JPS6358069A - Chilling unit - Google Patents
Chilling unitInfo
- Publication number
- JPS6358069A JPS6358069A JP20298286A JP20298286A JPS6358069A JP S6358069 A JPS6358069 A JP S6358069A JP 20298286 A JP20298286 A JP 20298286A JP 20298286 A JP20298286 A JP 20298286A JP S6358069 A JPS6358069 A JP S6358069A
- Authority
- JP
- Japan
- Prior art keywords
- evaporator
- room
- control valve
- cooling
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001816 cooling Methods 0.000 claims description 39
- 239000003507 refrigerant Substances 0.000 claims description 28
- 230000007246 mechanism Effects 0.000 claims description 12
- 238000005057 refrigeration Methods 0.000 claims description 6
- 238000001514 detection method Methods 0.000 claims description 5
- 239000007788 liquid Substances 0.000 description 11
- 239000000725 suspension Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 230000005494 condensation Effects 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000009940 knitting Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
Landscapes
- Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、2つの蒸発器(室内熱交換器)を直列に冷媒
管で接続したマルチ方式の冷房装置に係り、特に、この
冷房装置における冷房運転時の上記室内熱交換器の冷房
能力の個別制m+装買に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a multi-type cooling system in which two evaporators (indoor heat exchangers) are connected in series through refrigerant pipes, and particularly relates to , relates to individual control of the cooling capacity of the indoor heat exchanger during cooling operation in this cooling device.
既に提案されている2つの室内熱交1!!!器(蒸発器
)を直列に接続したマルチ方式の冷房装置は、第4図に
示されるように構成されている。Two indoor heat exchangers that have already been proposed 1! ! ! A multi-type cooling system in which evaporators (evaporators) are connected in series is constructed as shown in FIG.
即ち、第4図において、マルチ方式の冷房装置は、2室
間時冷房運転時、圧ll11機1を駆動することにより
、この圧縮機1は、冷媒を圧縮し、この圧縮されたガス
冷媒は、吐出管2を通して凝ll1i器(室外熱交換器
)3へ移送され、こ・で外気と熱交換して液冷媒とし、
さらに、これを主キャピラリーチューブ(絞り[4m)
4を通すことによって減圧し、しかる俵、減圧された液
冷媒は、第1室■内に設けられた第1室内フアン5を備
えた第1蒸発器(第1室内熱交換器)6へ移送され、こ
)で、空白空気と熱交換して上記第1室■内を冷房し、
この第1蒸発器6で仕事を了えた冷媒は、第2室■内に
設けられた第2室内フアン7を備えた第2蒸発器(第2
室内熱交換器)8へ移送され、ここで室内空気と熱交換
して第2室■内を冷房する。しかして、仕事を了えたガ
ス冷媒は、吸込管9を通して上記圧縮機1へ再び還流す
るようになっている。That is, in FIG. 4, the multi-type cooling system drives the compressor 11 during the two-room cooling operation, so that the compressor 1 compresses the refrigerant, and the compressed gas refrigerant is , is transferred to a condenser (outdoor heat exchanger) 3 through a discharge pipe 2, where it exchanges heat with outside air and becomes a liquid refrigerant,
Furthermore, connect this to the main capillary tube (aperture [4 m)]
4, and the depressurized liquid refrigerant is transferred to a first evaporator (first indoor heat exchanger) 6 equipped with a first indoor fan 5 provided in the first chamber. In this step, the interior of the first room ■ is cooled by exchanging heat with the blank air.
The refrigerant that has completed its work in the first evaporator 6 is transferred to a second evaporator (second
The air is transferred to the indoor heat exchanger (indoor heat exchanger) 8, where it exchanges heat with indoor air to cool the inside of the second room. The gas refrigerant that has completed its work is then returned to the compressor 1 through the suction pipe 9.
一方、上記第1蒸発器6には第1温度センサ10が付設
されており、この第1温度センサ10は上記第1!内の
空気の温度を検出して、この検出信号に基づいて上記第
1室内ノ7ン5の運転をi!111rlJするようにな
っている。又、第2蒸発固8には、第2−度センサ11
が配設されており、この第2温度センサ11は上記第2
室内の空気の温度を検出して、この検出信号に基づいて
上記第2室内フ戸ン7の運転を制御するようになってい
る。On the other hand, a first temperature sensor 10 is attached to the first evaporator 6, and this first temperature sensor 10 is connected to the first evaporator 6. The i! 111rlJ. Further, the second evaporation solidification 8 is equipped with a second degree sensor 11.
is provided, and this second temperature sensor 11 is connected to the second temperature sensor 11.
