧縮気体)が
供給される給気室5が設けられ、この給気室5の上面に
は圧縮エアを炉内に噴出させる分散板6が配設され、当
該分散板6から上方に向けて噴出される圧縮エアによっ
てヒータ4の熱が炉内に均一に分散されると共に、炉内
に充填された熱媒3が流動せられるように成されている
Further, an air supply chamber 5 to which compressed air (compressed gas) is supplied is provided at the bottom of the furnace body 2, and a dispersion plate 6 is provided on the top surface of this air supply chamber 5 to blow out compressed air into the furnace. The heat of the heater 4 is uniformly distributed in the furnace by the compressed air blown upward from the distribution plate 6, and the heating medium 3 filled in the furnace is made to flow. has been done.

7は、給気室5と圧縮エア供給源(図示せず)との間に
接続されたエア供給管であって、当該エア供給管7には
流量計8と流量調整弁9が介装されている。
Reference numeral 7 denotes an air supply pipe connected between the air supply chamber 5 and a compressed air supply source (not shown), and a flow meter 8 and a flow rate adjustment valve 9 are interposed in the air supply pipe 7. ing.

10は、炉本体2内に設けた温度検出器11からの温度
検出信号と、流量計8からの流M検出信号などに基づい
て、炉本体2内の底部に配設された分散板6から噴出さ
れる圧縮エアの出力を可変する制御信号を流量調整弁9
に対して出力する制j卸盤である。
Reference numeral 10 indicates a temperature detection signal from a temperature detector 11 provided in the furnace body 2, a flow M detection signal from the flow meter 8, etc., from a dispersion plate 6 disposed at the bottom of the furnace body 2. A control signal for varying the output of compressed air to be ejected is sent to the flow rate adjustment valve 9.
This is a wholesale edition that is output for.

12は、炉本体2内に充填された熱媒3上に載置される
プラスチック成形用金型であって、炉本体2内で一定時
間加熱された後、別工程に移されてプラスチック成形材
料供給装置(図示せず)によりその内壁に沿ってプラス
チック成形材料が充填されるようになされている。
12 is a mold for plastic molding placed on the heat medium 3 filled in the furnace body 2, and after being heated in the furnace body 2 for a certain period of time, it is transferred to another process and the plastic molding material is A feeding device (not shown) is adapted to fill the plastic molding material along its inner wall.

なお、工3は圧縮エア供給源から送給される圧縮エア中
の塵埃等を捕集するフィルタ、14は圧縮エア供給源か
ら例えば4〜5 Kg / c己程度で送給される圧縮
エアの圧力を約2.5Kg/cnl程度に減圧させる減
圧弁である。
Note that 3 is a filter that collects dust, etc. in the compressed air supplied from the compressed air supply source, and 14 is a filter that collects the compressed air at a rate of, for example, 4 to 5 kg/cm from the compressed air supply source. This is a pressure reducing valve that reduces the pressure to about 2.5 kg/cnl.

以上が、本発明方法を使用する流動床炉の一例構成であ
り、次にこれを用いた本発明方法について第2図を伴っ
て説明する。
The above is an example of the configuration of a fluidized bed furnace using the method of the present invention. Next, the method of the present invention using this will be explained with reference to FIG. 2.

流動床炉1の運転を開始した昇温開始時においては、ヒ
ータ4の加熱を開始すると同時に、炉本体2の底部に設
けた分散Fi6から噴出される圧縮エアの出力が常温で
固まった状態にある熱媒3中にヒータ4の熱を強制的に
分散させ得る所要の高出力になるように、流量調整弁9
の開度を制御盤10からの制御信号によって設定してお
く。
When the fluidized bed furnace 1 starts operating and the temperature starts to rise, at the same time as the heater 4 starts heating, the output of the compressed air blown out from the dispersion Fi 6 provided at the bottom of the furnace body 2 becomes solid at room temperature. The flow rate regulating valve 9 is adjusted so that the required high output is obtained to forcefully disperse the heat of the heater 4 into a certain heating medium 3.
The opening degree of the opening is set by a control signal from the control panel 10.