The temperature of the indoor air is detected, and the operation of the second indoor fan 7 is controlled based on this detection signal.
従って、上記各温度センサ10,11は、第1室■及び
第2室■で予め設定された冷房設定温度に達すると、上
記第1室内フアン5と第2室内フ1ン7の運転をそれぞ
れ独立して停止するようになっている。Therefore, each temperature sensor 10, 11 controls the operation of the first indoor fan 5 and the second indoor fan 7, respectively, when the preset cooling temperature is reached in the first room (2) and the second room (2). It is designed to stop independently.
(発明が解決しようとする問題点)
しかしながら、上述したマルチ方式の冷房装置は、第1
室工及び第2室■を個々に冷房制御する場合、室内温度
が予め設定された設定直に達すると、それぞれの各蒸発
器6.7の各室内ファン5゜7の運転を停止して上記第
1室工又は第2室■での冷房を停止するため、下記のよ
うな欠点がある。(Problems to be Solved by the Invention) However, the above-mentioned multi-system cooling device
When controlling the cooling of the room and the second room separately, when the indoor temperature reaches the preset setting, the operation of each indoor fan 5.7 of each evaporator 6.7 is stopped and the above-mentioned Since cooling in the first room or the second room (2) is stopped, there are the following drawbacks.
即ち、(1)、各室内ファン5,7が停止すると、冷」
吹出送風感がなくなり、室内温度が急に上昇したような
感じを与えて冷房した室内の快適性が損われる。In other words, (1), when each indoor fan 5, 7 stops, it becomes cold.
The feeling of blowing air disappears, giving the feeling that the indoor temperature has suddenly increased, and the comfort of the air-conditioned room is impaired.
(2)、又、室内ファン5.7の運転停止に伴って蒸発
器6.8の外周に冷気がR留し、これに起因して、上記
蒸発器6,8の前面パネルが冷されて、その表面に露結
して水滴が生成され、この水滴がその周囲を汚損するお
それがある。(2) Also, when the indoor fan 5.7 stops operating, cold air remains around the evaporator 6.8, and as a result, the front panels of the evaporators 6, 8 are cooled. , there is a risk that dew will form on the surface and water droplets will contaminate the surrounding area.
本発明は、上述した事情に鑑みてなされたものであって
、2つの蒸発器を直列に接続した冷凍サイクルにおいて
、冷房運転の休止中でも、各室内ファンを運転し、冷気
送用状態のよ)で冷r)5能力を発揮させずに、室内冷
房を維持すると共に、水滴が各蒸発器の前面パネルに露
結しないようにして冷房能力を向上するようにした冷房
装置を捏供することを目的とするものである。The present invention has been made in view of the above-mentioned circumstances, and in a refrigeration cycle in which two evaporators are connected in series, each indoor fan is operated even when the cooling operation is stopped, so that the cold air is supplied. The objective is to provide a cooling device that maintains indoor cooling without exerting its cooling capacity and improves cooling capacity by preventing water droplets from condensing on the front panel of each evaporator. That is.
(問題点を解決するための手段とその作用)本発明は、
各室内ファンを協えた2つの蒸発器を直列に接続した冷
凍サイクルにおいて、凝縮器と第1蒸発器とを接続した
冷媒管に第1流吊制御弁を設け、上記第1蒸発器と第2
蒸発器どの間に第2流吊制御弁を設け、上記両流吊制御
弁の開度を上記各温度センサ°10.11の検出信号に
基づいて制御し、當に、上記各室内ファンを運転して、
水滴が各蒸発器の性向パネルに露結しないようにすると
共に、冷房した室内の快適性の向上を図るようにしたも
のである。(Means for solving the problems and their effects) The present invention includes:
In a refrigeration cycle in which two evaporators each connected to an indoor fan are connected in series, a first flow control valve is provided in a refrigerant pipe connecting a condenser and a first evaporator, and a first flow control valve is provided between the first evaporator and the second evaporator.
A second flow suspension control valve is provided between the evaporators, and the opening degree of the double flow suspension control valve is controlled based on the detection signal of each temperature sensor °10.11, and each of the indoor fans is operated. do,
This prevents water droplets from condensing on the propensity panels of each evaporator and improves the comfort of the cooled room.
(実施例) 以下、本発明を図示の一実施例について説明する。(Example) Hereinafter, the present invention will be described with reference to an illustrated embodiment.
なお、本発明は、上述した具体例と周一構成部材には同
じ符号を付して説明する。In addition, the present invention will be described with the same reference numerals attached to the above-mentioned specific examples and the circumferential structural members.
第1図において、符号1は、マルチ方式の冷房装置にお
ける王縮様であって、この圧縮機1は、2v回時冷房運
転時、これを駆動することにより、冷媒を圧縮し、この
圧縮されたガス冷媒は、吐出管2を通して凝縮器(室外
熱交換器)3へ移送され、こ1で外気と熱交換して液冷
媒とされる。又、この凝縮器3と第1室T内に設けられ
た第1卒内フアン5を備えた第1蒸発器(第1下内熱交
換器ン6との間の冷媒管12には、第1流吊it+制御
弁13が配設されており、この第1流ω1tIQ tl
l弁13は、複数の電磁弁14a、14b、14cとこ
れらに接続する各絞り機構15a、15b、15cとを
並列に接続して構成されており、2室間時冷房運転時で
あって、前記第1室■及び第2室■の室内温度が冷房設
定温度に達していないとぎ、凝縮器3を通った液冷媒は
上記電磁弁14a及び絞り機構15aで構成される第1
流は制御弁13を通ることによって減圧されて−F間第
1蒸発器6へ移送される。そして、この第1蒸発器6へ
移送された液冷媒は、室内空気と熱交換して第1室■内
を冷房する。In FIG. 1, reference numeral 1 denotes a compressor in a multi-system cooling system, and this compressor 1 compresses the refrigerant by driving it during the 2v cooling operation. The gas refrigerant is transferred to a condenser (outdoor heat exchanger) 3 through a discharge pipe 2, where it exchanges heat with outside air and becomes a liquid refrigerant. In addition, a refrigerant pipe 12 between this condenser 3 and a first evaporator (first lower internal heat exchanger 6) equipped with a first internal fan 5 provided in the first chamber T is A first flow suspension it+control valve 13 is provided, and this first flow ω1tIQ tl
The L valve 13 is configured by connecting a plurality of electromagnetic valves 14a, 14b, 14c and each throttling mechanism 15a, 15b, 15c connected to these in parallel, and during two-room cooling operation, When the indoor temperatures of the first chamber (2) and the second chamber (2) have not reached the cooling set temperature, the liquid refrigerant that has passed through the condenser 3 is transferred to the first
The flow is depressurized by passing through control valve 13 and transferred to first evaporator 6 between -F. The liquid refrigerant transferred to the first evaporator 6 exchanges heat with indoor air to cool the inside of the first room.
一方、上記第1蒸発器6と第2室■内に設けられた第2
室内フアン7を備えた第2蒸発器8との間の冷媒管15
には、第2流吊制御弁16が配設されており、この第2
流量制御井16は電磁弁17とこれをバイパスする絞り
機構18とで構成されており、2空回時冷房運転時であ
って、上記第1室■及び第2vI[の室内温度が冷房設
定温度に達していないとき、第1蒸発器6を通って仕事
を了えた液冷媒は、上記第2流量制御弁16の開弁じて
いる電磁弁17を通って第2蒸発器8へ移送され、こ)
で室内空気と熱交換して第2室■内を冷房する。On the other hand, the first evaporator 6 and the second evaporator provided in the second chamber
Refrigerant pipe 15 between the second evaporator 8 and the indoor fan 7
A second flow suspension control valve 16 is disposed in the second flow suspension control valve 16.
The flow rate control well 16 is composed of an electromagnetic valve 17 and a throttle mechanism 18 that bypasses the solenoid valve 17. During the cooling operation during the second idle cycle, the indoor temperature of the first chamber ■ and the second vI [ is the cooling set temperature. When the liquid refrigerant has completed its work through the first evaporator 6, it is transferred to the second evaporator 8 through the solenoid valve 17 of the second flow control valve 16 which is open. )
It exchanges heat with the indoor air and cools the inside of the second room.