ここで、分散板6から噴出される圧縮エアの出力は、第
2図に示すように、減圧弁14を通って2.5Kg/c
n!の圧力で送給される圧縮エアをそのまま分散板6か
ら噴出させた場合の例えば約60%に相当するエア出力
に選定される。
Here, as shown in FIG. 2, the output of the compressed air ejected from the dispersion plate 6 is 2.5 kg/c
n! The air output is selected to be equivalent to, for example, about 60% of the air output when compressed air supplied at a pressure of

このように、分散板6から圧縮エアが約60%の高出力
で噴出されると、ヒータ4の熱が当該ヒータ4の周囲に
滞ることなく熱媒3中に強制的に分散されるから、ヒー
タ4が過熱されて熱線等の焼損事故を生ずることがなく
、また固まった状態の熱媒3中に浸透せられる熱空気の
量が多くなって熱媒粒子への熱伝導効率が非常に良好と
なり、熱媒3全体が短時間でほぐれやすくなる。
In this way, when the compressed air is ejected from the distribution plate 6 at a high output of about 60%, the heat of the heater 4 is forcibly dispersed into the heat medium 3 without being accumulated around the heater 4. The heater 4 will not be overheated and burn out the hot wire, etc., and the amount of hot air that can permeate into the solidified heat medium 3 will be large, resulting in very good heat conduction efficiency to the heat medium particles. Therefore, the entire heat medium 3 is easily loosened in a short time.

なお、このときの炉本体2内は100℃以下の比較的低
い温度であるから、圧縮エアを高出力で供給しても炉外
に逃散する熱量が少なく、熱損失が非常に小さくて済む
Note that at this time, the inside of the furnace body 2 is at a relatively low temperature of 100° C. or less, so even if compressed air is supplied at high output, the amount of heat escaping to the outside of the furnace is small, and heat loss is extremely small.

そして、炉本体2内の温度が漸次上昇して、固まった熱
媒3が完全にほぐれて流動性を増す例えば100℃に達
すると、当該温度を検出した温度検出器11からの検出
信号に基づき、加熱されて比重が軽くなり流動性も良く
なった熱媒3の各粒子が圧縮エアと共に炉外に吹き溢れ
ないように、制御盤10から流量調整弁9に対してエア
出力を約55%に低下させる制御信号が出力される。
Then, when the temperature inside the furnace body 2 gradually rises and the solidified heating medium 3 completely loosens and increases its fluidity, for example reaching 100°C, based on the detection signal from the temperature detector 11 that has detected the temperature. In order to prevent each particle of the heating medium 3, which has been heated and has a lighter specific gravity and improved fluidity, from blowing out of the furnace together with the compressed air, the air output from the control panel 10 to the flow rate adjustment valve 9 is reduced by approximately 55%. A control signal is output to lower the temperature to .

なお、熱媒3がほぐれて流動性を増すと熱媒3の各粒子
間の通気性も良くなり、炉底から供給された圧縮エアが
炉本体2内から抜は出やすくなるが、上記の如く圧縮エ
アの出力を60%から55%に低下させて炉本体2内に
供給する圧縮エアの風速を低下させることにより、当該
圧縮エアと共に炉外に逃散する熱量を少なくして熱損失
を少なく抑えることができる。
Note that when the heating medium 3 loosens and increases its fluidity, the air permeability between the particles of the heating medium 3 also improves, making it easier for the compressed air supplied from the bottom of the furnace to come out of the furnace body 2. By reducing the output of compressed air from 60% to 55% and reducing the wind speed of the compressed air supplied into the furnace body 2, the amount of heat that escapes to the outside of the furnace together with the compressed air is reduced, reducing heat loss. It can be suppressed.

そして、炉本体2内の温度が200℃に達して熱媒3の
各粒子の比重が更に軽くなると、圧縮エアの出力を約4
5%に低下させて、熱媒3の吹き溢れを防止すると同時
に炉本体2の熱損失も抑制する。
When the temperature inside the furnace body 2 reaches 200°C and the specific gravity of each particle of the heating medium 3 becomes even lighter, the output of the compressed air is reduced to about 4
By reducing the amount to 5%, the heating medium 3 is prevented from overflowing, and at the same time, heat loss in the furnace body 2 is also suppressed.

そして、炉本体2内の温度が約300℃にまで上昇して
昇温が完了すると、圧縮エアの出力を通常運転時に最適
な約35%程度に低下させると共に、ヒータ4の加熱温
度も炉本体2内を通常運転時に必要な300〜350℃
の所定の温度に維持し得るように設定する。
When the temperature inside the furnace body 2 rises to about 300 degrees Celsius and the temperature rise is completed, the output of compressed air is reduced to about 35% of the optimum level during normal operation, and the heating temperature of the heater 4 is also increased. 300 to 350℃ required for normal operation inside 2
The temperature is set so that it can be maintained at a predetermined temperature.