しかして、仕事を了えたガス冷媒は、吸込管9を通して
上記圧縮機1へ還流りるようになっている。The gas refrigerant that has completed its work returns to the compressor 1 through the suction pipe 9.
他方、上記第1蒸発器6には、第1温瓜センサ10がト
1設されており、この第1温度センサ10は、第1室内
の室温を検出して、この検出信号に基づいてL2第1流
量制御弁13の開度を制御するようになっている。即ら
、上記第1室■の第1蒸発器6が設定温度に達ザると、
上記第1流吊制御弁13の電磁弁14aと第2流量制御
弁16の1mm弁子7共に閉弁づ゛ると同時に、他の′
、lIf磁弁14bが開弁する。しかして、上記凝縮器
3がらの液冷媒は、上記電磁弁14b及び絞り機構15
bを通ることによって減圧され、しかる後、第1蒸発器
6へ流入し、さらに、第2流石制御弁16の絞り機構1
8を通ることよって減圧され、第2蒸発器8で室内空気
と熱交換して第2室■を冷房設定温度に達するように冷
房する。On the other hand, the first evaporator 6 is provided with a first warm melon sensor 10, which detects the room temperature in the first room and adjusts the L2 temperature based on this detection signal. The opening degree of the first flow control valve 13 is controlled. That is, when the first evaporator 6 of the first chamber (3) reaches the set temperature,
At the same time, the solenoid valve 14a of the first flow control valve 13 and the 1mm valve 7 of the second flow control valve 16 are closed.
, lIf the magnetic valve 14b opens. Therefore, the liquid refrigerant in the condenser 3 is transferred to the solenoid valve 14b and the throttle mechanism 15.
The pressure is reduced by passing through b, and then it flows into the first evaporator 6, and then the throttle mechanism 1 of the second control valve 16.
8, the pressure is reduced, and the second evaporator 8 exchanges heat with indoor air to cool the second chamber (2) to the cooling set temperature.
なお、上記絞り機構15b及び18は、第1蒸発器6に
おける冷!51t編度が第1室内空気になり、第2蒸発
器で十分冷房能力が発揮できるような゛絞り量″になる
ようにそれぞれ設定されてJ5す、このため、第1奎内
フアン5が運転したままでも、上記第1蒸発器6は冷房
能力を発揮しない。Note that the throttle mechanisms 15b and 18 are used for cooling the first evaporator 6. The 51t knitting becomes the first room air, and the "throttling amount" is set so that the second evaporator can exert sufficient cooling capacity.For this reason, the first internal fan 5 is operated. Even if it is left as it is, the first evaporator 6 does not exhibit its cooling ability.
このようにして本発明は、2室間時冷房運転時、電磁弁
14bを聞弁じ、絞り^構15bで1段絞りを行い、電
磁弁17を閉弁して絞り機構18で2段絞りを行うこと
により、第1室内フアン5を運転したま1、第1然発器
6での冷房を行わず、第2蒸発器8の冷房運転すること
ができる。また冷房を行なわない第1蒸発器の温度が室
温と同程度とするため、蒸発器の前面パネルへの結露も
防止できる。In this manner, the present invention listens to the solenoid valve 14b during cooling operation for two rooms, performs first-stage throttling with the throttle mechanism 15b, closes the solenoid valve 17, and performs second-stage throttling with the throttle mechanism 18. By doing so, while the first indoor fan 5 is operating, the second evaporator 8 can be operated for cooling without the first natural generator 6 performing cooling. Furthermore, since the temperature of the first evaporator, which does not perform cooling, is approximately the same as room temperature, condensation on the front panel of the evaporator can be prevented.