なお、このように圧縮エアの出力を約35%程度に低下
させても、熱媒3は炉本体2内の温度上昇に伴って高温
に加熱され、比重が非常に軽くなって流動性が極めて良
いから、ヒータ4の熱分散も極めて良く、当該ヒータ4
の過熱による焼損事故は生じない。また、圧縮エアの出
力も低くなっているから、高温の炉内から炉外への熱の
逃散も少ない。
Note that even if the output of compressed air is reduced to about 35% in this way, the heating medium 3 will be heated to a high temperature as the temperature inside the furnace body 2 increases, and its specific gravity will become extremely light and its fluidity will become extremely low. The heat dissipation of the heater 4 is also very good, and the heater 4
No burnout accidents occur due to overheating. Furthermore, since the output of the compressed air is low, there is less heat dissipation from the high-temperature inside of the furnace to the outside of the furnace.

以上のように、流動床炉1の運転開始時に供給する圧縮
エアの出力を、昇温開始時に設定された約60%の高出
力から、炉内の温度が100°C上昇するごとに段階的
に55%〜35%まで低下させた場合には、炉内の昇温
時間が従来の約2に相当する約2時間〜3時間程度で済
むことが実験により確認された。
As described above, the output of the compressed air supplied at the start of operation of the fluidized bed furnace 1 is gradually increased from the high output of about 60% set at the start of temperature rise every time the temperature inside the furnace rises by 100°C. It has been confirmed through experiments that when the temperature is reduced to 55% to 35%, the time required to raise the temperature inside the furnace is about 2 to 3 hours, which is about 2 hours compared to the conventional method.

したがって、従来に比べて作業能率が著しく向上される
と共に、電力費等のランニングコストが大幅に低減され
るという優れた効果がある。
Therefore, there are excellent effects in that work efficiency is significantly improved and running costs such as electricity costs are significantly reduced compared to the conventional method.

なお、上記のように炉本体2内が所要の加熱温度に達す
ると、その上方から熱媒3上にプラスチック成形用金型
12を載置して、当該金型12をその下面側に接触しな
がら流動する熱媒3により一定時間加熱し、これを別工
程に移して当該金型12内にプラスチック成形材料を充
填し加熱溶融させる。
When the inside of the furnace main body 2 reaches the required heating temperature as described above, the plastic molding mold 12 is placed on the heating medium 3 from above, and the mold 12 is brought into contact with the lower surface side of the heating medium 3. The plastic molding material is heated for a certain period of time by the flowing heating medium 3, and then transferred to another step, where the plastic molding material is filled into the mold 12 and heated and melted.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、流動床炉の運転を
開始して炉内を昇温する際に、炉底から供給される圧縮
気体が、最初は常温で固まった状態の熱媒中にヒータの
熱を強制的に分散させ得る所要の高出力で供給されるか
ら、ヒータの放熱量を多くしてもその周囲が過熱されて
当該ヒータの焼損事故を生ずるおそれがないと同時に、
固まった熱媒を極めて短時間でほぐして流動化させるこ
とができる。また、熱媒がほぐれた後は、圧縮気体の出
力を炉内の温度上昇に応じて段階的に低下させるから、
炉内の温度上昇に伴って比重が軽くなる熱媒が炉外に吹
き溢れることを防止できると共に、炉外への熱の逃散に
よる熱損失を抑制して炉内を効率良く短時間で昇温する
ことができる。
As described above, according to the present invention, when starting the operation of a fluidized bed furnace and raising the temperature inside the furnace, the compressed gas supplied from the bottom of the furnace is initially a heat medium that is solidified at room temperature. Since the heat is supplied at the required high power that can forcefully disperse the heat of the heater, even if the amount of heat radiated by the heater is increased, there is no risk of overheating the surrounding area and causing a burnout accident of the heater.
It is possible to loosen and fluidize a solidified heat medium in an extremely short time. In addition, after the heating medium is loosened, the output of the compressed gas is reduced in stages according to the temperature rise in the furnace.
This prevents the heating medium, whose specific gravity decreases as the temperature rises inside the furnace, from overflowing outside the furnace, and also suppresses heat loss due to heat dissipation outside the furnace, raising the temperature inside the furnace efficiently and in a short time. can do.

したがって、作業能率を著しく向上させると共に、電力
費等のランニングコストを大幅に低減させることができ
るという優れた効果がある。
Therefore, there is an excellent effect that working efficiency can be significantly improved and running costs such as electric power costs can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を使用する流動床炉の概略構成を示
すフローシート図、第2図は本発明方法を説明するため
のグラフである。 符号の説明 1−・流動床炉、2・−・炉本体、3−・熱媒、4−・
−ヒータ、5・−・給気室、6・−分散板、7−エア配
管、9−・−流量調整弁、l〇−制御盤、11・−・温
度検出器ミ12・−プラスチック成形用金型。 特許出願人  トリニティ工業株式会社第2図 (工弁功%)
FIG. 1 is a flow sheet diagram showing a schematic configuration of a fluidized bed furnace using the method of the present invention, and FIG. 2 is a graph for explaining the method of the present invention. Explanation of symbols 1--fluidized bed furnace, 2--furnace body, 3--heating medium, 4--
-Heater, 5--Air supply chamber, 6--Dispersion plate, 7-Air piping, 9--Flow rate adjustment valve, l〇-Control panel, 11--Temperature sensor 12--For plastic molding Mold. Patent Applicant: Trinity Industries Co., Ltd. Figure 2 (Construction Benefits %)