次に、第2室■の空温が冷房設定温度に達し、他方、第
1室■の室温が冷房設定温度に達していないとき、予め
、電磁弁14a、14bを閉弁し、同時に電磁弁14C
と17とを開弁する。すると、上記凝縮器3で凝縮した
液冷媒は、上記電磁弁14C及び絞り機構15cを通す
ことにより太きく減圧し、しかる後、第1蒸発器6へ流
入して、こ)で室内空気と熱交換して第1室工を急速に
冷房する。しかして、第1蒸発器6で仕事を了えた冷媒
は7f磁弁17を通って第2蒸発器8へ流入するも、既
に液冷媒が完全に蒸発してガス冷媒となっているため、
第2蒸発器8でほとんど熱交換することなく、吸込管9
から上記圧縮機1へ1流する。なお、上記絞り機M41
5cは、第1蒸発器6の出口で完全に液冷媒をガス冷媒
に蒸発するような“較り聞パに設定されている。このた
め、第2蒸発器8では、ガス冷媒のみが流れて、冷房能
力を発揮しない。Next, when the air temperature in the second room ■ has reached the cooling set temperature, and on the other hand, the room temperature in the first room ■ has not reached the cooling set temperature, the solenoid valves 14a and 14b are closed in advance, and at the same time the solenoid valve 14C
and 17 are opened. Then, the liquid refrigerant condensed in the condenser 3 is greatly reduced in pressure by passing through the electromagnetic valve 14C and the throttle mechanism 15c, and then flows into the first evaporator 6, where it exchanges heat with indoor air. Replace it and rapidly cool down the first room. The refrigerant that has completed its work in the first evaporator 6 passes through the 7F magnetic valve 17 and flows into the second evaporator 8, but since the liquid refrigerant has already completely evaporated and turned into gas refrigerant,
With almost no heat exchange in the second evaporator 8, the suction pipe 9
1 flow from the compressor 1 to the compressor 1 mentioned above. In addition, the above-mentioned squeezing machine M41
5c is set to a relatively low temperature such that the liquid refrigerant is completely evaporated into gas refrigerant at the outlet of the first evaporator 6. Therefore, only the gas refrigerant flows in the second evaporator 8. , the cooling capacity is not achieved.
このようにして、第1室■のみ冷房したいときは、上記
電磁弁14c及び上記絞りは構15cに切換えることに
より、第1室■は、冷房され、他方、第2空■の第2室
内フアン7は運転していても、冷房能力は発揮しない。In this way, when it is desired to cool only the first room (2), by switching the solenoid valve 14c and the throttle to the mechanism 15c, the first room (2) is cooled, while the second indoor fan of the second room (2) is cooled. Even if 7 is running, the cooling capacity is not demonstrated.
また、第2蒸発器の温度は、室温近くに上っているため
前面パネルへの結露も防止できる。Furthermore, since the temperature of the second evaporator is close to room temperature, dew condensation on the front panel can be prevented.
むお、上述した実施例における電磁弁14a。Well, the solenoid valve 14a in the embodiment described above.
14b、及び14cを組込んだ第1流ff1iIIII
Il弁13と電磁jP17を使用した第2流暑$す御井
16との制御動作(制御パターン)を表で示ずと、下記
の“表1″のようになる。1st stream ff1iIII incorporating 14b and 14c
If the control operation (control pattern) of the Il valve 13 and the second heat exchanger 16 using the electromagnetic jP 17 is not shown in a table, it will be as shown in "Table 1" below.
表 1
次に、第2図に示される本発明の他の実流例は、前記第
1 Mfiけ制u11弁13を゛市動膨j最弁13′と
し、さらに、第2流六制御弁16を電動膨張弁16′と
し、上記両電動膨張弁13’ 、16’を制!III装
置(コントローラ)1つに接続すると共に、上記第1蒸
発器6の冷媒の入口側と出口側及び第2蒸発器8の入口
側と出口側にそれぞれ各温度センサ20a、20b、2
1a、21bを付設し、この各温度センサ20a、20
b、21a、21bを上記制御装δ19に接続したもの
であって、これによって、第1蒸発器6と第2蒸発器8
とに供給される液冷媒の温度を、上記各温度センサ20
a。Table 1 Next, in another actual flow example of the present invention shown in FIG. 16 is an electric expansion valve 16', which controls both electric expansion valves 13' and 16'! III device (controller), and each temperature sensor 20a, 20b, 2 is connected to the refrigerant inlet side and outlet side of the first evaporator 6 and the inlet side and outlet side of the second evaporator 8, respectively.
1a, 21b are attached, and each temperature sensor 20a, 20
b, 21a, 21b are connected to the control device δ19, thereby controlling the first evaporator 6 and the second evaporator 8.
The temperature of the liquid refrigerant supplied to each of the temperature sensors 20
a.
20b、21a、21bで検出し、この各検出信号を受
信した上記制御装置19は、上記各電動膨張弁13′と
16′の開度を独立して制御するようにしたものであり
、これは、上述した実施例と同じ作用をなすものである
。20b, 21a, and 21b, and the control device 19 that receives each detection signal independently controls the opening degree of each of the electric expansion valves 13' and 16'. , which has the same effect as the embodiment described above.
なお、第2図に示される本発明の実施例における電動膨
張弁13’ 、16’ の制御動作は、下記の“表2″
のようになる。The control operations of the electric expansion valves 13' and 16' in the embodiment of the present invention shown in FIG. 2 are shown in "Table 2" below.
become that way.
表 2
又一方、第3図に示される本発明の他の実施例は、第1
図と第2図との具体例を組合した構成のものであって、
前記圧縮n1の近傍の吸込管9に制御装置19に接続さ
れた温度センサ22を付設したものであり、この実施例
も、前述した各実施例と同じ作用をなすものである。Table 2 On the other hand, another embodiment of the invention shown in FIG.
It has a configuration that combines the specific examples of FIG. 2 and FIG. 2,
A temperature sensor 22 connected to the control device 19 is attached to the suction pipe 9 near the compression n1, and this embodiment has the same function as each of the embodiments described above.
以上述べたように本発明によれば、各室内ファンを備え
た2つの蒸発器を直列に接続した冷凍サイクルにおいて
、第1室■の室温が設定温度に達し、他方の第2室「の
室温が設定温度に達していないとぎ及び第1室■の室温
が設定温度に達せず、他方の第2室■の室温が設定温度
に達したとき、いずれのときでも、上記各室内ファンを
運転し、第1流祈制御弁13及び第2流岳、1III即
弁16の11a度を自動的に制御して冷房した室内の快
適性の向上を図ると共に、各蒸発器6,8の前面パネル
に露結するおそれはなくなる等の優れた効果を有するも
のである。As described above, according to the present invention, in a refrigeration cycle in which two evaporators each equipped with an indoor fan are connected in series, the room temperature of the first chamber (2) reaches the set temperature, and the room temperature of the other second room (2) reaches the set temperature. When the room temperature in the first room (■) has not reached the set temperature or the room temperature in the first room (■) has not reached the set temperature, and the room temperature in the other second room (■) has reached the set temperature, each of the above indoor fans should be operated. , the first flow control valve 13, the second flow control valve 13, and the 1III temperature control valve 16 are automatically controlled to improve the comfort of the air-conditioned room. This has excellent effects such as eliminating the risk of dew condensation.
第1図は、本発明の冷房装jNの冷凍サイクルの系統図
、第2図及び第3図は本発明の他の実施例を示す各図、
第4図は、既に提案されている冷房装置の冷凍サイクル
の系統図である。
1・・・圧縮機、3・・・凝縮器、5・・・第1室内フ
アン、6・・・第1蒸発器、7・・・第2室内フアン、
8・・・第2蒸発器、10.11・・・温度センサ、1
3・・・第1流M制御弁、14a、14b、14c・・
・電磁弁、15a、15b、15c・・・絞り機構、1
6 ・・・第2流量制御弁、17・・・電磁弁、18・
・・絞り礪構、19・・・制御装置。
出願人代理人 佐 藤 −雄
実1図
第2図FIG. 1 is a system diagram of the refrigeration cycle of the cooling system jN of the present invention, FIGS. 2 and 3 are diagrams showing other embodiments of the present invention,
FIG. 4 is a system diagram of a refrigeration cycle of a cooling device that has already been proposed. DESCRIPTION OF SYMBOLS 1... Compressor, 3... Condenser, 5... First indoor fan, 6... First evaporator, 7... Second indoor fan,
8...Second evaporator, 10.11...Temperature sensor, 1
3...First flow M control valve, 14a, 14b, 14c...
・Solenoid valve, 15a, 15b, 15c... Throttle mechanism, 1
6...Second flow control valve, 17...Solenoid valve, 18...