Claims (1)

【特許請求の範囲】[Claims] 炉内に充填されてヒータで加熱される砂状の熱媒を炉底
から供給する圧縮気体により流動させて当該熱媒上に載
置された金型を加熱するように成された流動床炉の運転
方法において、炉内の昇温開始時には常温で固まった状
態の熱媒中に前記ヒータの熱を強制的に分散させ得る所
要の高出力で前記圧縮気体を供給し、固まった熱媒がほ
ぐれた後は当該圧縮気体の出力を炉内の温度上昇に応じ
て段階的に低下させながら炉内を所定の温度にまで昇温
させることを特徴とする流動床炉の運転方法。
A fluidized bed furnace configured to heat a mold placed on the heating medium by fluidizing a sand-like heating medium filled in the furnace and heated by a heater using compressed gas supplied from the bottom of the furnace. In this operating method, when the temperature in the furnace starts to rise, the compressed gas is supplied at a required high power to forcibly disperse the heat of the heater into the heating medium that is solidified at room temperature, and the compressed gas is 1. A method of operating a fluidized bed furnace, which comprises raising the temperature of the inside of the furnace to a predetermined temperature while gradually lowering the output of the compressed gas after the compressed gas is loosened in accordance with the rise in temperature inside the furnace.
JP61201285A 1986-08-29 1986-08-29 How to operate a fluidized bed furnace Expired - Lifetime JPH07111309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201285A JPH07111309B2 (en) 1986-08-29 1986-08-29 How to operate a fluidized bed furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201285A JPH07111309B2 (en) 1986-08-29 1986-08-29 How to operate a fluidized bed furnace

Publications (2)

Publication Number Publication Date
JPS6358089A true JPS6358089A (en) 1988-03-12
JPH07111309B2 JPH07111309B2 (en) 1995-11-29

Family

ID=16438437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201285A Expired - Lifetime JPH07111309B2 (en) 1986-08-29 1986-08-29 How to operate a fluidized bed furnace

Country Status (1)

Country Link
JP (1) JPH07111309B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122240U (en) * 1984-07-13 1986-02-08 オ−エスジ−株式会社 Rolled flat die

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122240U (en) * 1984-07-13 1986-02-08 オ−エスジ−株式会社 Rolled flat die

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10214066B2 (en) 2013-03-15 2019-02-26 Indian Motorcycle International, LLC Two-wheeled vehicle
US11260712B2 (en) 2013-03-15 2022-03-01 Indian Motorcycle International, LLC Two-wheeled vehicle

Also Published As

Publication number Publication date
JPH07111309B2 (en) 1995-11-29

Similar Documents

Publication Publication Date Title
US4222429A (en) Foundry process including heat treating of produced castings in formation sand
EP0265707A3 (en) Method of and device for thermo-mechanical regeneration of bulk goods especially foundry returned sand
JPS6358089A (en) Method of operating fluidized bed furnace
US4484947A (en) Method for melting a charge of bulk solid metal
CN111059895A (en) High-temperature tunnel type electro-thermal dynamic sintering furnace
JPS6358090A (en) Method of operating fluidized bed furnace
CN105903898A (en) Shell mold sintering method and device
MXPA03000324A (en) Infrared heating method and apparatus for curing refractories.
CN207865978U (en) A kind of heavy duty detergent brown fused alumina micropowder processing dumping furnace
CN205834112U (en) Shell mould sintering equipment
JP2000061578A (en) Molding sand heating-reconditioning furnace and molding sand heating-reconditioning system
JPH0212323B2 (en)
CN214349521U (en) 350 ℃ die casting oil temperature machine
JPH06335933A (en) Powder slush molding apparatus
JPH0841501A (en) Method and apparatus for heating powder and use of said apparatus
JPS57118853A (en) Low pressure casting method
JPS6053781A (en) Heat recovery device for exhaust gas from industrial furnace
JPH0629678Y2 (en) Preheating furnace heater
JP2001246446A (en) Method for controlling temperature of metallic mold and its unit
CN207214810U (en) A kind of hot-working attemperator
CN206919684U (en) A kind of blast-heating cupola
JP4293812B2 (en) Fluidized bed heat treatment furnace
JPH054912Y2 (en)
JPS6345678Y2 (en)
JPS6135920Y2 (en)