... Aperture structure, 19... Control device. Applicant's agent Yumi Sato Figure 1 Figure 2
Claims (1)
た冷凍サイクルにおいて、凝縮器と第1蒸発器とを接続
する冷媒管に第1流量制御弁を設け、上記第1蒸発器と
第2蒸発器との間に第2流量制御弁を設け、上記両流量
制御弁の開度を上記各蒸発器の近傍に付設された各温度
センサの検出信号に基づいて制御するようにしたことを
特徴とする冷房装置。 2、第1流量制御弁は、電動膨脹弁若しくは複数の電磁
弁とこれらに接続する各絞り機構を並列に接続したこと
を特徴とする特許請求の範囲第1項記載の冷房装置。 3、第2流量制御弁は、電動膨脹弁若しくは電磁弁とこ
れをバイパスする絞り機構にしたことを特徴とする特許
請求の範囲第1項又は第2項に記載の冷房装置。[Claims] 1. In a refrigeration cycle in which two evaporators each equipped with an indoor fan are connected in series, a first flow control valve is provided in a refrigerant pipe connecting the condenser and the first evaporator, and the above-mentioned A second flow control valve is provided between the first evaporator and the second evaporator, and the opening degrees of both flow control valves are controlled based on detection signals from each temperature sensor attached near each of the evaporators. A cooling device characterized by: 2. The cooling device according to claim 1, wherein the first flow rate control valve is an electric expansion valve or a plurality of electromagnetic valves and each throttling mechanism connected to these valves are connected in parallel. 3. The cooling device according to claim 1 or 2, wherein the second flow rate control valve is an electric expansion valve or a solenoid valve and a throttle mechanism that bypasses this.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20298286A JPS6358069A (en) | 1986-08-29 | 1986-08-29 | Chilling unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20298286A JPS6358069A (en) | 1986-08-29 | 1986-08-29 | Chilling unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6358069A true JPS6358069A (en) | 1988-03-12 |
Family
ID=16466371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20298286A Pending JPS6358069A (en) | 1986-08-29 | 1986-08-29 | Chilling unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6358069A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182912A (en) * | 1997-12-22 | 1999-07-06 | Toshiba Corp | Air conditioner |
JP2007057142A (en) * | 2005-08-23 | 2007-03-08 | Denso Corp | Supercritical refrigeration cycle apparatus |
-
1986
- 1986-08-29 JP JP20298286A patent/JPS6358069A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11182912A (en) * | 1997-12-22 | 1999-07-06 | Toshiba Corp | Air conditioner |
JP2007057142A (en) * | 2005-08-23 | 2007-03-08 | Denso Corp | Supercritical refrigeration cycle apparatus |
JP4600212B2 (en) * | 2005-08-23 | 2010-12-15 | 株式会社デンソー | Supercritical refrigeration cycle equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN210832604U (en) | Air conditioner | |
JP2002107000A (en) | Air conditioner | |
JPH08105652A (en) | Air conditioner | |
WO2024187755A1 (en) | Air conditioner | |
JP3643162B2 (en) | Air conditioner | |
JP2008121997A (en) | Air conditioner | |
CN112539453B (en) | Multi-split air conditioner and control method thereof | |
JPS6358069A (en) | Chilling unit | |
JP3723824B2 (en) | Air conditioner | |
JP3626517B2 (en) | Air conditioner | |
JPH03217771A (en) | Air conditioner | |
JP4391188B2 (en) | Air conditioner | |
JPH01167561A (en) | Multi-room type air-conditioning equipment | |
CN111649390A (en) | Dehumidifying air conditioner | |
JP3748620B2 (en) | Air conditioner | |
CN212108723U (en) | Dehumidifying air conditioner | |
CN220852568U (en) | Heat exchange system and air conditioner | |
CN220355711U (en) | Heat exchange system and air conditioner | |
JPH08128748A (en) | Multi-room type air conditioner | |
JPH0451319Y2 (en) | ||
CN215336708U (en) | Refrigerant circulation system, air conditioner and equipment | |
CN213178883U (en) | Air conditioner | |
JPH06213478A (en) | Air-conditioning machine | |
JP3268967B2 (en) | Air conditioner | |
JP3326322B2 (en) | Air conditioner and air conditioner system equipped with this air conditioner |